IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When memory.reclaim was introduced, it became the first case where
cgroup_reclaim() is true for the root cgroup. Johannes concluded [1] that
for most cases this is okay, except for one case. Historically, kswapd
would throttle reclaim on a node if a lot of pages marked for reclaim are
under writeback (aka the node is congested). This occurred by setting
LRUVEC_CONGESTED bit in lruvec->flags. The bit would be cleared when the
node is balanced.
Similarly, cgroup reclaim would set the same bit when an lruvec is
congested, and clear it on the way out of reclaim (to throttle local
reclaimers).
Before the introduction of memory.reclaim, the root memcg was the only
target of kswapd reclaim, and non-root memcgs were the only targets of
cgroup reclaim, so they would never interfere. Using the same bit for
both was fine. After memory.reclaim, it is possible for cgroup reclaim on
the root cgroup to clear the bit set by kswapd. This would result in
reclaim on the node to be unthrottled before the node is balanced.
Fix this by introducing separate bits for cgroup-level and node-level
congestion. kswapd can unthrottle an lruvec that is marked as congested
by cgroup reclaim (as the entire node should no longer be congested), but
not vice versa (to prevent premature unthrottling before the entire node
is balanced).
[1]https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/
Link: https://lkml.kernel.org/r/20230621023101.432780-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Closes: https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Evidently, global_reclaim() can be a confusing name. Especially that it
used to exist before with a subtly different definition (removed by commit
b5ead35e7e1d ("mm: vmscan: naming fixes: global_reclaim() and
sane_reclaim()"). It can be interpreted as non-cgroup reclaim, even
though it returns true for cgroup reclaim on the root memcg (through
memory.reclaim).
Rename it to root_reclaim() in an attempt to make it less ambiguous, and
add documentation to it as well as cgroup_reclaim.
Link: https://lkml.kernel.org/r/20230621023053.432374-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Closes: https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MGLRU's walk_pte_range() use the safer pte_offset_map_nolock(), rather
than pte_lockptr(), to get the ptl for its trylock. Just return false and
move on to next extent if it fails, like when the trylock fails. Remove
the VM_WARN_ON_ONCE(pmd_leaf) since that will happen, rarely.
Link: https://lkml.kernel.org/r/51ece73e-7398-2e4a-2384-56708c87844f@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add __meminit to kswapd_run() and kswapd_stop() to ensure they're default
to __init when memory hotplug is not enabled.
Link: https://lkml.kernel.org/r/20230606121813.242163-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit f95bdb700bc6bb74e1199b1f5f90c613e152cfa7.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be
careful to not frequently check for SRCU read-side critical section exits.
Therefore, even if no one is currently in the SRCU read-side critical
section, synchronize_srcu() cannot return quickly. That's why
unregister_shrinker() has become slower.
After discussion, we will try to use the refcount+RCU method [2] proposed
by Dave Chinner to continue to re-implement the lockless slab shrink. So
revert the shrinker_srcu related changes first.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-8-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit caa05325c9126c77ebf114edce51536a0d0a9a08.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be
careful to not frequently check for SRCU read-side critical section exits.
Therefore, even if no one is currently in the SRCU read-side critical
section, synchronize_srcu() cannot return quickly. That's why
unregister_shrinker() has become slower.
After discussion, we will try to use the refcount+RCU method [2] proposed
by Dave Chinner to continue to re-implement the lockless slab shrink. So
revert the shrinker_srcu related changes first.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-7-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit 475733dda5aedba9e086379aafe6b5ffd53e8f5e.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be
careful to not frequently check for SRCU read-side critical section exits.
Therefore, even if no one is currently in the SRCU read-side critical
section, synchronize_srcu() cannot return quickly. That's why
unregister_shrinker() has become slower.
