1737 Commits

Author SHA1 Message Date
Chris Mason
25f3c50219 Btrfs: keep pages dirty when using btrfs_writepage_fixup_worker
For COW, btrfs expects pages dirty pages to have been through a few setup
steps.  This includes reserving space for the new block allocations and marking
the range in the state tree for delayed allocation.

A few places outside btrfs will dirty pages directly, especially when unmapping
mmap'd pages.  In order for these to properly go through COW, we run them
through a fixup worker to wait for stable pages, and do the delalloc prep.

87826df0ec36 added a window where the dirty pages were cleaned, but pending
more action from the fixup worker.  We clear_page_dirty_for_io() before
we call into writepage, so the page is no longer dirty.  The commit
changed it so now we leave the page clean between unlocking it here and
the fixup worker starting at some point in the future.

During this window, page migration can jump in and relocate the page.  Once our
fixup work actually starts, it finds page->mapping is NULL and we end up
freeing the page without ever writing it.

This leads to crc errors and other exciting problems, since it screws up the
whole statemachine for waiting for ordered extents.  The fix here is to keep
the page dirty while we're waiting for the fixup worker to get to work.
This is accomplished by returning -EAGAIN from btrfs_writepage_cow_fixup
if we queued the page up for fixup, which will cause the writepage
function to redirty the page.

Because we now expect the page to be dirty once it gets to the fixup
worker we must adjust the error cases to call clear_page_dirty_for_io()
on the page.  That is the bulk of the patch, but it is not the fix, the
fix is the -EAGAIN from btrfs_writepage_cow_fixup.  We cannot separate
these two changes out because the error conditions change with the new
expectations.

Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:02:08 +01:00
Dennis Zhou
46b27f5059 btrfs: rename DISCARD mount option to to DISCARD_SYNC
This series introduces async discard which will use the flag
DISCARD_ASYNC, so rename the original flag to DISCARD_SYNC as it is
synchronously done in transaction commit.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:57 +01:00
Omar Sandoval
39b07b5d70 btrfs: drop create parameter to btrfs_get_extent()
We only pass this as 1 from __extent_writepage_io(). The parameter
basically means "pretend I didn't pass in a page". This is silly since
we can simply not pass in the page. Get rid of the parameter from
btrfs_get_extent(), and since it's used as a get_extent_t callback,
remove it from get_extent_t and btree_get_extent(), neither of which
need it.

While we're here, let's document btrfs_get_extent().

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:55 +01:00
Omar Sandoval
bffe633e00 btrfs: make btrfs_ordered_extent naming consistent with btrfs_file_extent_item
ordered->start, ordered->len, and ordered->disk_len correspond to
fi->disk_bytenr, fi->num_bytes, and fi->disk_num_bytes, respectively.
It's confusing to translate between the two naming schemes. Since a
btrfs_ordered_extent is basically a pending btrfs_file_extent_item,
let's make the former use the naming from the latter.

Note that I didn't touch the names in tracepoints just in case there are
scripts depending on the current naming.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:54 +01:00
Omar Sandoval
313facc5bd btrfs: remove dead snapshot-aware defrag code
Snapshot-aware defrag has been disabled since commit 8101c8dbf624
("Btrfs: disable snapshot aware defrag for now") almost 6 years ago.
Let's remove the dead code. If someone is up to the task of bringing it
back, they can dig it up from git.

This is logically a revert of commit 38c227d87c49 ("Btrfs:
snapshot-aware defrag") except that now we have to clear the
EXTENT_DEFRAG bit to avoid need_force_cow() returning true forever.

The reasons to disable were caused by runtime problems (like long stalls
or memory consumption) on heavily referenced extents (eg. thousands of
snapshots). There were attempts to fix that but never finished.

Current defrag breaks the extent references and some users prefer that
behaviour over the one implemented by snapshot aware (ie. keeping links
for defragmentation).  To enable both usecases we'd need to extend
defrag ioctl but let's do that properly from scratch.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:54 +01:00
Omar Sandoval
db72e47f79 btrfs: get rid of at_offset parameter to btrfs_lookup_bio_sums()
We can encode this in the offset parameter: -1 means use the page
offsets, anything else is a valid offset.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:54 +01:00
Omar Sandoval
e62958fce9 btrfs: get rid of trivial __btrfs_lookup_bio_sums() wrappers
Currently, we have two wrappers for __btrfs_lookup_bio_sums():
btrfs_lookup_bio_sums_dio(), which is used for direct I/O, and
btrfs_lookup_bio_sums(), which is used everywhere else. The only
difference is that the _dio variant looks up csums starting at the given
offset instead of using the page index, which isn't actually direct
I/O-specific. Let's clean up the signature and return value of
__btrfs_lookup_bio_sums(), rename it to btrfs_lookup_bio_sums(), and get
rid of the trivial helpers.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Omar Sandoval
6bb6b51447 btrfs: use simple_dir_inode_operations for placeholder subvolume directory
When you snapshot a subvolume containing a subvolume, you get a
placeholder directory where the subvolume would be. These directories
have their own btrfs_dir_ro_inode_operations.

Al pointed out [1] that these directories can use simple_lookup()
instead of btrfs_lookup(), as they are always empty. Furthermore, they
can use the default generic_permission() instead of btrfs_permission();
the additional checks in the latter don't matter because we can't write
to the directory anyways. Finally, they can use the default
generic_update_time() instead of btrfs_update_time(), as the inode
doesn't exist on disk and doesn't need any special handling.

All together, this means that we can get rid of
btrfs_dir_ro_inode_operations and use simple_dir_inode_operations
instead.

1: https://lore.kernel.org/linux-btrfs/20190929052934.GY26530@ZenIV.linux.org.uk/

Cc: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Yunfeng Ye
76de60ed04 btrfs: remove unused condition check in btrfs_page_mkwrite()
The condition '!ret2' is always true. commit 717beb96d969 ("Btrfs: fix
regression in btrfs_page_mkwrite() from vm_fault_t conversion") left
behind the check after moving this code out of the goto, so remove the
unused condition check.

Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
4eaaec24c0 btrfs: Don't discard unwritten extents
All callers of btrfs_free_reserved_extent (respectively
__btrfs_free_reserved_extent with in set to 0) pass in extents which
have only been reserved but not yet written to. Namely,

* in cow_file_range that function is called only if create_io_em fails
  or btrfs_add_ordered_extent fail, both of which happen _before_ any IO
  is submitted to the newly reserved range

* in submit_compressed_extents the code flow is similar -
  out_free_reserve can be called only before
  btrfs_submit_compressed_write which is where any writes to the range
  could occur

* btrfs_new_extent_direct also calls btrfs_free_reserved_extent only
  if extent_map fails, before any IO is issued

* __btrfs_prealloc_file_range also calls btrfs_free_reserved_extent
  in case insertion of the metadata fails

* btrfs_alloc_tree_block again can only be called in case in-memory
  operations fail, before any IO is submitted

* btrfs_finish_ordered_io - this is the only caller where discarding
  the extent could have a material effect, since it can be called for
  an extent which was partially written.

