Commit Graph

79835 Commits

Author SHA1 Message Date
Tom Rix
23970a1c94 udf: initialize newblock to 0
The clang build reports this error
fs/udf/inode.c:805:6: error: variable 'newblock' is used uninitialized whenever 'if' condition is true [-Werror,-Wsometimes-uninitialized]
        if (*err < 0)
            ^~~~~~~~
newblock is never set before error handling jump.
Initialize newblock to 0 and remove redundant settings.

Fixes: d8b39db5fab8 ("udf: Handle error when adding extent to a file")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <20221230175341.1629734-1-trix@redhat.com>
2023-01-06 15:44:32 +01:00
Jan Kara
83c7423d1e udf: Fix extension of the last extent in the file
When extending the last extent in the file within the last block, we
wrongly computed the length of the last extent. This is mostly a
cosmetical problem since the extent does not contain any data and the
length will be fixed up by following operations but still.

Fixes: 1f3868f068 ("udf: Fix extending file within last block")
Signed-off-by: Jan Kara <jack@suse.cz>
2023-01-06 15:44:07 +01:00
Linus Torvalds
2ac44821a8 f2fs-fix-6.2-rc3
This series fixes the below three bugs introduced in 6.2-rc1.
 
 - fix a null pointer dereference in f2fs_issue_flush, which occurs by the
 combination of mount/remount options.
 
 - fix a bug in per-block age-based extent_cache newly introduced in 6.2-rc1,
 which reported a wrong age information in extent_cache.
 
 - fix a kernel panic if extent_tree was not created, which was caught by a
 wrong BUG_ON.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmO1xyMACgkQQBSofoJI
 UNLivg//T7APr6AMyG59vmQv1Yzz0g1ZMCnkZ0cdBYBYgam0bwLtAgVFPfFfWc0q
 1E5xqAIlxLjSZ/r9cZcOkTx9wq0De1Htgn5LhflsMrX0xyUYmldQH7uXx+m7nV2y
 kMZ1QyIc7IT7MNP/FdiZnGtnD+amKj0D/pF0rXUYIrr6uwpyDX/lJ2sEJlUQcFuM
 cJ2qAltRNaQumOYcCC1T+jS31fWUQw3DZYbaUi7pS7g7Y8js5xV1fGpPCvfLBcyf
 bBj48ynUSmH5nv4RI2wI0V12/naJNjvzhDCXHO0EM//ruHS86yspnyE2ywpZNKx0
 MQ3aIwG0eKtCFX6Rdg+rVeqIg+eMoXCisIDuY0KY2TMPlwYWEsnMn1UqCp3uN8d0
 yCR5BI7u4JeH11scuATz4lH9ffsIZbNUxQdpQnCOISO4eCYHQwfblYRvUddENLT7
 J9vljgVJvX7aDw2V8ErRGw0OLa5HuWz+7tRkVmYWm/LHOquyt5ZXxDyWrEHrLGiq
 6btAiHUrCa9ugT3jq2ub3CV7bkrUaw0G0LSsYYb5lCK62g6KMQzFpLQ+4MwrWla7
 vIiidlzWmxg/lSpDeRpR1ybuGSPZ9/5iHNTaVHd4kgrWK2Zt3CDKj2fMPnCKPVZ8
 diq1TuVKPbE/K4+zVQACRk2udkzSpwEVkum4awhKdIErlZ0kr04=
 =yV+N
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-fix-6.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs fixes from Jaegeuk Kim:

 - fix a null pointer dereference in f2fs_issue_flush, which occurs by
   the combination of mount/remount options.

 - fix a bug in per-block age-based extent_cache newly introduced in
   6.2-rc1, which reported a wrong age information in extent_cache.

 - fix a kernel panic if extent_tree was not created, which was caught
   by a wrong BUG_ON

* tag 'f2fs-fix-6.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs:
  f2fs: let's avoid panic if extent_tree is not created
  f2fs: should use a temp extent_info for lookup
  f2fs: don't mix to use union values in extent_info
  f2fs: initialize extent_cache parameter
  f2fs: fix to avoid NULL pointer dereference in f2fs_issue_flush()
2023-01-04 12:02:26 -08:00
Linus Torvalds
b61778fa51 nfsd-6.2 fixes:
- Fix a filecache UAF during NFSD shutdown
 - Avoid exposing automounted mounts on NFS re-exports
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEKLLlsBKG3yQ88j7+M2qzM29mf5cFAmOy/MoACgkQM2qzM29m
 f5droRAAmHn9nKnTMsHiHFlhTLbM2jp/Nv+gRYtwRqcd4Io7NLz5vGWA57EkbHTQ
 BOeIRcLhT59XCPwxaOumxhPB6X1Swg9qB5iLcAefGfzBnPXYvGb8gBsQaNt3Ky5v
 8KEWFCEnmYh0QjL5/6G7FIOE4LNbgxN+oC0th6Oz/kgRVDogO2n9eSTqiOooEIDd
 mY2wDbVEkb8X1lkCqJS/lh0JgZS8upmmxbNtRPrTxDjaeQ0S28fhxkwNdf5T3nih
 5kb9/ja/64lvrriJD3SHxBq/szuZUesoW6sZ9QsHNTqjkD1EkAhvtF2hp05praEh
 AyHMp7zUpiBvQ+ntYqsMQWgGBpNPWvy8uxEn3HQW1auQoJwTvGczErEuXohJnIiF
 FGlHRPagH85CesjhlT9D77n3kMor1OdNrYh64AREufU8D9bbKrLrbzHVkqNgUt14
 Q5+UmB5nBGtSQY4qS9n/NdUXpY08sX1yQsn8jhc6P/sbd6+cobvSmAn8X7Vzw/zD
 pnX3o3p6S0oaIV0awwfml1AjmvrlnRQ4j0vMkGRJVJlsVmT2V1SxULOZiosmQnjF
 hAXHMfjV9C/l4vnwH7A2CWfsYu8EGpJ2YW6bz27acGltmH4qJ0jexmWJdHpSqw+Q
 qMBqH0Q2w68QLNEau9qvuXU8/8VO5hC5u/RGggwDLvkqIAAHWOs=
 =Dd1M
 -----END PGP SIGNATURE-----

Merge tag 'nfsd-6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux

Pull nfsd fixes from Chuck Lever:

 - Fix a filecache UAF during NFSD shutdown

 - Avoid exposing automounted mounts on NFS re-exports

* tag 'nfsd-6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux:
  nfsd: fix handling of readdir in v4root vs. mount upcall timeout
  nfsd: shut down the NFSv4 state objects before the filecache
2023-01-04 11:26:36 -08:00
Jaegeuk Kim
df9d44b645 f2fs: let's avoid panic if extent_tree is not created
This patch avoids the below panic.

pc : __lookup_extent_tree+0xd8/0x760
lr : f2fs_do_write_data_page+0x104/0x87c
sp : ffffffc010cbb3c0
x29: ffffffc010cbb3e0 x28: 0000000000000000
x27: ffffff8803e7f020 x26: ffffff8803e7ed40
x25: ffffff8803e7f020 x24: ffffffc010cbb460
x23: ffffffc010cbb480 x22: 0000000000000000
x21: 0000000000000000 x20: ffffffff22e90900
x19: 0000000000000000 x18: ffffffc010c5d080
x17: 0000000000000000 x16: 0000000000000020
x15: ffffffdb1acdbb88 x14: ffffff888759e2b0
x13: 0000000000000000 x12: ffffff802da49000
x11: 000000000a001200 x10: ffffff8803e7ed40
x9 : ffffff8023195800 x8 : ffffff802da49078
x7 : 0000000000000001 x6 : 0000000000000000
x5 : 0000000000000006 x4 : ffffffc010cbba28
x3 : 0000000000000000 x2 : ffffffc010cbb480
x1 : 0000000000000000 x0 : ffffff8803e7ed40
Call trace:
 __lookup_extent_tree+0xd8/0x760
 f2fs_do_write_data_page+0x104/0x87c
 f2fs_write_single_data_page+0x420/0xb60
 f2fs_write_cache_pages+0x418/0xb1c
 __f2fs_write_data_pages+0x428/0x58c
 f2fs_write_data_pages+0x30/0x40
 do_writepages+0x88/0x190
 __writeback_single_inode+0x48/0x448
 writeback_sb_inodes+0x468/0x9e8
 __writeback_inodes_wb+0xb8/0x2a4
 wb_writeback+0x33c/0x740
 wb_do_writeback+0x2b4/0x400
 wb_workfn+0xe4/0x34c
 process_one_work+0x24c/0x5bc
 worker_thread+0x3e8/0xa50
 kthread+0x150/0x1b4

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2023-01-03 08:59:06 -08:00
Jaegeuk Kim
22a341b430 f2fs: should use a temp extent_info for lookup
Otherwise, __lookup_extent_tree() will override the given extent_info which will
be used by caller.

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2023-01-03 08:59:06 -08:00
Jaegeuk Kim
ed2724765e f2fs: don't mix to use union values in extent_info
Let's explicitly use the defined values in block_age case only.

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2023-01-03 08:59:06 -08:00
Jaegeuk Kim
fe59109ae5 f2fs: initialize extent_cache parameter
This can avoid confusing tracepoint values.

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2023-01-03 08:59:05 -08:00
Chao Yu
b3d83066cb f2fs: fix to avoid NULL pointer dereference in f2fs_issue_flush()
With below two cases, it will cause NULL pointer dereference when
accessing SM_I(sbi)->fcc_info in f2fs_issue_flush().

a) If kthread_run() fails in f2fs_create_flush_cmd_control(), it will
release SM_I(sbi)->fcc_info,

- mount -o noflush_merge /dev/vda /mnt/f2fs
- mount -o remount,flush_merge /dev/vda /mnt/f2fs  -- kthread_run() fails
- dd if=/dev/zero of=/mnt/f2fs/file bs=4k count=1 conv=fsync

b) we will never allocate memory for SM_I(sbi)->fcc_info w/ below
testcase,

- mount -o ro /dev/vda /mnt/f2fs
- mount -o rw,remount /dev/vda /mnt/f2fs
- dd if=/dev/zero of=/mnt/f2fs/file bs=4k count=1 conv=fsync

In order to fix this issue, let change as below:
- fix error path handling in f2fs_create_flush_cmd_control().
- allocate SM_I(sbi)->fcc_info even if readonly is on.

Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2023-01-03 08:58:47 -08:00
Linus Torvalds
69b41ac87e for-6.2-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmOyzdUACgkQxWXV+ddt
 WDt4qhAAqZZ7Tldx3kVKN6ExBfcDoimeQPPZmmMnL7A7POQyATtyBHCcu9ymj6Z6
 tuUqYcj7h4ydeHjL0AvaskpV1ALkfopkOA9KWAE2m1lyu4qclF6tSEJl7AKyCft7
 g4UyBpCFcnml/by0JeErHMJoxUz/AADYfW/wbyM/XvH2IiODJWf4mMWzJaL+t+GP
 rkJe9OgtmKEVZ2h5Gvdfnw4CrYm/Ds7CfG0UntpwIHvQBLHcms+OvFDSxRKZHxGs
 kt4u/b589AgL+8xNQrpfWfUQf9Zev2c+ekatU3ibi+c67XRtv45kHwsJvqaX+gmV
 +AaBI0GrQDdHXPNU22nmXeIi7tb3JnI/Vy6GHNkopIzdWkIiEtRu8hkVARhRxle7
 Z1WEAWgzPj2QerwmWrgk2TedxF1KD5J0jEJlNaNN7Dh3T8Fu5YjediQVf6mbKhkM
 yFUd0OBAlGNhEqq42ObH6TUYsqbzGk58EYaHGzBDa6QbA/yEfHaFwSqRstg/X3gv
 7WxImSq67KN0SkZZDMszZxzfEehXK9nmxoIfgo0/WGaYMSCxzBs6Xh17SJl9bhiE
 7Cee5dfiHamrYZF6oGpolP/FoZx68yPJXRmfEUQARTrMvF7cE62hjLLUjU7OgW9m
 GeLoFDq9bAh3OC4aEPdqyyu3Bh2yOfMPwpCO1wMk9I/tsIvR8mY=
 =+EpE
 -----END PGP SIGNATURE-----

Merge tag 'for-6.2-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "First batch of regression and regular fixes:

   - regressions:
       - fix error handling after conversion to qstr for paths
       - fix raid56/scrub recovery caused by uninitialized variable
         after conversion to error bitmaps
       - restore qgroup backref lookup behaviour after recent
         refactoring
       - fix leak of device lists at module exit time

   - fix resolving backrefs for inline extent followed by prealloc

   - reset defrag ioctl buffer on memory allocation error"

* tag 'for-6.2-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix fscrypt name leak after failure to join log transaction
  btrfs: scrub: fix uninitialized return value in recover_scrub_rbio
  btrfs: fix resolving backrefs for inline extent followed by prealloc
  btrfs: fix trace event name typo for FLUSH_DELAYED_REFS
  btrfs: restore BTRFS_SEQ_LAST when looking up qgroup backref lookup
  btrfs: fix leak of fs devices after removing btrfs module
  btrfs: fix an error handling path in btrfs_defrag_leaves()
  btrfs: fix an error handling path in btrfs_rename()
2023-01-02 11:06:18 -08:00
Tetsuo Handa
0226635c30 fs/ntfs3: don't hold ni_lock when calling truncate_setsize()
syzbot is reporting hung task at do_user_addr_fault() [1], for there is
a silent deadlock between PG_locked bit and ni_lock lock.

Since filemap_update_page() calls filemap_read_folio() after calling
folio_trylock() which will set PG_locked bit, ntfs_truncate() must not
call truncate_setsize() which will wait for PG_locked bit to be cleared
when holding ni_lock lock.

Link: https://lore.kernel.org/all/00000000000060d41f05f139aa44@google.com/
Link: https://syzkaller.appspot.com/bug?extid=bed15dbf10294aa4f2ae [1]
Reported-by: syzbot <syzbot+bed15dbf10294aa4f2ae@syzkaller.appspotmail.com>
Debugged-by: Linus Torvalds <torvalds@linux-foundation.org>
Co-developed-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 4342306f0f ("fs/ntfs3: Add file operations and implementation")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-01-02 10:31:09 -08:00
Jeff Layton
cad853374d nfsd: fix handling of readdir in v4root vs. mount upcall timeout
If v4 READDIR operation hits a mountpoint and gets back an error,
then it will include that entry in the reply and set RDATTR_ERROR for it
to the error.

That's fine for "normal" exported filesystems, but on the v4root, we
need to be more careful to only expose the existence of dentries that
lead to exports.

If the mountd upcall times out while checking to see whether a
mountpoint on the v4root is exported, then we have no recourse other
than to fail the whole operation.

Cc: Steve Dickson <steved@redhat.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216777
Reported-by: JianHong Yin <yin-jianhong@163.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@vger.kernel.org>
2023-01-02 10:45:31 -05:00
Steven Rostedt (Google)
292a089d78 treewide: Convert del_timer*() to timer_shutdown*()
Due to several bugs caused by timers being re-armed after they are
shutdown and just before they are freed, a new state of timers was added
called "shutdown".  After a timer is set to this state, then it can no
longer be re-armed.

The following script was run to find all the trivial locations where
del_timer() or del_timer_sync() is called in the same function that the
object holding the timer is freed.  It also ignores any locations where
the timer->function is modified between the del_timer*() and the free(),
as that is not considered a "trivial" case.

This was created by using a coccinelle script and the following
commands:

    $ cat timer.cocci
    @@
    expression ptr, slab;
    identifier timer, rfield;
    @@
    (
    -       del_timer(&ptr->timer);
    +       timer_shutdown(&ptr->timer);
    |
    -       del_timer_sync(&ptr->timer);
    +       timer_shutdown_sync(&ptr->timer);
    )
      ... when strict
          when != ptr->timer
    (
            kfree_rcu(ptr, rfield);
    |
            kmem_cache_free(slab, ptr);
    |
            kfree(ptr);
    )

    $ spatch timer.cocci . > /tmp/t.patch
    $ patch -p1 < /tmp/t.patch

Link: https://lore.kernel.org/lkml/20221123201306.823305113@linutronix.de/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Pavel Machek <pavel@ucw.cz> [ LED ]
Acked-by: Kalle Valo <kvalo@kernel.org> [ wireless ]
Acked-by: Paolo Abeni <pabeni@redhat.com> [ networking ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-12-25 13:38:09 -08:00
Linus Torvalds
edb23125fd pstore updates for v6.2-rc1-fixes
- Switch pmsg_lock to an rt_mutex to avoid priority inversion (John Stultz)
 
 - Correctly assign mem_type property (Luca Stefani)
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmOl9XkWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJgkUD/9QoUAxaCQY6NHjbnujyF6e2gOx
 A7IHxy6h3Z7ZAYvxDrtNqB/pJEVQR81rdz+NGJ/Hsu3k3N/1NeXioD6rM5tsW3tp
 7/KdMbX3eUmGmgq2kvENS8yD6HqW4IMTdZJJeO7GaM1+LuIOvLsR6rprwoS//BfW
 5Asugk5BDsucFVmHxjC7m9eb4wuSPhRCtlFHw0HCeGIeClHY5oU6N6/LpEkjjIBo
 Hy0v8qU6xS3c7HjENw7REVdeiIb9goa4EDYt1EqjCoQ/mQXSOuuVKxT8GV0CNRWX
 pwkWF916xYOmIlWqLXjMXYSoJdt3BmpqB/KnkeKRPkUdIh8YgnSWHRMT74ib6DM1
 FEwA0j/JCOZYOmrQ0jWnLfaWKIiXKfyu56EIXKC9eRf4J2NdrfUflwhqhG56JgkW
 Yz1XoS2IviNNjEISCfwS2c22f+U2vr4PrIarHeJWJZRhO1dnP8JvHdqjl8Ps1cEn
 LePbrHIUZdLZldVE1wix5Lfv6nhR08ttgy8sp4SkTZdNUtW5DmqGV40wY9olHjqq
 JfcS0EvZXidm+aB4N2oVBTNjCcwL38EYinXF7jS+LePkJayUVSf83liS05QwNFTj
 xlQ9rr7kB49S0T5+HWV0IAOB0i5tIu1vWy5ziEyZ1pPcP1hzqqLT+gTbRvYTWxW5
 OFnZtKLTzzTteLl4Nw==
 =wpaN
 -----END PGP SIGNATURE-----

Merge tag 'pstore-v6.2-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull pstore fixes from Kees Cook:

 - Switch pmsg_lock to an rt_mutex to avoid priority inversion (John
   Stultz)

 - Correctly assign mem_type property (Luca Stefani)

* tag 'pstore-v6.2-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  pstore: Properly assign mem_type property
  pstore: Make sure CONFIG_PSTORE_PMSG selects CONFIG_RT_MUTEXES
  pstore: Switch pmsg_lock to an rt_mutex to avoid priority inversion
2022-12-23 11:55:54 -08:00
Linus Torvalds
e3b862ed89 9p-for-6.2-rc1
- improve p9_check_errors to check buffer size instead of msize when possible
 (e.g. not zero-copy)
 - some more syzbot and KCSAN fixes
 - minor headers include cleanup
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE/IPbcYBuWt0zoYhOq06b7GqY5nAFAmOljPwACgkQq06b7GqY
 5nDRjw//aJU+tdcKCMije/ul4hMWDlvMwxn7x6p0ELdomefs+ykS/knBxXSVIoEs
 PrbVJVZVqOOOAn/IwWe8cMBD+hal0fLUErRbfrtzmOdkiF7z8PavJ209OeJLKBgD
 ffL+bq6FhcVC6jVXcwVHoZkX9bb4pnM7/lsJrO0UjBw+fT3ceqtK0vsTa+R2xEOj
 9lOS5124u69GVa9UvwQzqHko+UUx5T6XlULZYjNBEdtJqGULGi2oAABrae64R3N2
 auaj5LRKzAFOx4zkJ+crCH1h08uZ4bfTyCHpfCeTHwWb1duKD3u4jMq9PhdetF4E
 A6NYnOdeMxbV/sZfFOjjNWQrzP1TQJLmF6IVGSZkVQrlCjrZh7xQ5dr/AHrKr6be
 U+NXb0UCmAS6/Gs7Sxq5jnihDHzJ4rYG+oFdYdNrwPrrpQXsYmmRh+bm61m/t40T
 2JxBIiSt2KWL487AHsKisb6OsiH65N1ojntO5QJObZId4UdnhFJU6OaAzqv0Cojv
 mqKlZ0UPyxICXNCL227w+SdDFgK25efdLF1Z1547hS5DO0+43oWAtnvd3KrRpjZ6
 CmV9ARvdhHt49lNedbxmJAre5FusJQLeULuRzhMbd4mdcG7mKAmGTdM3u+AlFRIu
 Te1ZotTJXxs16Yn/whWRShAooUnK9FbXzC3kViiibziYZlCfK+s=
 =xLkl
 -----END PGP SIGNATURE-----

Merge tag '9p-for-6.2-rc1' of https://github.com/martinetd/linux

Pull 9p updates from Dominique Martinet:

 - improve p9_check_errors to check buffer size instead of msize when
   possible (e.g. not zero-copy)

 - some more syzbot and KCSAN fixes

 - minor headers include cleanup

* tag '9p-for-6.2-rc1' of https://github.com/martinetd/linux:
  9p/client: fix data race on req->status
  net/9p: fix response size check in p9_check_errors()
  net/9p: distinguish zero-copy requests
  9p/xen: do not memcpy header into req->rc
  9p: set req refcount to zero to avoid uninitialized usage
  9p/net: Remove unneeded idr.h #include
  9p/fs: Remove unneeded idr.h #include
2022-12-23 11:39:18 -08:00
Luca Stefani
beca3e311a pstore: Properly assign mem_type property
If mem-type is specified in the device tree
it would end up overriding the record_size
field instead of populating mem_type.