We will try to use the refcount+RCU method [2] proposed by Dave Chinner to
continue to re-implement the lockless slab shrink. So revert the
shrinker_srcu related changes first.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-6-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit b3cabea3c9153fd42fe5cb851ac58b51ea2b32b8.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be careful
to not frequently check for SRCU read-side critical section exits. Therefore,
even if no one is currently in the SRCU read-side critical section,
synchronize_srcu() cannot return quickly. That's why unregister_shrinker()
has become slower.
We will try to use the refcount+RCU method [2] proposed by Dave Chinner
to continue to re-implement the lockless slab shrink. Because there will
be other readers after reverting the shrinker_srcu related changes, so
it is better to restore to hold read lock to reparent shrinker nr_deferred.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-4-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit 1643db98d9b314e0a592d152603094fbf7ab906e.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be
careful to not frequently check for SRCU read-side critical section exits.
Therefore, even if no one is currently in the SRCU read-side critical
section, synchronize_srcu() cannot return quickly. That's why
unregister_shrinker() has become slower.
We will try to use the refcount+RCU method [2] proposed by Dave Chinner to
continue to re-implement the lockless slab shrink. So we still need
shrinker_rwsem in synchronize_shrinkers() after reverting the
shrinker_srcu related changes.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-3-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "revert shrinker_srcu related changes".
This patch (of 7):
This reverts commit cf2e309ebca7bb0916771839f9b580b06c778530.
Kernel test robot reports -88.8% regression in stress-ng.ramfs.ops_per_sec
test case [1], which is caused by commit f95bdb700bc6 ("mm: vmscan: make
global slab shrink lockless"). The root cause is that SRCU has to be
careful to not frequently check for SRCU read-side critical section exits.
Therefore, even if no one is currently in the SRCU read-side critical
section, synchronize_srcu() cannot return quickly. That's why
unregister_shrinker() has become slower.
After discussion, we will try to use the refcount+RCU method [2] proposed
by Dave Chinner to continue to re-implement the lockless slab shrink. So
revert the shrinker_mutex back to shrinker_rwsem first.
[1]. https://lore.kernel.org/lkml/202305230837.db2c233f-yujie.liu@intel.com/
[2]. https://lore.kernel.org/lkml/ZIJhou1d55d4H1s0@dread.disaster.area/
Link: https://lkml.kernel.org/r/20230609081518.3039120-1-qi.zheng@linux.dev
Link: https://lkml.kernel.org/r/20230609081518.3039120-2-qi.zheng@linux.dev
Reported-by: kernel test robot <yujie.liu@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202305230837.db2c233f-yujie.liu@intel.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A customer provided evidence indicating that a process
was stalled in direct reclaim:
- The process was trapped in throttle_direct_reclaim().
The function wait_event_killable() was called to wait condition
allow_direct_reclaim(pgdat) for current node to be true.
The allow_direct_reclaim(pgdat) examined the number of free pages
on the node by zone_page_state() which just returns value in
zone->vm_stat[NR_FREE_PAGES].
- On node #1, zone->vm_stat[NR_FREE_PAGES] was 0.
However, the freelist on this node was not empty.
- This inconsistent of vmstat value was caused by percpu vmstat on
nohz_full cpus. Every increment/decrement of vmstat is performed
on percpu vmstat counter at first, then pooled diffs are cumulated
to the zone's vmstat counter in timely manner. However, on nohz_full
cpus (in case of this customer's system, 48 of 52 cpus) these pooled
diffs were not cumulated once the cpu had no event on it so that
the cpu started sleeping infinitely.
I checked percpu vmstat and found there were total 69 counts not
cumulated to the zone's vmstat counter yet.
- In this situation, kswapd did not help the trapped process.
In pgdat_balanced(), zone_wakermark_ok_safe() examined the number
of free pages on the node by zone_page_state_snapshot() which
checks pending counts on percpu vmstat.
Therefore kswapd could know there were 69 free pages correctly.
Since zone->_watermark = {8, 20, 32}, kswapd did not work because
69 was greater than 32 as high watermark.