With this change the submission of discards is optimised since discards
are now not being created for extents which are known to not have been
touched on disk.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Josef Bacik
d49d3287e7 btrfs: fix invalid removal of root ref
If we have the following sequence of events

  btrfs sub create A
  btrfs sub create A/B
  btrfs sub snap A C
  mkdir C/foo
  mv A/B C/foo
  rm -rf *

We will end up with a transaction abort.

The reason for this is because we create a root ref for B pointing to A.
When we create a snapshot of C we still have B in our tree, but because
the root ref points to A and not C we will make it appear to be empty.

The problem happens when we move B into C.  This removes the root ref
for B pointing to A and adds a ref of B pointing to C.  When we rmdir C
we'll see that we have a ref to our root and remove the root ref,
despite not actually matching our reference name.

Now btrfs_del_root_ref() allowing this to work is a bug as well, however
we know that this inode does not actually point to a root ref in the
first place, so we shouldn't be calling btrfs_del_root_ref() in the
first place and instead simply look up our dir index for this item and
do the rest of the removal.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 14:44:23 +01:00
Josef Bacik
045d3967b6 btrfs: rework arguments of btrfs_unlink_subvol
btrfs_unlink_subvol takes the name of the dentry and the root objectid
based on what kind of inode this is, either a real subvolume link or a
empty one that we inherited as a snapshot.  We need to fix how we unlink
in the case for BTRFS_EMPTY_SUBVOL_DIR_OBJECTID in the future, so rework
btrfs_unlink_subvol to just take the dentry and handle getting the right
objectid given the type of inode this is.  There is no functional change
here, simply pushing the work into btrfs_unlink_subvol() proper.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 14:43:34 +01:00
Filipe Manana
de7999afed Btrfs: fix infinite loop during nocow writeback due to race
When starting writeback for a range that covers part of a preallocated
extent, due to a race with writeback for another range that also covers
another part of the same preallocated extent, we can end up in an infinite
loop.

Consider the following example where for inode 280 we have two dirty
ranges:

  range A, from 294912 to 303103, 8192 bytes
  range B, from 348160 to 438271, 90112 bytes

and we have the following file extent item layout for our inode:

  leaf 38895616 gen 24544 total ptrs 29 free space 13820 owner 5
      (...)
      item 27 key (280 108 200704) itemoff 14598 itemsize 53
          extent data disk bytenr 0 nr 0 type 1 (regular)
          extent data offset 0 nr 94208 ram 94208
      item 28 key (280 108 294912) itemoff 14545 itemsize 53
          extent data disk bytenr 10433052672 nr 81920 type 2 (prealloc)
          extent data offset 0 nr 81920 ram 81920

Then the following happens:

1) Writeback starts for range B (from 348160 to 438271), execution of
   run_delalloc_nocow() starts;

2) The first iteration of run_delalloc_nocow()'s whil loop leaves us at
   the extent item at slot 28, pointing to the prealloc extent item
   covering the range from 294912 to 376831. This extent covers part of
   our range;

3) An ordered extent is created against that extent, covering the file
   range from 348160 to 376831 (28672 bytes);

4) We adjust 'cur_offset' to 376832 and move on to the next iteration of
   the while loop;

5) The call to btrfs_lookup_file_extent() leaves us at the same leaf,
   pointing to slot 29, 1 slot after the last item (the extent item
   we processed in the previous iteration);

6) Because we are a slot beyond the last item, we call btrfs_next_leaf(),
   which releases the search path before doing a another search for the
   last key of the leaf (280 108 294912);

7) Right after btrfs_next_leaf() released the path, and before it did
   another search for the last key of the leaf, writeback for the range
   A (from 294912 to 303103) completes (it was previously started at
   some point);

8) Upon completion of the ordered extent for range A, the prealloc extent
   we previously found got split into two extent items, one covering the
   range from 294912 to 303103 (8192 bytes), with a type of regular extent
   (and no longer prealloc) and another covering the range from 303104 to
   376831 (73728 bytes), with a type of prealloc and an offset of 8192
   bytes. So our leaf now has the following layout:

     leaf 38895616 gen 24544 total ptrs 31 free space 13664 owner 5
         (...)
         item 27 key (280 108 200704) itemoff 14598 itemsize 53
             extent data disk bytenr 0 nr 0 type 1
             extent data offset 0 nr 8192 ram 94208
         item 28 key (280 108 208896) itemoff 14545 itemsize 53
             extent data disk bytenr 10433142784 nr 86016 type 1
             extent data offset 0 nr 86016 ram 86016
         item 29 key (280 108 294912) itemoff 14492 itemsize 53
             extent data disk bytenr 10433052672 nr 81920 type 1
             extent data offset 0 nr 8192 ram 81920
         item 30 key (280 108 303104) itemoff 14439 itemsize 53
             extent data disk bytenr 10433052672 nr 81920 type 2
             extent data offset 8192 nr 73728 ram 81920

9) After btrfs_next_leaf() returns, we have our path pointing to that same
   leaf and at slot 30, since it has a key we didn't have before and it's
   the first key greater then the key that was previously the last key of
   the leaf (key (280 108 294912));

10) The extent item at slot 30 covers the range from 303104 to 376831
    which is in our target range, so we process it, despite having already
    created an ordered extent against this extent for the file range from
    348160 to 376831. This is because we skip to the next extent item only
    if its end is less than or equals to the start of our delalloc range,
    and not less than or equals to the current offset ('cur_offset');

11) As a result we compute 'num_bytes' as:

    num_bytes = min(end + 1, extent_end) - cur_offset;
              = min(438271 + 1, 376832) - 376832 = 0

12) We then call create_io_em() for a 0 bytes range starting at offset
    376832;

13) Then create_io_em() enters an infinite loop because its calls to
    btrfs_drop_extent_cache() do nothing due to the 0 length range
    passed to it. So no existing extent maps that cover the offset
    376832 get removed, and therefore calls to add_extent_mapping()
    return -EEXIST, resulting in an infinite loop. This loop from
    create_io_em() is the following:

    do {
        btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
                                em->start + em->len - 1, 0);
        write_lock(&em_tree->lock);
        ret = add_extent_mapping(em_tree, em, 1);
        write_unlock(&em_tree->lock);
        /*
         * The caller has taken lock_extent(), who could race with us
         * to add em?
         */
    } while (ret == -EEXIST);

Also, each call to btrfs_drop_extent_cache() triggers a warning because
the start offset passed to it (376832) is smaller then the end offset
(376832 - 1) passed to it by -1, due to the 0 length:

  [258532.052621] ------------[ cut here ]------------
  [258532.052643] WARNING: CPU: 0 PID: 9987 at fs/btrfs/file.c:602 btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
  (...)
  [258532.052672] CPU: 0 PID: 9987 Comm: fsx Tainted: G        W         5.4.0-rc7-btrfs-next-64 #1
  [258532.052673] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [258532.052691] RIP: 0010:btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
  (...)
  [258532.052695] RSP: 0018:ffffb4be0153f860 EFLAGS: 00010287
  [258532.052700] RAX: ffff975b445ee360 RBX: ffff975b44eb3e08 RCX: 0000000000000000
  [258532.052700] RDX: 0000000000038fff RSI: 0000000000039000 RDI: ffff975b445ee308
  [258532.052700] RBP: 0000000000038fff R08: 0000000000000000 R09: 0000000000000001
  [258532.052701] R10: ffff975b513c5c10 R11: 00000000e3c0cfa9 R12: 0000000000039000
  [258532.052703] R13: ffff975b445ee360 R14: 00000000ffffffef R15: ffff975b445ee308
  [258532.052705] FS:  00007f86a821de80(0000) GS:ffff975b76a00000(0000) knlGS:0000000000000000
  [258532.052707] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [258532.052708] CR2: 00007fdacf0f3ab4 CR3: 00000001f9d26002 CR4: 00000000003606f0
  [258532.052712] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [258532.052717] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [258532.052717] Call Trace:
  [258532.052718]  ? preempt_schedule_common+0x32/0x70
  [258532.052722]  ? ___preempt_schedule+0x16/0x20
  [258532.052741]  create_io_em+0xff/0x180 [btrfs]
  [258532.052767]  run_delalloc_nocow+0x942/0xb10 [btrfs]
  [258532.052791]  btrfs_run_delalloc_range+0x30b/0x520 [btrfs]
  [258532.052812]  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  [258532.052834]  writepage_delalloc+0xe4/0x140 [btrfs]
  [258532.052855]  __extent_writepage+0x110/0x4e0 [btrfs]
  [258532.052876]  extent_write_cache_pages+0x21c/0x480 [btrfs]
  [258532.052906]  extent_writepages+0x52/0xb0 [btrfs]
  [258532.052911]  do_writepages+0x23/0x80
  [258532.052915]  __filemap_fdatawrite_range+0xd2/0x110
  [258532.052938]  btrfs_fdatawrite_range+0x1b/0x50 [btrfs]
  [258532.052954]  start_ordered_ops+0x57/0xa0 [btrfs]
  [258532.052973]  ? btrfs_sync_file+0x225/0x490 [btrfs]
  [258532.052988]  btrfs_sync_file+0x225/0x490 [btrfs]
  [258532.052997]  __x64_sys_msync+0x199/0x200
  [258532.053004]  do_syscall_64+0x5c/0x250
  [258532.053007]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [258532.053010] RIP: 0033:0x7f86a7dfd760
  (...)
  [258532.053014] RSP: 002b:00007ffd99af0368 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
  [258532.053016] RAX: ffffffffffffffda RBX: 0000000000000ec9 RCX: 00007f86a7dfd760
  [258532.053017] RDX: 0000000000000004 RSI: 000000000000836c RDI: 00007f86a8221000
  [258532.053019] RBP: 0000000000021ec9 R08: 0000000000000003 R09: 00007f86a812037c
  [258532.053020] R10: 0000000000000001 R11: 0000000000000246 R12: 00000000000074a3
  [258532.053021] R13: 00007f86a8221000 R14: 000000000000836c R15: 0000000000000001
  [258532.053032] irq event stamp: 1653450494
  [258532.053035] hardirqs last  enabled at (1653450493): [<ffffffff9dec69f9>] _raw_spin_unlock_irq+0x29/0x50
  [258532.053037] hardirqs last disabled at (1653450494): [<ffffffff9d4048ea>] trace_hardirqs_off_thunk+0x1a/0x20
  [258532.053039] softirqs last  enabled at (1653449852): [<ffffffff9e200466>] __do_softirq+0x466/0x6bd
  [258532.053042] softirqs last disabled at (1653449845): [<ffffffff9d4c8a0c>] irq_exit+0xec/0x120
  [258532.053043] ---[ end trace 8476fce13d9ce20a ]---

Which results in flooding dmesg/syslog since btrfs_drop_extent_cache()
uses WARN_ON() and not WARN_ON_ONCE().

So fix this issue by changing run_delalloc_nocow()'s loop to move to the
next extent item when the current extent item ends at at offset less than
or equals to the current offset instead of the start offset.

Fixes: 80ff385665b7fc ("Btrfs: update nodatacow code v2")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-30 16:13:20 +01:00
Josef Bacik
943eb3bf25 btrfs: don't double lock the subvol_sem for rename exchange
If we're rename exchanging two subvols we'll try to lock this lock
twice, which is bad.  Just lock once if either of the ino's are subvols.

Fixes: cdd1fedf8261 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:23 +01:00
Josef Bacik
f72ff01df9 btrfs: do not call synchronize_srcu() in inode_tree_del
Testing with the new fsstress uncovered a pretty nasty deadlock with
lookup and snapshot deletion.

Process A
unlink
 -> final iput
   -> inode_tree_del
     -> synchronize_srcu(subvol_srcu)

Process B
btrfs_lookup  <- srcu_read_lock() acquired here
  -> btrfs_iget
    -> find inode that has I_FREEING set
      -> __wait_on_freeing_inode()

We're holding the srcu_read_lock() while doing the iget in order to make
sure our fs root doesn't go away, and then we are waiting for the inode
to finish freeing.  However because the free'ing process is doing a
synchronize_srcu() we deadlock.

Fix this by dropping the synchronize_srcu() in inode_tree_del().  We
don't need people to stop accessing the fs root at this point, we're
only adding our empty root to the dead roots list.

A larger much more invasive fix is forthcoming to address how we deal
with fs roots, but this fixes the immediate problem.

Fixes: 76dda93c6ae2 ("Btrfs: add snapshot/subvolume destroy ioctl")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:08 +01:00
David Sterba
a019e9e197 btrfs: remove extent_map::bdev
We can now remove the bdev from extent_map. Previous patches made sure
that bio_set_dev is correctly in all places and that we don't need to
grab it from latest_bdev or pass it around inside the extent map.

Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 23:43:44 +01:00
Josef Bacik
3e1740993e btrfs: record all roots for rename exchange on a subvol
Testing with the new fsstress support for subvolumes uncovered a pretty
bad problem with rename exchange on subvolumes.  We're modifying two
different subvolumes, but we only start the transaction on one of them,
so the other one is not added to the dirty root list.  This is caught by
btrfs_cow_block() with a warning because the root has not been updated,
however if we do not modify this root again we'll end up pointing at an
invalid root because the root item is never updated.

Fix this by making sure we add the destination root to the trans list,
the same as we do with normal renames.  This fixes the corruption.

Fixes: cdd1fedf8261 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 20:08:31 +01:00
David Sterba
32da5386d9 btrfs: rename btrfs_block_group_cache
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.

Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:51 +01:00
David Sterba
fac07d2b09 btrfs: sink write flags to cow_file_range_async
In commit "Btrfs: use REQ_CGROUP_PUNT for worker thread submitted bios",
cow_file_range_async gained wbc as a parameter and this makes passing
write flags redundant. Set it inside the function and remove the
parameter.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:49 +01:00
Filipe Manana
16ad3be175 Btrfs: remove unnecessary delalloc mutex for inodes
The inode delalloc mutex was added a long time ago by commit f248679e86fea
("Btrfs: add a delalloc mutex to inodes for delalloc reservations"), and
the reason for its introduction is not very clear from the change log. It
claims it solves bogus warnings from lockdep, however it lacks an example
report/warning from lockdep, or any explanation.