As record_size is currently parsed after the
improper assignment with default size 0 it
continued to work as expected regardless of the
value found in the device tree.

Simply changing the target field of the struct
is enough to get mem-type working as expected.

Fixes: 9d843e8faf ("pstore: Add mem_type property DT parsing support")
Cc: stable@vger.kernel.org
Signed-off-by: Luca Stefani <luca@osomprivacy.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222131049.286288-1-luca@osomprivacy.com
2022-12-23 10:34:25 -08:00
John Stultz
2f4fec5943 pstore: Make sure CONFIG_PSTORE_PMSG selects CONFIG_RT_MUTEXES
In commit 76d62f24db ("pstore: Switch pmsg_lock to an rt_mutex
to avoid priority inversion") I changed a lock to an rt_mutex.

However, its possible that CONFIG_RT_MUTEXES is not enabled,
which then results in a build failure, as the 0day bot detected:
  https://lore.kernel.org/linux-mm/202212211244.TwzWZD3H-lkp@intel.com/

Thus this patch changes CONFIG_PSTORE_PMSG to select
CONFIG_RT_MUTEXES, which ensures the build will not fail.

Cc: Wei Wang <wvw@google.com>
Cc: Midas Chien<midaschieh@google.com>
Cc: Connor O'Brien <connoro@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: kernel test robot <lkp@intel.com>
Cc: kernel-team@android.com
Fixes: 76d62f24db ("pstore: Switch pmsg_lock to an rt_mutex to avoid priority inversion")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221221051855.15761-1-jstultz@google.com
2022-12-23 10:33:27 -08:00
Linus Torvalds
ff75ec43a2 afs next
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmOkQmcACgkQ+7dXa6fL
 C2vjNg/8CWHpUQj32SSASt5uQvndqBe3xyr+NPYRdNddcu/gS82UoMSuOdMh+afb
 OhZ/yrkWzkraJVMgEc2mbe0xfGEN9TRQnld+/oy5Co2dxlLAtA/Iw3xZKKG5V5J1
 CVE8V2SUtPC0ycJ4XLNuwfmaTEGxZjKju832V4qWvT8oz299Xl4MTsu3zN+Rqpih
 TAAfokfMVTN57x6PTd+KCl8dmExRyRIq70Iu9OwHPF9lFFDVqGlzGPYJ+gPqSKxV
 B0F/sW6y1djuyL8wFuZn+W1ECf3DnA9Ol2cSP6qEsWrymQkjY/9tntN52Hu22y9x
 xP6MHXKQXF+gjmX7aokivTTcOSw6/ript1ykcaNlz7ZX31mxKQIsb++jHSWshs6f
 7Ncbjffqg+L8CmgVvaQ63dNVBvHa+Y+9Os8H0t8DZ0DoY6Crv+W8ssQkjW3Lqdoq
 DIlOFRKEbeXO0+hTM00te3NhP8sYKGtjup8Xuv8TMqye2hE8DvBu80qdvISBmglP
 P8odB7Rlwxp9n7jkBUFdc86IrQOHchao1Q7xNY4RDe/CZc6smNBgwf7aK5TONZkk
 qQGmVk2Ca/rFNQxXAV/iHRFCPJtTcdOk7b6kYWHFVj0E+r0iYNeMD4+hKfQK6W4X
 u4MzrmX9qm8+zN4e+FSpMU7OEDw2Yi87KmGrz4nbvK6wNW7o6Go=
 =B9ez
 -----END PGP SIGNATURE-----

Merge tag 'afs-next-20221222' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull afs update from David Howells:
 "A fix for a couple of missing resource counter decrements, two small
  cleanups of now-unused bits of code and a patch to remove writepage
  support from afs"

* tag 'afs-next-20221222' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  afs: Stop implementing ->writepage()
  afs: remove afs_cache_netfs and afs_zap_permits() declarations
  afs: remove variable nr_servers
  afs: Fix lost servers_outstanding count
2022-12-22 11:17:34 -08:00
Jeff Layton
789e1e10f2 nfsd: shut down the NFSv4 state objects before the filecache
Currently, we shut down the filecache before trying to clean up the
stateids that depend on it. This leads to the kernel trying to free an
nfsd_file twice, and a refcount overput on the nf_mark.

Change the shutdown procedure to tear down all of the stateids prior
to shutting down the filecache.

Reported-and-tested-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Fixes: 5e113224c1 ("nfsd: nfsd_file cache entries should be per net namespace")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2022-12-22 10:12:56 -05:00
David Howells
a9eb558a5b afs: Stop implementing ->writepage()
We're trying to get rid of the ->writepage() hook[1].  Stop afs from using
it by unlocking the page and calling afs_writepages_region() rather than
folio_write_one().

A flag is passed to afs_writepages_region() to indicate that it should only
write a single region so that we don't flush the entire file in
->write_begin(), but do add other dirty data to the region being written to
try and reduce the number of RPC ops.

This requires ->migrate_folio() to be implemented, so point that at
filemap_migrate_folio() for files and also for symlinks and directories.

This can be tested by turning on the afs_folio_dirty tracepoint and then
doing something like:

   xfs_io -c "w 2223 7000" -c "w 15000 22222" -c "w 23 7" /afs/my/test/foo

and then looking in the trace to see if the write at position 15000 gets
stored before page 0 gets dirtied for the write at position 23.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Christoph Hellwig <hch@lst.de>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/20221113162902.883850-1-hch@lst.de/ [1]
Link: https://lore.kernel.org/r/166876785552.222254.4403222906022558715.stgit@warthog.procyon.org.uk/ # v1
2022-12-22 11:40:35 +00:00
Gaosheng Cui
b3d3ca5567 afs: remove afs_cache_netfs and afs_zap_permits() declarations
afs_zap_permits() has been removed since
commit be080a6f43 ("afs: Overhaul permit caching").

afs_cache_netfs has been removed since
commit 523d27cda1 ("afs: Convert afs to use the new fscache API").

so remove the declare for them from header file.

Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/20220909070353.1160228-1-cuigaosheng1@huawei.com/
2022-12-22 11:40:35 +00:00
Colin Ian King
318b83b712 afs: remove variable nr_servers
Variable nr_servers is no longer being used, the last reference
to it was removed in commit 45df846273 ("afs: Fix server list handling")
so clean up the code by removing it.

Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/20221020173923.21342-1-colin.i.king@gmail.com/
2022-12-22 11:40:35 +00:00
David Howells
36f82c93ee afs: Fix lost servers_outstanding count
The afs_fs_probe_dispatcher() work function is passed a count on
net->servers_outstanding when it is scheduled (which may come via its
timer).  This is passed back to the work_item, passed to the timer or
dropped at the end of the dispatcher function.

But, at the top of the dispatcher function, there are two checks which
skip the rest of the function: if the network namespace is being destroyed
or if there are no fileservers to probe.  These two return paths, however,
do not drop the count passed to the dispatcher, and so, sometimes, the
destruction of a network namespace, such as induced by rmmod of the kafs
module, may get stuck in afs_purge_servers(), waiting for
net->servers_outstanding to become zero.

Fix this by adding the missing decrements in afs_fs_probe_dispatcher().

Fixes: f6cbb368bc ("afs: Actively poll fileservers to maintain NAT or firewall openings")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/167164544917.2072364.3759519569649459359.stgit@warthog.procyon.org.uk/
2022-12-22 11:40:35 +00:00
Linus Torvalds
0a924817d2 20 cifs/smb3 client fixes, mostly related to reconnect and/or DFS
-----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAmOiJRoACgkQiiy9cAdy
 T1FsBgv/T56TVFpUism0hwWUKEeL/2HtlOk0Ic9w+2s9CtMm4j2T5x4/Bs5mq+aS
 Bs9yuH2ljYB8aKvvLQ9y2C96ojpm2/IJkSOUkIBhkyzSsQ5ckp0eO/HHHlIiwdiQ
 4LZ00qtZCvM9ON/904dETblaPNLK2vdh6p8LzpeDDF2prXuNn5PLhq/febiH+4y4
 gmj00BVb+z7okNWmKEuzhsVPFQmrNhNw56nwIA/pZsYVSHZR33OV9YlkuyruTdj7
 OIKovr522wNn+d+qn9EIQyrjjxF8uy4Sa6PZEXUhFm3wW21bBO7/J6ytRRe/FeJs
 6rgy7yHOpNrz/lxrMAFJLBWNeFuDixt4EhH+PvF0t/fcktJvgthbvzBKIiRD5utf
 cn5t5ylD5SjUM0H48px2IuOvwuLgl43DG0cfh6fj99KuyqqRtA72B0NFDcaC5xMu
 wLzlNQ33t7YspVsxXrRnkQQTR6V8rFBkrzS2QRrXEdI97lPAjWcZj+yaC1E0KHCj
 6/BzMwds
 =i8p4
 -----END PGP SIGNATURE-----

Merge tag '6.2-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6

Pull cifs fixes from Steve French:
 "cifs/smb3 client fixes, mostly related to reconnect and/or DFS:

   - two important reconnect fixes: cases where status of recently
     connected IPCs and shares were not being updated leaving them in an
     incorrect state

   - fix for older Windows servers that would return
     STATUS_OBJECT_NAME_INVALID to query info requests on DFS links in a
     namespace that contained non-ASCII characters, reducing number of
     wasted roundtrips.