Change allow_direct_reclaim to use zone_page_state_snapshot, which
allows a more precise version of the vmstat counters to be used.
allow_direct_reclaim will only be called from try_to_free_pages,
which is not a hot path.
Testing: Due to difficulties accessing the system, it has not been
possible for the reproducer to test the patch (however its
clear from available data and analysis that it should fix it).
Link: https://lkml.kernel.org/r/20230530145335.677325196@redhat.com
Reviewed-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Aaron Tomlin <atomlin@atomlin.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
On Android app cycle workloads, MGLRU showed a significant reduction in
workingset refaults although pgpgin/pswpin remained relatively unchanged.
This indicated MGLRU may be undercounting workingset refaults.
This has impact on userspace programs, like Android's LMKD, that monitor
workingset refault statistics to detect thrashing.
It was found that refaults were only accounted if the MGLRU shadow entry
was for a recently evicted folio. However, recently evicted folios should
be accounted as workingset activation, and refaults should be accounted
regardless of recency.
Fix MGLRU's workingset refault and activation accounting to more closely
match that of the conventional active/inactive LRU.
Link: https://lkml.kernel.org/r/20230523205922.3852731-1-kaleshsingh@google.com
Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add helpers to page table walking code:
- Clarifies intent via name "should_walk_mmu" and "should_clear_pmd_young"
- Avoids repeating same logic in two places
Link: https://lkml.kernel.org/r/20230522112058.2965866-3-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Reviewed-by: Yuanchu Xie <yuanchu@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
lru_gen_soft_reclaim() gets the lruvec from the memcg and node ID to keep a
cleaner interface on the caller side.
Link: https://lkml.kernel.org/r/20230522112058.2965866-2-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Reviewed-by: Yuanchu Xie <yuanchu@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since it only returns COMPACT_CONTINUE or COMPACT_SKIPPED now, a bool
return value simplifies the callsites.
Link: https://lkml.kernel.org/r/20230602151204.GD161817@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove from all paths not reachable via /proc/sys/vm/compact_memory.
Link: https://lkml.kernel.org/r/20230519123959.77335-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__compaction_suitable() is supposed to check for available migration
targets. However, it also checks whether the operation was requested via
/proc/sys/vm/compact_memory, and whether the original allocation request
can already succeed. These don't apply to all callsites.
Move the checks out to the callers, so that later patches can deal with
them one by one. No functional change intended.
[hannes@cmpxchg.org: fix comment, per Vlastimil]
Link: https://lkml.kernel.org/r/20230602144942.GC161817@cmpxchg.org
Link: https://lkml.kernel.org/r/20230519123959.77335-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Almost all of the callers & implementors of migrate_pages() were already
converted to use folios. compaction_alloc() & compaction_free() are
trivial to convert a part of this patch and not worth splitting out.
Link: https://lkml.kernel.org/r/20230513001101.276972-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use gfp_has_io_fs() instead of open-code.
Link: https://lkml.kernel.org/r/20230516063821.121844-12-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When something registers and unregisters many shrinkers, such as:
for x in $(seq 10000); do unshare -Ui true; done
Sometimes the following error is printed to the kernel log:
debugfs: Directory '...' with parent 'shrinker' already present!
This occurs since commit badc28d4924b ("mm: shrinkers: fix deadlock in
shrinker debugfs") / v6.2: Since the call to `debugfs_remove_recursive`
was moved outside the `shrinker_rwsem`/`shrinker_mutex` lock, but the call
to `ida_free` stayed inside, a newly registered shrinker can be
re-assigned that ID and attempt to create the debugfs directory before the
directory from the previous shrinker has been removed.
The locking changes in commit f95bdb700bc6 ("mm: vmscan: make global slab
shrink lockless") made the race condition more likely, though it existed
before then.
Commit badc28d4924b ("mm: shrinkers: fix deadlock in shrinker debugfs")
could be reverted since the issue is addressed should no longer occur
since the count and scan operations are lockless since commit 20cd1892fcc3
("mm: shrinkers: make count and scan in shrinker debugfs lockless").