Since we have enough concurrentcy protection from the locks of the space
info and block reserve objects, and such lockdep warnings don't seem to
exist anymore (at least on a 5.3 kernel I couldn't get them with fstests,
ltp, fs_mark, etc), remove it, simplifying things a bit and decreasing
the size of the btrfs_inode structure. With some quick fio tests doing
direct IO and mmap writes I couldn't observe any significant performance
increase either (direct IO writes that don't increase the file's size
don't hold the inode's lock for their entire duration and mmap writes
don't hold the inode's lock at all), which are the only type of writes
that could see any performance gain due to less serialization.

Review feedback from Josef:

The problem was taking the i_mutex in mmap, which is how I was
protecting delalloc reservations originally.  The delalloc mutex didn't
come with all of the other dependencies.  That's what the lockdep
messages were about, removing the lock isn't going to make them appear
again.

We _had_ to lock around this because we used to do tricks to keep from
over-reserving, and if we didn't serialize delalloc reservations we'd
end up with ugly accounting problems when we tried to clean things up.

However with my recentish changes this isn't the case anymore.  Every
operation is responsible for reserving its space, and then adding it to
the inode.  Then cleaning up is straightforward and can't be mucked up
by other users.  So we no longer need the delalloc mutex to safe us from
ourselves.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:46 +01:00
David Sterba
8530c37a70 btrfs: get bdev from latest_dev for dio bh_result
To remove use of extent_map::bdev we need to find a replacement, and the
latest_bdev is the only one we can use here, because inode::i_bdev and
superblock::s_bdev are NULL.

The DIO code uses bdev in two places:

* to read blocksize to perform alignment checks in
  do_blockdev_direct_IO, but we do them in btrfs code before any call to
  DIO

* in the following call chain:

  do_direct_IO
    get_more_blocks
     sdio->get_block() <-- this is btrfs_get_blocks_direct

  subsequently the map_bh->b_dev member is used in clean_bdev_aliases
  and dio_new_bio to set the bio's bdev to that of the buffer_head.
  However, because we have provided a submit function dio_bio_submit
  calls our submission function and ignores the bdev.

So it's safe to pass any valid bdev that's used within the filesystem.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:47:01 +01:00
Filipe Manana
536870071d Btrfs: fix metadata space leak on fixup worker failure to set range as delalloc
In the fixup worker, if we fail to mark the range as delalloc in the io
tree, we must release the previously reserved metadata, as well as update
the outstanding extents counter for the inode, otherwise we leak metadata
space.

In pratice we can't return an error from btrfs_set_extent_delalloc(),
which is just a wrapper around __set_extent_bit(), as for most errors
__set_extent_bit() does a BUG_ON() (or panics which hits a BUG_ON() as
well) and returning an -EEXIST error doesn't happen in this case since
the exclusive bits parameter always has a value of 0 through this code
path. Nevertheless, just fix the error handling in the fixup worker,
in case one day __set_extent_bit() can return an error to this code
path.

Fixes: f3038ee3a3f101 ("btrfs: Handle btrfs_set_extent_delalloc failure in fixup worker")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:56 +01:00
Nikolay Borisov
8d510121bf btrfs: Rename btrfs_join_transaction_nolock
This function is used only during the final phase of freespace cache
writeout. This is necessary since using the plain btrfs_join_transaction
api is deadlock prone. The deadlock looks like:

T1:
btrfs_commit_transaction
  commit_cowonly_roots
    btrfs_write_dirty_block_groups
      btrfs_wait_cache_io
        __btrfs_wait_cache_io
       btrfs_wait_ordered_range <-- Triggers ordered IO for freespace
                                    inode and blocks transaction commit
				    until freespace cache writeout

T2: <-- after T1 has triggered the writeout
finish_ordered_fn
  btrfs_finish_ordered_io
    btrfs_join_transaction <--- this would block waiting for current
                                transaction to commit, but since trans
				commit is waiting for this writeout to
				finish

The special purpose functions prevents it by simply skipping the "wait
for writeout" since it's guaranteed the transaction won't proceed until
we are done.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:54 +01:00
Chris Mason
ec39f7696c Btrfs: use REQ_CGROUP_PUNT for worker thread submitted bios
Async CRCs and compression submit IO through helper threads, which means
they have IO priority inversions when cgroup IO controllers are in use.

This flags all of the writes submitted by btrfs helper threads as
REQ_CGROUP_PUNT.  submit_bio() will punt these to dedicated per-blkcg
work items to avoid the priority inversion.

For the compression code, we take a reference on the wbc's blkg css and
pass it down to the async workers.

For the async CRCs, the bio already has the correct css, we just need to
tell the block layer to use REQ_CGROUP_PUNT.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Modified-and-reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:53 +01:00
Chris Mason
1d53c9e672 Btrfs: only associate the locked page with one async_chunk struct
The btrfs writepages function collects a large range of pages flagged
for delayed allocation, and then sends them down through the COW code
for processing.  When compression is on, we allocate one async_chunk
structure for every 512K, and then run those pages through the
compression code for IO submission.

writepages starts all of this off with a single page, locked by the
original call to extent_write_cache_pages(), and it's important to keep
track of this page because it has already been through
clear_page_dirty_for_io().

The btrfs async_chunk struct has a pointer to the locked_page, and when
we're redirtying the page because compression had to fallback to
uncompressed IO, we use page->index to decide if a given async_chunk
struct really owns that page.

But, this is racey.  If a given delalloc range is broken up into two
async_chunks (chunkA and chunkB), we can end up with something like
this:

 compress_file_range(chunkA)
 submit_compress_extents(chunkA)
 submit compressed bios(chunkA)
 put_page(locked_page)

				 compress_file_range(chunkB)
				 ...

Or:

 async_cow_submit
  submit_compressed_extents <--- falls back to buffered writeout
   cow_file_range
    extent_clear_unlock_delalloc
     __process_pages_contig
       put_page(locked_pages)

					    async_cow_submit

The end result is that chunkA is completed and cleaned up before chunkB
even starts processing.  This means we can free locked_page() and reuse
it elsewhere.  If we get really lucky, it'll have the same page->index
in its new home as it did before.

While we're processing chunkB, we might decide we need to fall back to
uncompressed IO, and so compress_file_range() will call
__set_page_dirty_nobufers() on chunkB->locked_page.

Without cgroups in use, this creates as a phantom dirty page, which
isn't great but isn't the end of the world. What can happen, it can go
through the fixup worker and the whole COW machinery again:

in submit_compressed_extents():
  while (async extents) {
  ...
    cow_file_range
    if (!page_started ...)
      extent_write_locked_range
    else if (...)
      unlock_page
    continue;

This hasn't been observed in practice but is still possible.

With cgroups in use, we might crash in the accounting code because
page->mapping->i_wb isn't set.