   - fix for leaked -ENOMEM to userspace when cifs.ko couldn't perform
     I/O due to a disconnected server, expired or deleted session.

   - removal of all unneeded DFS related mount option string parsing
     (now using fs_context for automounts)

   - improve clarity/readability, moving various DFS related functions
     out of fs/cifs/connect.c (which was getting too big to be readable)
     to new file.

   - Fix problem when large number of DFS connections. Allow sharing of
     DFS connections and fix how the referral paths are matched

   - Referral caching fix: Instead of looking up ipc connections to
     refresh cached referrals, store direct dfs root server's IPC
     pointer in new sessions so it can simply be accessed to either
     refresh or create a new referral that such connections belong to.

   - Fix to allow dfs root server's connections to also failover

   - Optimized reconnect of nested DFS links

   - Set correct status of IPC connections marked for reconnect"

* tag '6.2-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6:
  cifs: update internal module number
  cifs: don't leak -ENOMEM in smb2_open_file()
  cifs: use origin fullpath for automounts
  cifs: set correct status of tcon ipc when reconnecting
  cifs: optimize reconnect of nested links
  cifs: fix source pathname comparison of dfs supers
  cifs: fix confusing debug message
  cifs: don't block in dfs_cache_noreq_update_tgthint()
  cifs: refresh root referrals
  cifs: fix refresh of cached referrals
  cifs: don't refresh cached referrals from unactive mounts
  cifs: share dfs connections and supers
  cifs: split out ses and tcon retrieval from mount_get_conns()
  cifs: set resolved ip in sockaddr
  cifs: remove unused smb3_fs_context::mount_options
  cifs: get rid of mount options string parsing
  cifs: use fs_context for automounts
  cifs: reduce roundtrips on create/qinfo requests
  cifs: set correct ipc status after initial tree connect
  cifs: set correct tcon status after initial tree connect
2022-12-21 10:40:08 -08:00
Linus Torvalds
6022ec6ee2 ntfs3 for 6.2
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEh0DEKNP0I9IjwfWEqbAzH4MkB7YFAmOhnJcACgkQqbAzH4Mk
 B7b1Cg/+LQ0nRKg+wNbT2arR9IPkDob/MTSneciAlI3p0OiAVjhsIMW0Z6O9S1Zp
 lIbT3cSYkwHmQP4L9N7HRWmBILRo4JunPHbU2NnzsaAq11iqC7H9B4cOzgUEs4fa
 YlEtTjTsrdpIfO7Uqegkps+2IQK9Omy+9ib2+4Kkcy+ajWTjaiDC8Q/yjEpCcM7F
 vlQebUGPGD4dzeXj27bBpBRVr5k6mojFfTG5YLWg+UkYN2ENtCmYkiJm2lFO5og/
 Ym5zKEQzE4Lt/BFib/P+XmxdQcFRZm4Kt4+16ZCufF2mFSacZgbFQ1TzHEdD9pM7
 j/OqdfiXGDR02ZTqcBzqq0P9CJVgbyeOL/Yoaz3akLOYihdFj0UCPar1zWIC4DcQ
 ZRcsRH0eETcTaREkhv53BJ2JrjWa/AK3yUB8ll4bkGkfno6akA9RoE2qK7+AvC44
 jJOz3fbuML9tBDtej6MUkoVeqjA1xOakMkndHDyTLm0HBN62gBnZUNZXXzTdUJrh
 mQCIyL2bDKE/lc0kEVORFu3xGv/EZzL62VvoHQDznNbT2MHJuzOB3SwkGbLkWAe6
 Fhh6ffz99o8wf9zCpF+XMdSb4I7ZcrrAx4efl03dYVllVACM3wNP0AAqJxgmgikP
 VL4sSOAScioBuijTvF/HRExnSTvb6PwSQk7FWlWNcVsBGHBNp+4=
 =Xcpx
 -----END PGP SIGNATURE-----

Merge tag 'ntfs3_for_6.2' of https://github.com/Paragon-Software-Group/linux-ntfs3

Pull ntfs3 updates from Konstantin Komarov:

 - added mount options 'hidedotfiles', 'nocase' and 'windows_names'

 - fixed xfstests (tested on x86_64): generic/083 generic/263
   generic/307 generic/465

 - fix some logic errors

 - code refactoring and dead code removal

* tag 'ntfs3_for_6.2' of https://github.com/Paragon-Software-Group/linux-ntfs3: (61 commits)
  fs/ntfs3: Make if more readable
  fs/ntfs3: Improve checking of bad clusters
  fs/ntfs3: Fix wrong if in hdr_first_de
  fs/ntfs3: Use ALIGN kernel macro
  fs/ntfs3: Fix incorrect if in ntfs_set_acl_ex
  fs/ntfs3: Check fields while reading
  fs/ntfs3: Correct ntfs_check_for_free_space
  fs/ntfs3: Restore correct state after ENOSPC in attr_data_get_block
  fs/ntfs3: Changing locking in ntfs_rename
  fs/ntfs3: Fixing wrong logic in attr_set_size and ntfs_fallocate
  fs/ntfs3: atomic_open implementation
  fs/ntfs3: Fix wrong indentations
  fs/ntfs3: Change new sparse cluster processing
  fs/ntfs3: Fixing work with sparse clusters
  fs/ntfs3: Simplify ntfs_update_mftmirr function
  fs/ntfs3: Remove unused functions
  fs/ntfs3: Fix sparse problems
  fs/ntfs3: Add ntfs_bitmap_weight_le function and refactoring
  fs/ntfs3: Use _le variants of bitops functions
  fs/ntfs3: Add functions to modify LE bitmaps
  ...
2022-12-21 10:18:17 -08:00
Linus Torvalds
04065c1207 fs.mount.propagation.fix.v6.2-rc1
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCY6MOGAAKCRCRxhvAZXjc
 om5xAP9r+48s+tC+5UhPxS6AZxZ/nCaaL/WzzL2JpK16rmgtVwD/VK/xnOOunJn2
 duOFBoBfIC4uLhYYqKsdWhuhldkUvQo=
 =1Zmr
 -----END PGP SIGNATURE-----

Merge tag 'fs.mount.propagation.fix.v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping

Pull mount propagation fix from Christian Brauner:
 "The propagate_mnt() function handles mount propagation when creating
  mounts and propagates the source mount tree @source_mnt to all
  applicable nodes of the destination propagation mount tree headed by
  @dest_mnt.

  Unfortunately it contains a bug where it fails to terminate at peers
  of @source_mnt when looking up copies of the source mount that become
  masters for copies of the source mount tree mounted on top of slaves
  in the destination propagation tree causing a NULL dereference.

  This fixes that bug (with a long commit message for a seven character
  fix but hopefully it'll help us fix issues faster in the future rather
  than having to go through the pain of having to relearn everything
  once more)"

* tag 'fs.mount.propagation.fix.v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping:
  pnode: terminate at peers of source
2022-12-21 09:54:00 -08:00
Linus Torvalds
609d3bc623 Including fixes from bpf, netfilter and can.
Current release - regressions:
 
  - bpf: synchronize dispatcher update with bpf_dispatcher_xdp_func
 
  - rxrpc:
   - fix security setting propagation
   - fix null-deref in rxrpc_unuse_local()
   - fix switched parameters in peer tracing
 
 Current release - new code bugs:
 
  - rxrpc:
    - fix I/O thread startup getting skipped
    - fix locking issues in rxrpc_put_peer_locked()
    - fix I/O thread stop
    - fix uninitialised variable in rxperf server
    - fix the return value of rxrpc_new_incoming_call()
 
  - microchip: vcap: fix initialization of value and mask
 
  - nfp: fix unaligned io read of capabilities word
 
 Previous releases - regressions:
 
  - stop in-kernel socket users from corrupting socket's task_frag
 
  - stream: purge sk_error_queue in sk_stream_kill_queues()
 
  - openvswitch: fix flow lookup to use unmasked key
 
  - dsa: mv88e6xxx: avoid reg_lock deadlock in mv88e6xxx_setup_port()
 
  - devlink:
    - hold region lock when flushing snapshots
    - protect devlink dump by the instance lock
 
 Previous releases - always broken:
 
  - bpf:
    - prevent leak of lsm program after failed attach
    - resolve fext program type when checking map compatibility
 
  - skbuff: account for tail adjustment during pull operations
 
  - macsec: fix net device access prior to holding a lock
 
  - bonding: switch back when high prio link up
 
  - netfilter: flowtable: really fix NAT IPv6 offload
 
  - enetc: avoid buffer leaks on xdp_do_redirect() failure
 
  - unix: fix race in SOCK_SEQPACKET's unix_dgram_sendmsg()
 
  - dsa: microchip: remove IRQF_TRIGGER_FALLING in request_threaded_irq
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmOiGa4ACgkQMUZtbf5S
 IrvetBAAg/AjgG51gboLsuGjgRSwAi5T6ijgVR+pW+kMuoOdaamOF+h/zC1ox/H9
 QrWvTBipy+EqSD8bM4Xz0FNgidch8X4iWYhKGZuBht/4NP5FOzPUG2mNlUy5ANGq
 QZcCw6CUsir8HTb+IJpFEIq0JMwzKCm3WyAkYjEj4iuft0Y93cAgjkMVwoX0RERO
 o/pslC5dsozCLJxEglpw1aJq7aoroNuRSGSXl95nv8fU3UxmUXajnA3HNscXImdV
 6uqSIuyPIaGocpCBPRKUQd0sctkTY4cm8wmxxMCDVsBRVusoaq5eg1VRvxJm9Rxj
 gvDvHvfhnEuSigFF5A+paBp4c+i3C8g/UTBJTtptdAC+Y2tt4UT3Q5aaazYUOAqd
 W4TSJ3bk5zhkhpRF9clb0fNQaM1HOT4rkDEEGTfVN62dtHfPKpNwYufQKaYHdVj1
 RJ3ooH6c7TMVaRs6ZgEWNYToKZj94SIfPhfEhuqWXdNMDBkUMp2BXFFOp9fZDWju
 PsMQrRD7n6+XXpNvScYtnJDORqfIL9yHGZE9kxZA5QSDl9cnPA3SUbNruQPlXHrl
 w0yQlYuG3gcciua4dXaLfz1iN4rPdenuYhVBHhztEwDKl+b61CVQYlOHGkXPVURp
 oft74qCCFbva+Hf/7jENQotjT1tLfxAGdUARuFeDBueJgDRAPsw=
 =goV5
 -----END PGP SIGNATURE-----

Merge tag 'net-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Pull networking fixes from Jakub Kicinski:
 "Including fixes from bpf, netfilter and can.