However, since this is a contended lock, prefer instead moving `ida_free`
outside the lock to avoid the race.
Link: https://lkml.kernel.org/r/20230503013232.299211-1-joanbrugueram@gmail.com
Fixes: badc28d4924b ("mm: shrinkers: fix deadlock in shrinker debugfs")
Signed-off-by: Joan Bruguera Micó <joanbrugueram@gmail.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If the page is pinned, there's no point in trying to reclaim it.
Furthermore if the page is from the page cache we don't want to reclaim
fs-private data from the page because the pinning process may be writing
to the page at any time and reclaiming fs private info on a dirty page can
upset the filesystem (see link below).
Link: https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
Link: https://lkml.kernel.org/r/20230428124140.30166-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
Android 14 and later default to MGLRU [1] and field telemetry showed
occasional long tail latency (>100ms) in the reclaim path.
Tracing revealed priority inversion in the reclaim path. In
try_to_inc_max_seq(), when high priority tasks were blocked on
wait_event_killable(), the preemption of the low priority task to call
wake_up_all() caused those high priority tasks to wait longer than
necessary. In general, this problem is not different from others of its
kind, e.g., one caused by mutex_lock(). However, it is specific to MGLRU
because it introduced the new wait queue lruvec->mm_state.wait.
The purpose of this new wait queue is to avoid the thundering herd
problem. If many direct reclaimers rush into try_to_inc_max_seq(), only
one can succeed, i.e., the one to wake up the rest, and the rest who
failed might cause premature OOM kills if they do not wait. So far there
is no evidence supporting this scenario, based on how often the wait has
been hit. And this begs the question how useful the wait queue is in
practice.
Based on Minchan's recommendation, which is in line with his commit
6d4675e60135 ("mm: don't be stuck to rmap lock on reclaim path") and the
rest of the MGLRU code which also uses trylock when possible, remove the
wait queue.
[1] https://android-review.googlesource.com/q/I7ed7fbfd6ef9ce10053347528125dd98c39e50bf
Link: https://lkml.kernel.org/r/20230413214326.2147568-1-kaleshsingh@google.com
Fixes: bd74fdaea146 ("mm: multi-gen LRU: support page table walks")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Reported-by: Wei Wang <wvw@google.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move set_task_reclaim_state() near flush_reclaim_state() so that all
helpers manipulating reclaim_state are in close proximity.
Link: https://lkml.kernel.org/r/20230413104034.1086717-3-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Ignore non-LRU-based reclaim in memcg reclaim", v6.
Upon running some proactive reclaim tests using memory.reclaim, we noticed
some tests flaking where writing to memory.reclaim would be successful
even though we did not reclaim the requested amount fully Looking further
into it, I discovered that *sometimes* we overestimate the number of
reclaimed pages in memcg reclaim.
Reclaimed pages through other means than LRU-based reclaim are tracked
through reclaim_state in struct scan_control, which is stashed in current
task_struct. These pages are added to the number of reclaimed pages
through LRUs. For memcg reclaim, these pages generally cannot be linked
to the memcg under reclaim and can cause an overestimated count of
reclaimed pages. This short series tries to address that.
Patch 1 ignores pages reclaimed outside of LRU reclaim in memcg reclaim.
The pages are uncharged anyway, so even if we end up under-reporting
reclaimed pages we will still succeed in making progress during charging.
Patches 2-3 are just refactoring. Patch 2 moves set_reclaim_state()
helper next to flush_reclaim_state(). Patch 3 adds a helper that wraps
updating current->reclaim_state, and renames reclaim_state->reclaimed_slab
to reclaim_state->reclaimed.
This patch (of 3):
We keep track of different types of reclaimed pages through
reclaim_state->reclaimed_slab, and we add them to the reported number of
reclaimed pages. For non-memcg reclaim, this makes sense. For memcg
reclaim, we have no clue if those pages are charged to the memcg under
reclaim.