  BUG: unable to handle kernel NULL pointer dereference at 00000000000000d0
  IP: percpu_counter_add_batch+0x11/0x70
  PGD 66534e067 P4D 66534e067 PUD 66534f067 PMD 0
  Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
  CPU: 16 PID: 2172 Comm: rm Not tainted
  RIP: 0010:percpu_counter_add_batch+0x11/0x70
  RSP: 0018:ffffc9000a97bbe0 EFLAGS: 00010286
  RAX: 0000000000000005 RBX: 0000000000000090 RCX: 0000000000026115
  RDX: 0000000000000030 RSI: ffffffffffffffff RDI: 0000000000000090
  RBP: 0000000000000000 R08: fffffffffffffff5 R09: 0000000000000000
  R10: 00000000000260c0 R11: ffff881037fc26c0 R12: ffffffffffffffff
  R13: ffff880fe4111548 R14: ffffc9000a97bc90 R15: 0000000000000001
  FS:  00007f5503ced480(0000) GS:ffff880ff7200000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00000000000000d0 CR3: 00000001e0459005 CR4: 0000000000360ee0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   account_page_cleaned+0x15b/0x1f0
   __cancel_dirty_page+0x146/0x200
   truncate_cleanup_page+0x92/0xb0
   truncate_inode_pages_range+0x202/0x7d0
   btrfs_evict_inode+0x92/0x5a0
   evict+0xc1/0x190
   do_unlinkat+0x176/0x280
   do_syscall_64+0x63/0x1a0
   entry_SYSCALL_64_after_hwframe+0x42/0xb7

The fix here is to make asyc_chunk->locked_page NULL everywhere but the
one async_chunk struct that's allowed to do things to the locked page.

Link: https://lore.kernel.org/linux-btrfs/c2419d01-5c84-3fb4-189e-4db519d08796@suse.com/
Fixes: 771ed689d2cd ("Btrfs: Optimize compressed writeback and reads")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
[ update changelog from mail thread discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:53 +01:00
Chris Mason
08635bae0b Btrfs: stop using btrfs_schedule_bio()
btrfs_schedule_bio() hands IO off to a helper thread to do the actual
submit_bio() call.  This has been used to make sure async crc and
compression helpers don't get stuck on IO submission.  To maintain good
performance, over time the IO submission threads duplicated some IO
scheduler characteristics such as high and low priority IOs and they
also made some ugly assumptions about request allocation batch sizes.

All of this cost at least one extra context switch during IO submission,
and doesn't fit well with the modern blkmq IO stack.  So, this commit stops
using btrfs_schedule_bio().  We may need to adjust the number of async
helper threads for crcs and compression, but long term it's a better
path.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:52 +01:00
David Sterba
4c66e0d424 btrfs: drop unused parameter is_new from btrfs_iget
The parameter is now always set to NULL and could be dropped. The last
user was get_default_root but that got reworked in 05dbe6837b60 ("Btrfs:
unify subvol= and subvolid= mounting") and the parameter became unused.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:52 +01:00
Omar Sandoval
a0cac0ec96 btrfs: get rid of unique workqueue helper functions
Commit 9e0af2376434 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.

However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.

While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:48 +01:00
Filipe Manana
e6c617102c Btrfs: fix log context list corruption after rename exchange operation
During rename exchange we might have successfully log the new name in the
source root's log tree, in which case we leave our log context (allocated
on stack) in the root's list of log contextes. However we might fail to
log the new name in the destination root, in which case we fallback to
a transaction commit later and never sync the log of the source root,
which causes the source root log context to remain in the list of log
contextes. This later causes invalid memory accesses because the context
was allocated on stack and after rename exchange finishes the stack gets
reused and overwritten for other purposes.

The kernel's linked list corruption detector (CONFIG_DEBUG_LIST=y) can
detect this and report something like the following:

  [  691.489929] ------------[ cut here ]------------
  [  691.489947] list_add corruption. prev->next should be next (ffff88819c944530), but was ffff8881c23f7be4. (prev=ffff8881c23f7a38).
  [  691.489967] WARNING: CPU: 2 PID: 28933 at lib/list_debug.c:28 __list_add_valid+0x95/0xe0
  (...)
  [  691.489998] CPU: 2 PID: 28933 Comm: fsstress Not tainted 5.4.0-rc6-btrfs-next-62 #1
  [  691.490001] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [  691.490003] RIP: 0010:__list_add_valid+0x95/0xe0
  (...)
  [  691.490007] RSP: 0018:ffff8881f0b3faf8 EFLAGS: 00010282
  [  691.490010] RAX: 0000000000000000 RBX: ffff88819c944530 RCX: 0000000000000000
  [  691.490011] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffa2c497e0
  [  691.490013] RBP: ffff8881f0b3fe68 R08: ffffed103eaa4115 R09: ffffed103eaa4114
  [  691.490015] R10: ffff88819c944000 R11: ffffed103eaa4115 R12: 7fffffffffffffff
  [  691.490016] R13: ffff8881b4035610 R14: ffff8881e7b84728 R15: 1ffff1103e167f7b
  [  691.490019] FS:  00007f4b25ea2e80(0000) GS:ffff8881f5500000(0000) knlGS:0000000000000000
  [  691.490021] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [  691.490022] CR2: 00007fffbb2d4eec CR3: 00000001f2a4a004 CR4: 00000000003606e0
  [  691.490025] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [  691.490027] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [  691.490029] Call Trace:
  [  691.490058]  btrfs_log_inode_parent+0x667/0x2730 [btrfs]
  [  691.490083]  ? join_transaction+0x24a/0xce0 [btrfs]
  [  691.490107]  ? btrfs_end_log_trans+0x80/0x80 [btrfs]
  [  691.490111]  ? dget_parent+0xb8/0x460
  [  691.490116]  ? lock_downgrade+0x6b0/0x6b0
  [  691.490121]  ? rwlock_bug.part.0+0x90/0x90
  [  691.490127]  ? do_raw_spin_unlock+0x142/0x220
  [  691.490151]  btrfs_log_dentry_safe+0x65/0x90 [btrfs]
  [  691.490172]  btrfs_sync_file+0x9f1/0xc00 [btrfs]
  [  691.490195]  ? btrfs_file_write_iter+0x1800/0x1800 [btrfs]
  [  691.490198]  ? rcu_read_lock_any_held.part.11+0x20/0x20
  [  691.490204]  ? __do_sys_newstat+0x88/0xd0
  [  691.490207]  ? cp_new_stat+0x5d0/0x5d0
  [  691.490218]  ? do_fsync+0x38/0x60
  [  691.490220]  do_fsync+0x38/0x60
  [  691.490224]  __x64_sys_fdatasync+0x32/0x40
  [  691.490228]  do_syscall_64+0x9f/0x540
  [  691.490233]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [  691.490235] RIP: 0033:0x7f4b253ad5f0
  (...)
  [  691.490239] RSP: 002b:00007fffbb2d6078 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
  [  691.490242] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f4b253ad5f0
  [  691.490244] RDX: 00007fffbb2d5fe0 RSI: 00007fffbb2d5fe0 RDI: 0000000000000003
  [  691.490245] RBP: 000000000000000d R08: 0000000000000001 R09: 00007fffbb2d608c
  [  691.490247] R10: 00000000000002e8 R11: 0000000000000246 R12: 00000000000001f4
  [  691.490248] R13: 0000000051eb851f R14: 00007fffbb2d6120 R15: 00005635a498bda0

This started happening recently when running some test cases from fstests
like btrfs/004 for example, because support for rename exchange was added
last week to fsstress from fstests.