  Current release - regressions:

   - bpf: synchronize dispatcher update with bpf_dispatcher_xdp_func

   - rxrpc:
      - fix security setting propagation
      - fix null-deref in rxrpc_unuse_local()
      - fix switched parameters in peer tracing

  Current release - new code bugs:

   - rxrpc:
      - fix I/O thread startup getting skipped
      - fix locking issues in rxrpc_put_peer_locked()
      - fix I/O thread stop
      - fix uninitialised variable in rxperf server
      - fix the return value of rxrpc_new_incoming_call()

   - microchip: vcap: fix initialization of value and mask

   - nfp: fix unaligned io read of capabilities word

  Previous releases - regressions:

   - stop in-kernel socket users from corrupting socket's task_frag

   - stream: purge sk_error_queue in sk_stream_kill_queues()

   - openvswitch: fix flow lookup to use unmasked key

   - dsa: mv88e6xxx: avoid reg_lock deadlock in mv88e6xxx_setup_port()

   - devlink:
      - hold region lock when flushing snapshots
      - protect devlink dump by the instance lock

  Previous releases - always broken:

   - bpf:
      - prevent leak of lsm program after failed attach
      - resolve fext program type when checking map compatibility

   - skbuff: account for tail adjustment during pull operations

   - macsec: fix net device access prior to holding a lock

   - bonding: switch back when high prio link up

   - netfilter: flowtable: really fix NAT IPv6 offload

   - enetc: avoid buffer leaks on xdp_do_redirect() failure

   - unix: fix race in SOCK_SEQPACKET's unix_dgram_sendmsg()

   - dsa: microchip: remove IRQF_TRIGGER_FALLING in
     request_threaded_irq"

* tag 'net-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (64 commits)
  net: fec: check the return value of build_skb()
  net: simplify sk_page_frag
  Treewide: Stop corrupting socket's task_frag
  net: Introduce sk_use_task_frag in struct sock.
  mctp: Remove device type check at unregister
  net: dsa: microchip: remove IRQF_TRIGGER_FALLING in request_threaded_irq
  can: kvaser_usb: hydra: help gcc-13 to figure out cmd_len
  can: flexcan: avoid unbalanced pm_runtime_enable warning
  Documentation: devlink: add missing toc entry for etas_es58x devlink doc
  mctp: serial: Fix starting value for frame check sequence
  nfp: fix unaligned io read of capabilities word
  net: stream: purge sk_error_queue in sk_stream_kill_queues()
  myri10ge: Fix an error handling path in myri10ge_probe()
  net: microchip: vcap: Fix initialization of value and mask
  rxrpc: Fix the return value of rxrpc_new_incoming_call()
  rxrpc: rxperf: Fix uninitialised variable
  rxrpc: Fix I/O thread stop
  rxrpc: Fix switched parameters in peer tracing
  rxrpc: Fix locking issues in rxrpc_put_peer_locked()
  rxrpc: Fix I/O thread startup getting skipped
  ...
2022-12-21 08:41:32 -08:00
Christian Brauner
11933cf1d9
pnode: terminate at peers of source
The propagate_mnt() function handles mount propagation when creating
mounts and propagates the source mount tree @source_mnt to all
applicable nodes of the destination propagation mount tree headed by
@dest_mnt.

Unfortunately it contains a bug where it fails to terminate at peers of
@source_mnt when looking up copies of the source mount that become
masters for copies of the source mount tree mounted on top of slaves in
the destination propagation tree causing a NULL dereference.

Once the mechanics of the bug are understood it's easy to trigger.
Because of unprivileged user namespaces it is available to unprivileged
users.

While fixing this bug we've gotten confused multiple times due to
unclear terminology or missing concepts. So let's start this with some
clarifications:

* The terms "master" or "peer" denote a shared mount. A shared mount
  belongs to a peer group.

* A peer group is a set of shared mounts that propagate to each other.
  They are identified by a peer group id. The peer group id is available
  in @shared_mnt->mnt_group_id.
  Shared mounts within the same peer group have the same peer group id.
  The peers in a peer group can be reached via @shared_mnt->mnt_share.

* The terms "slave mount" or "dependent mount" denote a mount that
  receives propagation from a peer in a peer group. IOW, shared mounts
  may have slave mounts and slave mounts have shared mounts as their
  master. Slave mounts of a given peer in a peer group are listed on
  that peers slave list available at @shared_mnt->mnt_slave_list.

* The term "master mount" denotes a mount in a peer group. IOW, it
  denotes a shared mount or a peer mount in a peer group. The term
  "master mount" - or "master" for short - is mostly used when talking
  in the context of slave mounts that receive propagation from a master
  mount. A master mount of a slave identifies the closest peer group a
  slave mount receives propagation from. The master mount of a slave can
  be identified via @slave_mount->mnt_master. Different slaves may point
  to different masters in the same peer group.

* Multiple peers in a peer group can have non-empty ->mnt_slave_lists.
  Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to
  ensure all slave mounts of a peer group are visited the
  ->mnt_slave_lists of all peers in a peer group have to be walked.

* Slave mounts point to a peer in the closest peer group they receive
  propagation from via @slave_mnt->mnt_master (see above). Together with
  these peers they form a propagation group (see below). The closest
  peer group can thus be identified through the peer group id
  @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave
  mount receives propagation from.

* A shared-slave mount is a slave mount to a peer group pg1 while also
  a peer in another peer group pg2. IOW, a peer group may receive
  propagation from another peer group.

  If a peer group pg1 is a slave to another peer group pg2 then all
  peers in peer group pg1 point to the same peer in peer group pg2 via
  ->mnt_master. IOW, all peers in peer group pg1 appear on the same
  ->mnt_slave_list. IOW, they cannot be slaves to different peer groups.

* A pure slave mount is a slave mount that is a slave to a peer group
  but is not a peer in another peer group.

* A propagation group denotes the set of mounts consisting of a single
  peer group pg1 and all slave mounts and shared-slave mounts that point
  to a peer in that peer group via ->mnt_master. IOW, all slave mounts
  such that @slave_mnt->mnt_master->mnt_group_id is equal to
  @shared_mnt->mnt_group_id.

  The concept of a propagation group makes it easier to talk about a
  single propagation level in a propagation tree.

  For example, in propagate_mnt() the immediate peers of @dest_mnt and
  all slaves of @dest_mnt's peer group form a propagation group propg1.
  So a shared-slave mount that is a slave in propg1 and that is a peer
  in another peer group pg2 forms another propagation group propg2
  together with all slaves that point to that shared-slave mount in
  their ->mnt_master.

* A propagation tree refers to all mounts that receive propagation
  starting from a specific shared mount.

  For example, for propagate_mnt() @dest_mnt is the start of a
  propagation tree. The propagation tree ecompasses all mounts that
  receive propagation from @dest_mnt's peer group down to the leafs.

With that out of the way let's get to the actual algorithm.

We know that @dest_mnt is guaranteed to be a pure shared mount or a
shared-slave mount. This is guaranteed by a check in
attach_recursive_mnt(). So propagate_mnt() will first propagate the
source mount tree to all peers in @dest_mnt's peer group:

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
               goto out;
}

Notice, that the peer propagation loop of propagate_mnt() doesn't
propagate @dest_mnt itself. @dest_mnt is mounted directly in
attach_recursive_mnt() after we propagated to the destination
propagation tree.

The mount that will be mounted on top of @dest_mnt is @source_mnt. This
copy was created earlier even before we entered attach_recursive_mnt()
and doesn't concern us a lot here.

It's just important to notice that when propagate_mnt() is called
@source_mnt will not yet have been mounted on top of @dest_mnt. Thus,
@source_mnt->mnt_parent will either still point to @source_mnt or - in
the case @source_mnt is moved and thus already attached - still to its
former parent.

For each peer @m in @dest_mnt's peer group propagate_one() will create a
new copy of the source mount tree and mount that copy @child on @m such
that @child->mnt_parent points to @m after propagate_one() returns.

propagate_one() will stash the last destination propagation node @m in
@last_dest and the last copy it created for the source mount tree in
@last_source.

Hence, if we call into propagate_one() again for the next destination
propagation node @m, @last_dest will point to the previous destination
propagation node and @last_source will point to the previous copy of the
source mount tree and mounted on @last_dest.

Each new copy of the source mount tree is created from the previous copy
of the source mount tree. This will become important later.

The peer loop in propagate_mnt() is straightforward. We iterate through
the peers copying and updating @last_source and @last_dest as we go
through them and mount each copy of the source mount tree @child on a
peer @m in @dest_mnt's peer group.

After propagate_mnt() handled the peers in @dest_mnt's peer group
propagate_mnt() will propagate the source mount tree down the
propagation tree that @dest_mnt's peer group propagates to:

for (m = next_group(dest_mnt, dest_mnt); m;
                m = next_group(m, dest_mnt)) {
        /* everything in that slave group */
        n = m;
        do {
                ret = propagate_one(n);
                if (ret)
                        goto out;
                n = next_peer(n);
        } while (n != m);
}

The next_group() helper will recursively walk the destination
propagation tree, descending into each propagation group of the
propagation tree.

The important part is that it takes care to propagate the source mount
tree to all peers in the peer group of a propagation group before it
propagates to the slaves to those peers in the propagation group. IOW,
it creates and mounts copies of the source mount tree that become
masters before it creates and mounts copies of the source mount tree
that become slaves to these masters.

It is important to remember that propagating the source mount tree to
each mount @m in the destination propagation tree simply means that we
create and mount new copies @child of the source mount tree on @m such
that @child->mnt_parent points to @m.

Since we know that each node @m in the destination propagation tree
headed by @dest_mnt's peer group will be overmounted with a copy of the
source mount tree and since we know that the propagation properties of
each copy of the source mount tree we create and mount at @m will mostly
mirror the propagation properties of @m. We can use that information to
create and mount the copies of the source mount tree that become masters
before their slaves.

The easy case is always when @m and @last_dest are peers in a peer group
of a given propagation group. In that case we know that we can simply
copy @last_source without having to figure out what the master for the
new copy @child of the source mount tree needs to be as we've done that
in a previous call to propagate_one().

The hard case is when we're dealing with a slave mount or a shared-slave
mount @m in a destination propagation group that we need to create and
mount a copy of the source mount tree on.

For each propagation group in the destination propagation tree we
propagate the source mount tree to we want to make sure that the copies
@child of the source mount tree we create and mount on slaves @m pick an
ealier copy of the source mount tree that we mounted on a master @m of
the destination propagation group as their master. This is a mouthful
but as far as we can tell that's the core of it all.

But, if we keep track of the masters in the destination propagation tree
@m we can use the information to find the correct master for each copy
of the source mount tree we create and mount at the slaves in the
destination propagation tree @m.

Let's walk through the base case as that's still fairly easy to grasp.

If we're dealing with the first slave in the propagation group that
@dest_mnt is in then we don't yet have marked any masters in the
destination propagation tree.

We know the master for the first slave to @dest_mnt's peer group is
simple @dest_mnt. So we expect this algorithm to yield a copy of the
source mount tree that was mounted on a peer in @dest_mnt's peer group
as the master for the copy of the source mount tree we want to mount at
the first slave @m:

for (n = m; ; n = p) {
        p = n->mnt_master;
        if (p == dest_master || IS_MNT_MARKED(p))
                break;
}

For the first slave we walk the destination propagation tree all the way
up to a peer in @dest_mnt's peer group. IOW, the propagation hierarchy
can be walked by walking up the @mnt->mnt_master hierarchy of the
destination propagation tree @m. We will ultimately find a peer in
@dest_mnt's peer group and thus ultimately @dest_mnt->mnt_master.

Btw, here the assumption we listed at the beginning becomes important.
Namely, that peers in a peer group pg1 that are slaves in another peer
group pg2 appear on the same ->mnt_slave_list. IOW, all slaves who are
peers in peer group pg1 point to the same peer in peer group pg2 via
their ->mnt_master. Otherwise the termination condition in the code
above would be wrong and next_group() would be broken too.

So the first iteration sets:

n = m;
p = n->mnt_master;

such that @p now points to a peer or @dest_mnt itself. We walk up one
more level since we don't have any marked mounts. So we end up with:

n = dest_mnt;
p = dest_mnt->mnt_master;

If @dest_mnt's peer group is not slave to another peer group then @p is
now NULL. If @dest_mnt's peer group is a slave to another peer group
then @p now points to @dest_mnt->mnt_master points which is a master
outside the propagation tree we're dealing with.

Now we need to figure out the master for the copy of the source mount
tree we're about to create and mount on the first slave of @dest_mnt's
peer group:

do {
        struct mount *parent = last_source->mnt_parent;
        if (last_source == first_source)
                break;
        done = parent->mnt_master == p;
        if (done && peers(n, parent))
                break;
        last_source = last_source->mnt_master;
} while (!done);

We know that @last_source->mnt_parent points to @last_dest and
@last_dest is the last peer in @dest_mnt's peer group we propagated to
in the peer loop in propagate_mnt().

Consequently, @last_source is the last copy we created and mount on that
last peer in @dest_mnt's peer group. So @last_source is the master we
want to pick.

We know that @last_source->mnt_parent->mnt_master points to
@last_dest->mnt_master. We also know that @last_dest->mnt_master is
either NULL or points to a master outside of the destination propagation
tree and so does @p. Hence:

done = parent->mnt_master == p;

is trivially true in the base condition.

We also know that for the first slave mount of @dest_mnt's peer group
that @last_dest either points @dest_mnt itself because it was
initialized to:

last_dest = dest_mnt;

at the beginning of propagate_mnt() or it will point to a peer of
@dest_mnt in its peer group. In both cases it is guaranteed that on the
first iteration @n and @parent are peers (Please note the check for
peers here as that's important.):

if (done && peers(n, parent))
        break;

So, as we expected, we select @last_source, which referes to the last
copy of the source mount tree we mounted on the last peer in @dest_mnt's
peer group, as the master of the first slave in @dest_mnt's peer group.
The rest is taken care of by clone_mnt(last_source, ...). We'll skip
over that part otherwise this becomes a blogpost.

At the end of propagate_mnt() we now mark @m->mnt_master as the first
master in the destination propagation tree that is distinct from
@dest_mnt->mnt_master. IOW, we mark @dest_mnt itself as a master.

By marking @dest_mnt or one of it's peers we are able to easily find it
again when we later lookup masters for other copies of the source mount
tree we mount copies of the source mount tree on slaves @m to
@dest_mnt's peer group. This, in turn allows us to find the master we
selected for the copies of the source mount tree we mounted on master in
the destination propagation tree again.

The important part is to realize that the code makes use of the fact
that the last copy of the source mount tree stashed in @last_source was
mounted on top of the previous destination propagation node @last_dest.
What this means is that @last_source allows us to walk the destination
propagation hierarchy the same way each destination propagation node @m
does.

If we take @last_source, which is the copy of @source_mnt we have
mounted on @last_dest in the previous iteration of propagate_one(), then
we know @last_source->mnt_parent points to @last_dest but we also know
that as we walk through the destination propagation tree that
@last_source->mnt_master will point to an earlier copy of the source
mount tree we mounted one an earlier destination propagation node @m.

IOW, @last_source->mnt_parent will be our hook into the destination
propagation tree and each consecutive @last_source->mnt_master will lead
us to an earlier propagation node @m via
@last_source->mnt_master->mnt_parent.

Hence, by walking up @last_source->mnt_master, each of which is mounted
on a node that is a master @m in the destination propagation tree we can
also walk up the destination propagation hierarchy.

So, for each new destination propagation node @m we use the previous
copy of @last_source and the fact it's mounted on the previous
propagation node @last_dest via @last_source->mnt_master->mnt_parent to
determine what the master of the new copy of @last_source needs to be.

The goal is to find the _closest_ master that the new copy of the source
mount tree we are about to create and mount on a slave @m in the
destination propagation tree needs to pick. IOW, we want to find a
suitable master in the propagation group.

As the propagation structure of the source mount propagation tree we
create mirrors the propagation structure of the destination propagation
tree we can find @m's closest master - i.e., a marked master - which is
a peer in the closest peer group that @m receives propagation from. We
store that closest master of @m in @p as before and record the slave to
that master in @n

We then search for this master @p via @last_source by walking up the
master hierarchy starting from the last copy of the source mount tree
stored in @last_source that we created and mounted on the previous
destination propagation node @m.

We will try to find the master by walking @last_source->mnt_master and
by comparing @last_source->mnt_master->mnt_parent->mnt_master to @p. If
we find @p then we can figure out what earlier copy of the source mount
tree needs to be the master for the new copy of the source mount tree
we're about to create and mount at the current destination propagation
node @m.

If @last_source->mnt_master->mnt_parent and @n are peers then we know
that the closest master they receive propagation from is
@last_source->mnt_master->mnt_parent->mnt_master. If not then the
closest immediate peer group that they receive propagation from must be
one level higher up.

This builds on the earlier clarification at the beginning that all peers
in a peer group which are slaves of other peer groups all point to the
same ->mnt_master, i.e., appear on the same ->mnt_slave_list, of the
closest peer group that they receive propagation from.

However, terminating the walk has corner cases.

If the closest marked master for a given destination node @m cannot be
found by walking up the master hierarchy via @last_source->mnt_master
then we need to terminate the walk when we encounter @source_mnt again.

This isn't an arbitrary termination. It simply means that the new copy
of the source mount tree we're about to create has a copy of the source
mount tree we created and mounted on a peer in @dest_mnt's peer group as
its master. IOW, @source_mnt is the peer in the closest peer group that
the new copy of the source mount tree receives propagation from.

We absolutely have to stop @source_mnt because @last_source->mnt_master
either points outside the propagation hierarchy we're dealing with or it
is NULL because @source_mnt isn't a shared-slave.

So continuing the walk past @source_mnt would cause a NULL dereference
via @last_source->mnt_master->mnt_parent. And so we have to stop the
walk when we encounter @source_mnt again.

One scenario where this can happen is when we first handled a series of
slaves of @dest_mnt's peer group and then encounter peers in a new peer
group that is a slave to @dest_mnt's peer group. We handle them and then
we encounter another slave mount to @dest_mnt that is a pure slave to
@dest_mnt's peer group. That pure slave will have a peer in @dest_mnt's
peer group as its master. Consequently, the new copy of the source mount
tree will need to have @source_mnt as it's master. So we walk the
propagation hierarchy all the way up to @source_mnt based on
@last_source->mnt_master.

So terminate on @source_mnt, easy peasy. Except, that the check misses
something that the rest of the algorithm already handles.

If @dest_mnt has peers in it's peer group the peer loop in
propagate_mnt():

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
                goto out;
}

will consecutively update @last_source with each previous copy of the
source mount tree we created and mounted at the previous peer in
@dest_mnt's peer group. So after that loop terminates @last_source will
point to whatever copy of the source mount tree was created and mounted
on the last peer in @dest_mnt's peer group.

Furthermore, if there is even a single additional peer in @dest_mnt's
peer group then @last_source will __not__ point to @source_mnt anymore.
Because, as we mentioned above, @dest_mnt isn't even handled in this
loop but directly in attach_recursive_mnt(). So it can't even accidently
come last in that peer loop.

So the first time we handle a slave mount @m of @dest_mnt's peer group
the copy of the source mount tree we create will make the __last copy of
the source mount tree we created and mounted on the last peer in
@dest_mnt's peer group the master of the new copy of the source mount
tree we create and mount on the first slave of @dest_mnt's peer group__.

But this means that the termination condition that checks for
@source_mnt is wrong. The @source_mnt cannot be found anymore by
propagate_one(). Instead it will find the last copy of the source mount
tree we created and mounted for the last peer of @dest_mnt's peer group
again. And that is a peer of @source_mnt not @source_mnt itself.

IOW, we fail to terminate the loop correctly and ultimately dereference
@last_source->mnt_master->mnt_parent. When @source_mnt's peer group
isn't slave to another peer group then @last_source->mnt_master is NULL
causing the splat below.

For example, assume @dest_mnt is a pure shared mount and has three peers
in its peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
(@dest_mnt) mnt_master[216]              309        297               shared:216
    \
     (@source_mnt) mnt_master[218]:      609        609               shared:218

(1) mnt_master[216]:                     607        605               shared:216
    \
     (P1) mnt_master[218]:               624        607               shared:218

(2) mnt_master[216]:                     576        574               shared:216
    \
     (P2) mnt_master[218]:               625        576               shared:218

(3) mnt_master[216]:                     545        543               shared:216
    \
     (P3) mnt_master[218]:               626        545               shared:218

After this sequence has been processed @last_source will point to (P3),
the copy generated for the third peer in @dest_mnt's peer group we
handled. So the copy of the source mount tree (P4) we create and mount
on the first slave of @dest_mnt's peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
    mnt_master[216]                      309        297               shared:216
   /
  /
(S0) mnt_slave                           483        481               master:216
  \
   \    (P3) mnt_master[218]             626        545               shared:218
    \  /
     \/
    (P4) mnt_slave                       627        483               master:218

will pick the last copy of the source mount tree (P3) as master, not (S0).