So fix this by deleting the log context for the source root from the list
if we have logged the new name in the source root.

Reported-by: Su Yue <Damenly_Su@gmx.com>
Fixes: d4682ba03ef618 ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Tested-by: Su Yue <Damenly_Su@gmx.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-11 19:46:02 +01:00
Josef Bacik
d98da49977 btrfs: save i_size to avoid double evaluation of i_size_read in compress_file_range
We hit a regression while rolling out 5.2 internally where we were
hitting the following panic

  kernel BUG at mm/page-writeback.c:2659!
  RIP: 0010:clear_page_dirty_for_io+0xe6/0x1f0
  Call Trace:
   __process_pages_contig+0x25a/0x350
   ? extent_clear_unlock_delalloc+0x43/0x70
   submit_compressed_extents+0x359/0x4d0
   normal_work_helper+0x15a/0x330
   process_one_work+0x1f5/0x3f0
   worker_thread+0x2d/0x3d0
   ? rescuer_thread+0x340/0x340
   kthread+0x111/0x130
   ? kthread_create_on_node+0x60/0x60
   ret_from_fork+0x1f/0x30

This is happening because the page is not locked when doing
clear_page_dirty_for_io.  Looking at the core dump it was because our
async_extent had a ram_size of 24576 but our async_chunk range only
spanned 20480, so we had a whole extra page in our ram_size for our
async_extent.

This happened because we try not to compress pages outside of our
i_size, however a cleanup patch changed us to do

actual_end = min_t(u64, i_size_read(inode), end + 1);

which is problematic because i_size_read() can evaluate to different
values in between checking and assigning.  So either an expanding
truncate or a fallocate could increase our i_size while we're doing
writeout and actual_end would end up being past the range we have
locked.

I confirmed this was what was happening by installing a debug kernel
that had

  actual_end = min_t(u64, i_size_read(inode), end + 1);
  if (actual_end > end + 1) {
	  printk(KERN_ERR "KABOOM\n");
	  actual_end = end + 1;
  }

and installing it onto 500 boxes of the tier that had been seeing the
problem regularly.  Last night I got my debug message and no panic,
confirming what I expected.

[ dsterba: the assembly confirms a tiny race window:

    mov    0x20(%rsp),%rax
    cmp    %rax,0x48(%r15)           # read
    movl   $0x0,0x18(%rsp)
    mov    %rax,%r12
    mov    %r14,%rax
    cmovbe 0x48(%r15),%r12           # eval

  Where r15 is inode and 0x48 is offset of i_size.

  The original fix was to revert 62b37622718c that would do an
  intermediate assignment and this would also avoid the doulble
  evaluation but is not future-proof, should the compiler merge the
  stores and call i_size_read anyway.

  There's a patch adding READ_ONCE to i_size_read but that's not being
  applied at the moment and we need to fix the bug. Instead, emulate
  READ_ONCE by two barrier()s that's what effectively happens. The
  assembly confirms single evaluation:

    mov    0x48(%rbp),%rax          # read once
    mov    0x20(%rsp),%rcx
    mov    $0x20,%edx
    cmp    %rax,%rcx
    cmovbe %rcx,%rax
    mov    %rax,(%rsp)
    mov    %rax,%rcx
    mov    %r14,%rax

  Where 0x48(%rbp) is inode->i_size stored to %eax.
]

Fixes: 62b37622718c ("btrfs: Remove isize local variable in compress_file_range")
CC: stable@vger.kernel.org # v5.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changelog updated ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-04 21:41:49 +01:00
Qu Wenruo
8702ba9396 btrfs: qgroup: Always free PREALLOC META reserve in btrfs_delalloc_release_extents()
[Background]
Btrfs qgroup uses two types of reserved space for METADATA space,
PERTRANS and PREALLOC.

PERTRANS is metadata space reserved for each transaction started by
btrfs_start_transaction().
While PREALLOC is for delalloc, where we reserve space before joining a
transaction, and finally it will be converted to PERTRANS after the
writeback is done.

[Inconsistency]
However there is inconsistency in how we handle PREALLOC metadata space.

The most obvious one is:
In btrfs_buffered_write():
	btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true);

We always free qgroup PREALLOC meta space.

While in btrfs_truncate_block():
	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));

We only free qgroup PREALLOC meta space when something went wrong.

[The Correct Behavior]
The correct behavior should be the one in btrfs_buffered_write(), we
should always free PREALLOC metadata space.

The reason is, the btrfs_delalloc_* mechanism works by:
- Reserve metadata first, even it's not necessary
  In btrfs_delalloc_reserve_metadata()

- Free the unused metadata space
  Normally in:
  btrfs_delalloc_release_extents()
  |- btrfs_inode_rsv_release()
     Here we do calculation on whether we should release or not.

E.g. for 64K buffered write, the metadata rsv works like:

/* The first page */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=0
total:		num_bytes=calc_inode_reservations()
/* The first page caused one outstanding extent, thus needs metadata
   rsv */

/* The 2nd page */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=calc_inode_reservations()
total:		not changed
/* The 2nd page doesn't cause new outstanding extent, needs no new meta
   rsv, so we free what we have reserved */

/* The 3rd~16th pages */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=calc_inode_reservations()
total:		not changed (still space for one outstanding extent)

This means, if btrfs_delalloc_release_extents() determines to free some
space, then those space should be freed NOW.
So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other
than btrfs_qgroup_convert_reserved_meta().

The good news is:
- The callers are not that hot
  The hottest caller is in btrfs_buffered_write(), which is already
  fixed by commit 336a8bb8e36a ("btrfs: Fix wrong
  btrfs_delalloc_release_extents parameter"). Thus it's not that
  easy to cause false EDQUOT.

- The trans commit in advance for qgroup would hide the bug
  Since commit f5fef4593653 ("btrfs: qgroup: Make qgroup async transaction
  commit more aggressive"), when btrfs qgroup metadata free space is slow,
  it will try to commit transaction and free the wrongly converted
  PERTRANS space, so it's not that easy to hit such bug.

[FIX]
So to fix the problem, remove the @qgroup_free parameter for
btrfs_delalloc_release_extents(), and always pass true to
btrfs_inode_rsv_release().

Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 43b18595d660 ("btrfs: qgroup: Use separate meta reservation type for delalloc")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 18:50:07 +02:00
Josef Bacik
11a19a9087 btrfs: allocate new inode in NOFS context
A user reported a lockdep splat

 ======================================================
 WARNING: possible circular locking dependency detected
 5.2.11-gentoo #2 Not tainted
 ------------------------------------------------------
 kswapd0/711 is trying to acquire lock:
 000000007777a663 (sb_internal){.+.+}, at: start_transaction+0x3a8/0x500

but task is already holding lock:
 000000000ba86300 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x0/0x30

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (fs_reclaim){+.+.}:
 kmem_cache_alloc+0x1f/0x1c0
 btrfs_alloc_inode+0x1f/0x260
 alloc_inode+0x16/0xa0
 new_inode+0xe/0xb0
 btrfs_new_inode+0x70/0x610
 btrfs_symlink+0xd0/0x420
 vfs_symlink+0x9c/0x100
 do_symlinkat+0x66/0xe0
 do_syscall_64+0x55/0x1c0
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

-> #0 (sb_internal){.+.+}:
 __sb_start_write+0xf6/0x150
 start_transaction+0x3a8/0x500
 btrfs_commit_inode_delayed_inode+0x59/0x110
 btrfs_evict_inode+0x19e/0x4c0
 evict+0xbc/0x1f0
 inode_lru_isolate+0x113/0x190
 __list_lru_walk_one.isra.4+0x5c/0x100
 list_lru_walk_one+0x32/0x50
 prune_icache_sb+0x36/0x80
 super_cache_scan+0x14a/0x1d0
 do_shrink_slab+0x131/0x320
 shrink_node+0xf7/0x380
 balance_pgdat+0x2d5/0x640
 kswapd+0x2ba/0x5e0
 kthread+0x147/0x160
 ret_from_fork+0x24/0x30

other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0 CPU1
 ---- ----
 lock(fs_reclaim);
 lock(sb_internal);
 lock(fs_reclaim);
 lock(sb_internal);
*** DEADLOCK ***

 3 locks held by kswapd0/711:
 #0: 000000000ba86300 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x0/0x30
 #1: 000000004a5100f8 (shrinker_rwsem){++++}, at: shrink_node+0x9a/0x380
 #2: 00000000f956fa46 (&type->s_umount_key#30){++++}, at: super_cache_scan+0x35/0x1d0

stack backtrace:
 CPU: 7 PID: 711 Comm: kswapd0 Not tainted 5.2.11-gentoo #2
 Hardware name: Dell Inc. Precision Tower 3620/0MWYPT, BIOS 2.4.2 09/29/2017
 Call Trace:
 dump_stack+0x85/0xc7
 print_circular_bug.cold.40+0x1d9/0x235
 __lock_acquire+0x18b1/0x1f00
 lock_acquire+0xa6/0x170
 ? start_transaction+0x3a8/0x500
 __sb_start_write+0xf6/0x150
 ? start_transaction+0x3a8/0x500
 start_transaction+0x3a8/0x500
 btrfs_commit_inode_delayed_inode+0x59/0x110
 btrfs_evict_inode+0x19e/0x4c0
 ? var_wake_function+0x20/0x20
 evict+0xbc/0x1f0
 inode_lru_isolate+0x113/0x190
 ? discard_new_inode+0xc0/0xc0
 __list_lru_walk_one.isra.4+0x5c/0x100
 ? discard_new_inode+0xc0/0xc0
 list_lru_walk_one+0x32/0x50
 prune_icache_sb+0x36/0x80
 super_cache_scan+0x14a/0x1d0
 do_shrink_slab+0x131/0x320
 shrink_node+0xf7/0x380
 balance_pgdat+0x2d5/0x640
 kswapd+0x2ba/0x5e0
 ? __wake_up_common_lock+0x90/0x90
 kthread+0x147/0x160
 ? balance_pgdat+0x640/0x640
 ? __kthread_create_on_node+0x160/0x160
 ret_from_fork+0x24/0x30

This is because btrfs_new_inode() calls new_inode() under the
transaction.  We could probably move the new_inode() outside of this but
for now just wrap it in memalloc_nofs_save().

Reported-by: Zdenek Sojka <zsojka@seznam.cz>
Fixes: 712e36c5f2a7 ("btrfs: use GFP_KERNEL in btrfs_alloc_inode")
CC: stable@vger.kernel.org # 4.16+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-01 20:12:27 +02:00
Omar Sandoval
e182163d9c btrfs: stop clearing EXTENT_DIRTY in inode I/O tree
Since commit fee187d9d9dd ("Btrfs: do not set EXTENT_DIRTY along with
EXTENT_DELALLOC"), we never set EXTENT_DIRTY in inode->io_tree, so we
can simplify and stop trying to clear it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:17 +02:00
David Sterba
c82f823c9b btrfs: tie extent buffer and it's token together
Further simplifaction of the get/set helpers is possible when the token
is uniquely tied to an extent buffer. A condition and an assignment can
be avoided.

The initializations are moved closer to the first use when the extent
buffer is valid. There's one exception in __push_leaf_left where the
token is reused.

Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:16 +02:00
David Sterba
602cbe91fb btrfs: move cond_wake_up functions out of ctree
The file ctree.h serves as a header for everything and has become quite
bloated. Split some helpers that are generic and create a new file that
should be the catch-all for code that's not btrfs-specific.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:15 +02:00
Christophe Leroy
3acd48507d btrfs: fix allocation of free space cache v1 bitmap pages
Various notifications of type "BUG kmalloc-4096 () : Redzone
overwritten" have been observed recently in various parts of the kernel.
After some time, it has been made a relation with the use of BTRFS
filesystem and with SLUB_DEBUG turned on.

[   22.809700] BUG kmalloc-4096 (Tainted: G        W        ): Redzone overwritten

[   22.810286] INFO: 0xbe1a5921-0xfbfc06cd. First byte 0x0 instead of 0xcc
[   22.810866] INFO: Allocated in __load_free_space_cache+0x588/0x780 [btrfs] age=22 cpu=0 pid=224
[   22.811193] 	__slab_alloc.constprop.26+0x44/0x70
[   22.811345] 	kmem_cache_alloc_trace+0xf0/0x2ec
[   22.811588] 	__load_free_space_cache+0x588/0x780 [btrfs]
[   22.811848] 	load_free_space_cache+0xf4/0x1b0 [btrfs]
[   22.812090] 	cache_block_group+0x1d0/0x3d0 [btrfs]
[   22.812321] 	find_free_extent+0x680/0x12a4 [btrfs]
[   22.812549] 	btrfs_reserve_extent+0xec/0x220 [btrfs]
[   22.812785] 	btrfs_alloc_tree_block+0x178/0x5f4 [btrfs]
[   22.813032] 	__btrfs_cow_block+0x150/0x5d4 [btrfs]
[   22.813262] 	btrfs_cow_block+0x194/0x298 [btrfs]
[   22.813484] 	commit_cowonly_roots+0x44/0x294 [btrfs]
[   22.813718] 	btrfs_commit_transaction+0x63c/0xc0c [btrfs]
[   22.813973] 	close_ctree+0xf8/0x2a4 [btrfs]
[   22.814107] 	generic_shutdown_super+0x80/0x110
[   22.814250] 	kill_anon_super+0x18/0x30
[   22.814437] 	btrfs_kill_super+0x18/0x90 [btrfs]
[   22.814590] INFO: Freed in proc_cgroup_show+0xc0/0x248 age=41 cpu=0 pid=83
[   22.814841] 	proc_cgroup_show+0xc0/0x248
[   22.814967] 	proc_single_show+0x54/0x98
[   22.815086] 	seq_read+0x278/0x45c
[   22.815190] 	__vfs_read+0x28/0x17c
[   22.815289] 	vfs_read+0xa8/0x14c
[   22.815381] 	ksys_read+0x50/0x94
[   22.815475] 	ret_from_syscall+0x0/0x38

Commit 69d2480456d1 ("btrfs: use copy_page for copying pages instead of
memcpy") changed the way bitmap blocks are copied. But allthough bitmaps
have the size of a page, they were allocated with kzalloc().