When walking the propagation hierarchy via @last_source's master
hierarchy we encounter (P3) but not (S0), i.e., @source_mnt.

We can fix this in multiple ways:

(1) By setting @last_source to @source_mnt after we processed the peers
    in @dest_mnt's peer group right after the peer loop in
    propagate_mnt().

(2) By changing the termination condition that relies on finding exactly
    @source_mnt to finding a peer of @source_mnt.

(3) By only moving @last_source when we actually venture into a new peer
    group or some clever variant thereof.

The first two options are minimally invasive and what we want as a fix.
The third option is more intrusive but something we'd like to explore in
the near future.

This passes all LTP tests and specifically the mount propagation
testsuite part of it. It also holds up against all known reproducers of
this issues.

Final words.
First, this is a clever but __worringly__ underdocumented algorithm.
There isn't a single detailed comment to be found in next_group(),
propagate_one() or anywhere else in that file for that matter. This has
been a giant pain to understand and work through and a bug like this is
insanely difficult to fix without a detailed understanding of what's
happening. Let's not talk about the amount of time that was sunk into
fixing this.

Second, all the cool kids with access to
unshare --mount --user --map-root --propagation=unchanged
are going to have a lot of fun. IOW, triggerable by unprivileged users
while namespace_lock() lock is held.

[  115.848393] BUG: kernel NULL pointer dereference, address: 0000000000000010
[  115.848967] #PF: supervisor read access in kernel mode
[  115.849386] #PF: error_code(0x0000) - not-present page
[  115.849803] PGD 0 P4D 0
[  115.850012] Oops: 0000 [#1] PREEMPT SMP PTI
[  115.850354] CPU: 0 PID: 15591 Comm: mount Not tainted 6.1.0-rc7 #3
[  115.850851] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS
VirtualBox 12/01/2006
[  115.851510] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.851924] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.853441] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.853865] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.854458] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.855044] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.855693] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.856304] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.856859] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.857531] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.858006] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.858598] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.859393] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  115.860099] Call Trace:
[  115.860358]  <TASK>
[  115.860535]  propagate_mnt+0x14d/0x190
[  115.860848]  attach_recursive_mnt+0x274/0x3e0
[  115.861212]  path_mount+0x8c8/0xa60
[  115.861503]  __x64_sys_mount+0xf6/0x140
[  115.861819]  do_syscall_64+0x5b/0x80
[  115.862117]  ? do_faccessat+0x123/0x250
[  115.862435]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.862826]  ? do_syscall_64+0x67/0x80
[  115.863133]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.863527]  ? do_syscall_64+0x67/0x80
[  115.863835]  ? do_syscall_64+0x67/0x80
[  115.864144]  ? do_syscall_64+0x67/0x80
[  115.864452]  ? exc_page_fault+0x70/0x170
[  115.864775]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  115.865187] RIP: 0033:0x7f92c92b0ebe
[  115.865480] Code: 48 8b 0d 75 4f 0c 00 f7 d8 64 89 01 48 83 c8 ff
c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00
00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 42 4f 0c 00 f7 d8 64 89
01 48
[  115.866984] RSP: 002b:00007fff000aa728 EFLAGS: 00000246 ORIG_RAX:
00000000000000a5
[  115.867607] RAX: ffffffffffffffda RBX: 000055a77888d6b0 RCX: 00007f92c92b0ebe
[  115.868240] RDX: 000055a77888d8e0 RSI: 000055a77888e6e0 RDI: 000055a77888e620
[  115.868823] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[  115.869403] R10: 0000000000001000 R11: 0000000000000246 R12: 000055a77888e620
[  115.869994] R13: 000055a77888d8e0 R14: 00000000ffffffff R15: 00007f92c93e4076
[  115.870581]  </TASK>
[  115.870763] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6
nf_defrag_ipv4 ip_set rfkill nf_tables nfnetlink qrtr snd_intel8x0
sunrpc snd_ac97_codec ac97_bus snd_pcm snd_timer intel_rapl_msr
intel_rapl_common snd vboxguest intel_powerclamp video rapl joydev
soundcore i2c_piix4 wmi fuse zram xfs vmwgfx crct10dif_pclmul
crc32_pclmul crc32c_intel polyval_clmulni polyval_generic
drm_ttm_helper ttm e1000 ghash_clmulni_intel serio_raw ata_generic
pata_acpi scsi_dh_rdac scsi_dh_emc scsi_dh_alua dm_multipath
[  115.875288] CR2: 0000000000000010
[  115.875641] ---[ end trace 0000000000000000 ]---
[  115.876135] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.876551] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.878086] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.878511] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.879128] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.879715] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.880359] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.880962] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.881548] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.882234] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.882713] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.883314] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.883966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fixes: f2ebb3a921 ("smarter propagate_mnt()")
Fixes: 5ec0811d30 ("propogate_mnt: Handle the first propogated copy being a slave")
Cc: <stable@vger.kernel.org>
Reported-by: Ditang Chen <ditang.c@gmail.com>
Signed-off-by: Seth Forshee (Digital Ocean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
---
If there are no big objections I'll get this to Linus rather sooner than later.
2022-12-21 14:45:25 +01:00
Filipe Manana
fee4c19937 btrfs: fix fscrypt name leak after failure to join log transaction
When logging a new name, we don't expect to fail joining a log transaction
since we know at least one of the inodes was logged before in the current
transaction. However if we fail for some unexpected reason, we end up not
freeing the fscrypt name we previously allocated. So fix that by freeing
the name in case we failed to join a log transaction.

Fixes: ab3c5c18e8 ("btrfs: setup qstr from dentrys using fscrypt helper")
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-20 19:43:47 +01:00
Josef Bacik
e7fc357ec0 btrfs: scrub: fix uninitialized return value in recover_scrub_rbio
Commit 75b4703329 ("btrfs: raid56: migrate recovery and scrub recovery
path to use error_bitmap") introduced an uninitialized return variable.

This can be caught by gcc 12.1 by -Wmaybe-uninitialized:

  CC [M]  fs/btrfs/raid56.o
fs/btrfs/raid56.c: In function ‘scrub_rbio’:
fs/btrfs/raid56.c:2801:15: warning: ‘ret’ may be used uninitialized [-Wmaybe-uninitialized]
 2801 |         ret = recover_scrub_rbio(rbio);
      |               ^~~~~~~~~~~~~~~~~~~~~~~~
fs/btrfs/raid56.c:2649:13: note: ‘ret’ was declared here
 2649 |         int ret;

The warning is disabled by default so we haven't caught that.

Due to the bug the raid56 scrub fstests have been failing since the
patch was merged, so initialize that.

Fixes: 75b4703329 ("btrfs: raid56: migrate recovery and scrub recovery path to use error_bitmap")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-20 19:43:45 +01:00
Boris Burkov
560840afc3 btrfs: fix resolving backrefs for inline extent followed by prealloc
If a file consists of an inline extent followed by a regular or prealloc
extent, then a legitimate attempt to resolve a logical address in the
non-inline region will result in add_all_parents reading the invalid
offset field of the inline extent. If the inline extent item is placed
in the leaf eb s.t. it is the first item, attempting to access the
offset field will not only be meaningless, it will go past the end of
the eb and cause this panic:

  [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8
  [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI
  [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199
  [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110
  [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202
  [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000
  [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001
  [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff
  [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918
  [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd
  [17.663617] FS:  00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000
  [17.666525] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0
  [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [17.676034] PKRU: 55555554
  [17.677004] Call Trace:
  [17.677877]  add_all_parents+0x276/0x480
  [17.679325]  find_parent_nodes+0xfae/0x1590
  [17.680771]  btrfs_find_all_leafs+0x5e/0xa0
  [17.682217]  iterate_extent_inodes+0xce/0x260
  [17.683809]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.685597]  ? iterate_inodes_from_logical+0xa1/0xd0
  [17.687404]  iterate_inodes_from_logical+0xa1/0xd0
  [17.689121]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.691010]  btrfs_ioctl_logical_to_ino+0x131/0x190
  [17.692946]  btrfs_ioctl+0x104a/0x2f60
  [17.694384]  ? selinux_file_ioctl+0x182/0x220
  [17.695995]  ? __x64_sys_ioctl+0x84/0xc0
  [17.697394]  __x64_sys_ioctl+0x84/0xc0
  [17.698697]  do_syscall_64+0x33/0x40
  [17.700017]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [17.701753] RIP: 0033:0x7f64e72761b7
  [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7
  [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003
  [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60
  [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001
  [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0
  [17.724839] Modules linked in:

Fix the bug by detecting the inline extent item in add_all_parents and
skipping to the next extent item.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-20 19:43:43 +01:00
Benjamin Coddington
98123866fc Treewide: Stop corrupting socket's task_frag
Since moving to memalloc_nofs_save/restore, SUNRPC has stopped setting the
GFP_NOIO flag on sk_allocation which the networking system uses to decide
when it is safe to use current->task_frag.  The results of this are
unexpected corruption in task_frag when SUNRPC is involved in memory
reclaim.

The corruption can be seen in crashes, but the root cause is often
difficult to ascertain as a crashing machine's stack trace will have no
evidence of being near NFS or SUNRPC code.  I believe this problem to
be much more pervasive than reports to the community may indicate.

Fix this by having kernel users of sockets that may corrupt task_frag due
to reclaim set sk_use_task_frag = false.  Preemptively correcting this
situation for users that still set sk_allocation allows them to convert to
memalloc_nofs_save/restore without the same unexpected corruptions that are
sure to follow, unlikely to show up in testing, and difficult to bisect.

CC: Philipp Reisner <philipp.reisner@linbit.com>
CC: Lars Ellenberg <lars.ellenberg@linbit.com>
CC: "Christoph Böhmwalder" <christoph.boehmwalder@linbit.com>
CC: Jens Axboe <axboe@kernel.dk>
CC: Josef Bacik <josef@toxicpanda.com>
CC: Keith Busch <kbusch@kernel.org>
CC: Christoph Hellwig <hch@lst.de>
CC: Sagi Grimberg <sagi@grimberg.me>
CC: Lee Duncan <lduncan@suse.com>
CC: Chris Leech <cleech@redhat.com>
CC: Mike Christie <michael.christie@oracle.com>
CC: "James E.J. Bottomley" <jejb@linux.ibm.com>
CC: "Martin K. Petersen" <martin.petersen@oracle.com>
CC: Valentina Manea <valentina.manea.m@gmail.com>
CC: Shuah Khan <shuah@kernel.org>
CC: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CC: David Howells <dhowells@redhat.com>
CC: Marc Dionne <marc.dionne@auristor.com>
CC: Steve French <sfrench@samba.org>
CC: Christine Caulfield <ccaulfie@redhat.com>
CC: David Teigland <teigland@redhat.com>
CC: Mark Fasheh <mark@fasheh.com>
CC: Joel Becker <jlbec@evilplan.org>
CC: Joseph Qi <joseph.qi@linux.alibaba.com>
CC: Eric Van Hensbergen <ericvh@gmail.com>
CC: Latchesar Ionkov <lucho@ionkov.net>
CC: Dominique Martinet <asmadeus@codewreck.org>
CC: Ilya Dryomov <idryomov@gmail.com>
CC: Xiubo Li <xiubli@redhat.com>
CC: Chuck Lever <chuck.lever@oracle.com>
CC: Jeff Layton <jlayton@kernel.org>
CC: Trond Myklebust <trond.myklebust@hammerspace.com>
CC: Anna Schumaker <anna@kernel.org>
CC: Steffen Klassert <steffen.klassert@secunet.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>

Suggested-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-19 17:28:49 -08:00
Linus Torvalds
aeba12b26c nfsd-6.2 supplement:
- Address numerous reports of refcount underflows in NFSD's filecache
 - Address a UAF in callback setup error handling
 - Address a UAF during server-to-server copy
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEKLLlsBKG3yQ88j7+M2qzM29mf5cFAmOgbwoACgkQM2qzM29m
 f5f2ew/+OWN7A+cPw5mSY7mfeVc7yb8la7X+dfENrDnypwHj5HP+xm1X9HqB6+Ci
 IVY+0rv1VLMAb+SWXJeK77plNAtIbbpvyqoAzV504wiPJIe70X4iW9fYWYdPwaQE
 PfJADcH+Rvcm5Pg8Gfvmkkij69O6oXUbtLIknfI/U5KSZuDTMsROeH1lMnH7TtOl
 DQ8I2/QKm8C8yFWL0VhUeOLRupND9A0eFw4R+SN9r+cEYT+3daGMWHe9HVekTv/D
 r1hbh5BmHMaU9cN72qQZhylQJ80MSabDmeLuQXL0AFy/FolJF7qr5hJGvh4A6pZW
 n1zIhxXoPHn6jtpE481qAdDMEsFB794oCJqsFZMHwa5OF/xosJ4exjd8lHO7HEvQ
 wdvVpQeHS9Gf+h4IZ0mhu7lW4AdOfLe46Y/LGM2AAcUPSXvViK0leMTqhwVzmiZw
 sOOvEHl8YDOTg4leodYzZ3XLflPiET1My+5GgsuTmr9wkwiMvhj2mNAYVB32H0sI
 zC5XaWLye+6np6tiLkhOTxDtI4K+zX9h6f6zBxPr2+u4TNH76UmPAsKTwV37kYD+
 HfXhYLmJbl6YMnmQbDBeDFkG3mJn1xdoZIoXBb15trYLQDakOdA0Q1SnSSjlM/sD
 hWiByiLR8cE3+jut8dGOddhpKQi3zqBqr2p4tIQpjJ926GV1Ung=
 =STtE
 -----END PGP SIGNATURE-----

Merge tag 'nfsd-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux

Pull more nfsd updates from Chuck Lever:
 "This contains a number of crasher fixes that were not ready for the
  initial pull request last week.

  In particular, Jeff's patch attempts to address reference count
  underflows in NFSD's filecache, which have been very difficult to
  track down because there is no reliable reproducer.

  Common failure modes:
      https://bugzilla.kernel.org/show_bug.cgi?id=216691#c11
      https://bugzilla.kernel.org/show_bug.cgi?id=216674#c6
      https://bugzilla.redhat.com/show_bug.cgi?id=2138605

  The race windows were found by inspection and the clean-ups appear
  sensible and pass regression testing, so we include them here in the
  hope that they address the problem. However we remain vigilant because
  we don't have 100% certainty yet that the problem is fully addressed.

  Summary:

   - Address numerous reports of refcount underflows in NFSD's filecache

   - Address a UAF in callback setup error handling

   - Address a UAF during server-to-server copy"

* tag 'nfsd-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux:
  NFSD: fix use-after-free in __nfs42_ssc_open()
  nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
  nfsd: rework refcounting in filecache
2022-12-19 09:10:33 -06:00
Steve French
aacfc939cc cifs: update internal module number
To 2.41

Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:04:50 -06:00
Paulo Alcantara
f60ffa662d cifs: don't leak -ENOMEM in smb2_open_file()
A NULL error response might be a valid case where smb2_reconnect()
failed to reconnect the session and tcon due to a disconnected server
prior to issuing the I/O operation, so don't leak -ENOMEM to userspace
on such occasions.

Fixes: 76894f3e2f ("cifs: improve symlink handling for smb2+")
Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:04:41 -06:00
Paulo Alcantara
7ad54b98fc cifs: use origin fullpath for automounts
Use TCP_Server_Info::origin_fullpath instead of cifs_tcon::tree_name
when building source paths for automounts as it will be useful for
domain-based DFS referrals where the connections and referrals would
get either re-used from the cache or re-created when chasing the dfs
link.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
25cf01b7c9 cifs: set correct status of tcon ipc when reconnecting
The status of tcon ipcs were not being set to TID_NEED_RECO when
marking sessions and tcons to be reconnected, therefore not sending
tree connect to those ipcs in cifs_tree_connect() and leaving them
disconnected.

Cc: stable@vger.kernel.org
Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
6fbdd5ab24 cifs: optimize reconnect of nested links
There is no point going all the way back to the original dfs full path
if reconnect of tcon did not finish due a nested link found as newly
resolved target for the current referral.  So, just mark current
server for reconnect as we already set @current_fullpath to the new
dfs referral in update_server_fullpath().

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
466611e4af cifs: fix source pathname comparison of dfs supers
We store the TCP_Server_Info::origin_fullpath path canonicalised
(e.g. with '\\' path separators), so ignore separators when comparing
it with smb3_fs_context::source.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
a85ceafd41 cifs: fix confusing debug message
Since rc was initialised to -ENOMEM in cifs_get_smb_ses(), when an
existing smb session was found, free_xid() would be called and then
print

  CIFS: fs/cifs/connect.c: Existing tcp session with server found
  CIFS: fs/cifs/connect.c: VFS: in cifs_get_smb_ses as Xid: 44 with uid: 0
  CIFS: fs/cifs/connect.c: Existing smb sess found (status=1)
  CIFS: fs/cifs/connect.c: VFS: leaving cifs_get_smb_ses (xid = 44) rc = -12

Fix this by initialising rc to 0 and then let free_xid() print this
instead

  CIFS: fs/cifs/connect.c: Existing tcp session with server found
  CIFS: fs/cifs/connect.c: VFS: in cifs_get_smb_ses as Xid: 14 with uid: 0
  CIFS: fs/cifs/connect.c: Existing smb sess found (status=1)
  CIFS: fs/cifs/connect.c: VFS: leaving cifs_get_smb_ses (xid = 14) rc = 0

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Cc: stable@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
1d04a6fe75 cifs: don't block in dfs_cache_noreq_update_tgthint()
Avoid blocking in dfs_cache_noreq_update_tgthint() while reconnecting
servers or tcons as the cache refresh worker or new mounts might
already be updating their targets.

Move some more dfs related code out of connect.c while at it.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
8332858569 cifs: refresh root referrals
Also refresh cached root referrals so the other cached referrals may
have a better chance to have a working root server to issue the
referrals on.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
6916881f44 cifs: fix refresh of cached referrals
We can't rely on cifs_tcon::ses to refresh cached referral as the
server target might not respond to referrals, e.g. share is not hosted
in a DFS root server.  Consider the following

  mount //dom/dfs/link -> /root1/dfs/link -> /fs0/share

where fs0 can't get a referral for "/root1/dfs/link".

To simplify and fix the access of dfs root sessions, store the dfs
root session pointer directly to new sessions so making it easier to
select the appropriate ipc connection and use it for failover or cache
refresh.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
cb3f6d8764 cifs: don't refresh cached referrals from unactive mounts
There is no point refreshing cached referrals from unactive mounts as
they will no longer be used and new mounts will either create or
refresh them anyway.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
a1c0d00572 cifs: share dfs connections and supers
When matching DFS superblocks we can't rely on either the server's
address or tcon's UNC name from mount(2) as the existing servers and
tcons might be connected to somewhere else.  Instead, check if
superblock is dfs, and if so, match its original source pathname with
the new mount's source pathname.

For DFS connections, instead of checking server's address, match its
referral path as it could be connected to different targets.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:12 -06:00
Paulo Alcantara
a73a26d97e cifs: split out ses and tcon retrieval from mount_get_conns()
Introduce and export two helpers for getting session and tcon during
mount(2).  Those will be used by dfs when retrieving sessions and
tcons separately while chasing referrals.  Besides, export
cifs_mount_ctx structure as it will be used by dfs code as well.

No functional changes.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:11 -06:00
Paulo Alcantara
6d740164d8 cifs: set resolved ip in sockaddr
All callers from dns_resolve_server_name_to_ip() used to convert the
ip addr string back to sockaddr, so do that inside
dns_resolve_server_name_to_ip() and avoid duplicating code.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:11 -06:00
Paulo Alcantara
2301bc103a cifs: remove unused smb3_fs_context::mount_options
Just remove it as it's no longer used during mount.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:11 -06:00
Paulo Alcantara
abdb1742a3 cifs: get rid of mount options string parsing
After switching to filesystem context support, we no longer need to
handle mount options string when chasing dfs referrals.  Now, we set
the new values directly into smb3_fs_context.

Start working on a separate source file to handle most dfs related
mount functions as connect.c has already became too big.  The
remaining functions will be moved gradually in follow-up patches.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:11 -06:00
Paulo Alcantara
9fd29a5bae cifs: use fs_context for automounts
Use filesystem context support to handle dfs links.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
2022-12-19 08:03:11 -06:00