Most of the time, kzalloc() allocates aligned blocks of memory, so
copy_page() can be used. But when some debug options like SLAB_DEBUG are
activated, kzalloc() may return unaligned pointer.

On powerpc, memcpy(), copy_page() and other copying functions use
'dcbz' instruction which provides an entire zeroed cacheline to avoid
memory read when the intention is to overwrite a full line. Functions
like memcpy() are writen to care about partial cachelines at the start
and end of the destination, but copy_page() assumes it gets pages. As
pages are naturally cache aligned, copy_page() doesn't care about
partial lines. This means that when copy_page() is called with a
misaligned pointer, a few leading bytes are zeroed.

To fix it, allocate bitmaps through kmem_cache instead of using kzalloc()
The cache pool is created with PAGE_SIZE alignment constraint.

Reported-by: Erhard F. <erhard_f@mailbox.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204371
Fixes: 69d2480456d1 ("btrfs: use copy_page for copying pages instead of memcpy")
Cc: stable@vger.kernel.org # 4.19+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_free_space_bitmap ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:14 +02:00
Nikolay Borisov
762bf09893 btrfs: improve error handling in run_delalloc_nocow
Correctly handle failure cases when adding an ordered extents in case
of REGULAR or PREALLOC extents. Remove the BUG_ON.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:14 +02:00
Nikolay Borisov
e8e210075a btrfs: comment and minor simplifications in run_delalloc_nocow
Add a comment explaining why we keep the BUG also use the already read
and cached value of extent ram bytes stored in 'ram_bytes'.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Nikolay Borisov
922f051824 btrfs: streamline code in run_delalloc_nocow in case of inline extents
The extent range check right after the "out_check" label is redundant,
because the only way it can trigger is if we have an inline extent. In
this case it makes more sense to actually move it in the branch
explictly dealing with inlines extents.

What's more, the nested 'if (nocow)' can never be true because for
inline extents we always do COW and there is no chance 'nocow' can be
true, just remove that check.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Nikolay Borisov
bb55f6260b btrfs: simplify extent type checks in run_delalloc_nocow
There is no point in checking the type of the extent again just to set
the 'type' variable, when this check has already been performed before.
Instead, extend the original if branch with an 'else' clause. This
allows to remove one local variable and make it obvious how the code
flow differs for prealloc/regular extents.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Nikolay Borisov
a6bd9cd155 btrfs: improve comments around nocow path
run_delalloc_nocow contains numerous, somewhat subtle, checks when
figuring out whether a particular extent should be CoW'ed or not. This
patch explicitly states the assumptions those checks verify. As a
result also document 2 of the more subtle checks in check_committed_ref
as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Nikolay Borisov
3e024846d2 btrfs: refactor variable scope in run_delalloc_nocow
Of the 22 (!!!) local variables declared in this function only 9 have
function-wide context. Of the remaining 13, 12 are needed in the main
while loop of the function and 1 is needed in a tiny if branch, only in
case we have prealloc extent. This commit reduces the lifespan of every
variable to its bare minimum. It also renames the 'nolock' boolean to
freespace_inode to clearly indicate its purpose.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Josef Bacik
2bd36e7b4f btrfs: rename the btrfs_calc_*_metadata_size helpers
btrfs_calc_trunc_metadata_size differs from trans_metadata_size in that
it doesn't take into account any splitting at the levels, because
truncate will never split nodes.  However truncate _and_ changing will
never split nodes, so rename btrfs_calc_trunc_metadata_size to
btrfs_calc_metadata_size.  Also btrfs_calc_trans_metadata_size is purely
for inserting items, so rename this to btrfs_calc_insert_metadata_size.
Making these clearer will help when I start using them differently in
upcoming patches.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Josef Bacik
d3984c9041 btrfs: introduce an evict flushing state
We have this weird space flushing loop inside inode.c for evict where
we'll do the normal LIMIT flush, and then commit the transaction and
hope we get our space.  This is super janky, and in fact there's really
nothing stopping us from using FLUSH_ALL except that we run delayed
iputs, which means we could deadlock.  So introduce a new flush state
for eviction that does the normal priority flushing with all of the
states that are safe for eviction.

The nice side-effect of this is that we'll try harder for evictions.
Previously if (for example generic/269) you had a bunch of other
operations happening on the fs you could race with those reservations
when committing the transaction, and eventually miss getting a
reservation for the evict.  With this code we'll have our ticket in
place through the transaction commit, so any pinned bytes will go to our
pending evictions first.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:11 +02:00
Josef Bacik
aac0023c21 btrfs: move basic block_group definitions to their own header
This is prep work for moving all of the block group cache code into its
own file.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:03 +02:00
Jia-Ju Bai
982f1f5d16 btrfs: Add an assertion to warn incorrect case in insert_inline_extent()
In insert_inline_extent(), the case that checks compressed_size > 0
and compressed_pages = NULL cannot occur, otherwise a null-pointer
dereference may occur on line 215:

     cpage = compressed_pages[i];

To catch this incorrect case, an assertion is added.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
Nikolay Borisov
330a582790 btrfs: Remove leftover of in-band dedupe
It's unlikely in-band dedupe is going to land so just remove any
leftovers - dedupe.h header as well as the 'dedupe' parameter to
btrfs_set_extent_delalloc.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
74e9194afb btrfs: Remove delalloc_end argument from extent_clear_unlock_delalloc
It was added in ba8b04c1d4ad ("btrfs: extend btrfs_set_extent_delalloc
and its friends to support in-band dedupe and subpage size patchset") as
a preparatory patch for in-band and subapge block size patchsets.
However neither of those are likely to be merged anytime soon and the
code has diverged significantly from the last public post of either
of those patchsets.

It's unlikely either of the patchests are going to use those preparatory
steps so just remove the variables. Since cow_file_range also took
delalloc_end to pass it to extent_clear_unlock_delalloc remove the
parameter from that function as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
cecc8d9038 btrfs: Move free_pages_out label in inline extent handling branch in compress_file_range
This label is only executed if compress_file_range fails to create an
inline extent. So move its code in the semantically related inline
extent handling branch. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
ac3e99334d btrfs: Return number of compressed extents directly in compress_file_range
compress_file_range returns a void, yet uses a function parameter as a
return value. Make that more idiomatic by simply returning the number
of compressed extents directly. Also track such extents in more aptly
named variables. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00