Slab pages are shared by different memcgs, so a freed slab page may have
only been partially charged to the memcg under reclaim. The same goes for
clean file pages from pruned inodes (on highmem systems) or xfs buffer
pages, there is no simple way to currently link them to the memcg under
reclaim.
Stop reporting those freed pages as reclaimed pages during memcg reclaim.
This should make the return value of writing to memory.reclaim, and may
help reduce unnecessary reclaim retries during memcg charging. Writing to
memory.reclaim on the root memcg is considered as cgroup_reclaim(), but
for this case we want to include any freed pages, so use the
global_reclaim() check instead of !cgroup_reclaim().
Generally, this should make the return value of
try_to_free_mem_cgroup_pages() more accurate. In some limited cases (e.g.
freed a slab page that was mostly charged to the memcg under reclaim),
the return value of try_to_free_mem_cgroup_pages() can be underestimated,
but this should be fine. The freed pages will be uncharged anyway, and we
can charge the memcg the next time around as we usually do memcg reclaim
in a retry loop.
Link: https://lkml.kernel.org/r/20230413104034.1086717-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20230413104034.1086717-2-yosryahmed@google.com
Fixes: f2fe7b09a52b ("mm: memcg/slab: charge individual slab objects
instead of pages")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The difference between sc->nr_reclaimed and nr_reclaimed is computed three
times. Introduce a new variable to record the value, so it only needs to
be computed once.
Link: https://lkml.kernel.org/r/20230411061757.12041-1-haifeng.xu@shopee.com
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Memory reclaim is a sleepable context. Flushing is an expensive operaiton
that scales with the number of cpus and the number of cgroups in the
system, so avoid doing it atomically unnecessarily. This can slow down
reclaim code if flushing stats is taking too long, but there is already
multiple cond_resched()'s in reclaim code.
Link: https://lkml.kernel.org/r/20230330191801.1967435-8-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, all contexts that flush memcg stats do so with sleeping not
allowed. Some of these contexts are perfectly safe to sleep in, such as
reading cgroup files from userspace or the background periodic flusher.
Flushing is an expensive operation that scales with the number of cpus and
the number of cgroups in the system, so avoid doing it atomically where
possible.
Refactor the code to make mem_cgroup_flush_stats() non-atomic (aka
sleepable), and provide a separate atomic version. The atomic version is
used in reclaim, refault, writeback, and in mem_cgroup_usage(). All other
code paths are left to use the non-atomic version. This includes
callbacks for userspace reads and the periodic flusher.
Since refault is the only caller of mem_cgroup_flush_stats_ratelimited(),
change it to mem_cgroup_flush_stats_atomic_ratelimited(). Reclaim and
refault code paths are modified to do non-atomic flushing in separate
later patches -- so it will eventually be changed back to
mem_cgroup_flush_stats_ratelimited().
Link: https://lkml.kernel.org/r/20230330191801.1967435-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now there are no readers of shrinker_rwsem, so we can simply replace it
with mutex lock.
Link: https://lkml.kernel.org/r/20230313112819.38938-9-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, the synchronize_shrinkers() is only used by TTM pool. It only
requires that no shrinkers run in parallel, and doesn't care about
registering and unregistering of shrinkers.
Since slab shrink is protected by SRCU, synchronize_srcu() is sufficient
to ensure that no shrinker is running in parallel. So the shrinker_rwsem
in synchronize_shrinkers() is no longer needed, just remove it.
Link: https://lkml.kernel.org/r/20230313112819.38938-8-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For now, reparent_shrinker_deferred() is the only holder of read lock of
shrinker_rwsem. And it already holds the global cgroup_mutex, so it will
not be called in parallel.
Therefore, in order to convert shrinker_rwsem to shrinker_mutex later,
here we change to hold the write lock of shrinker_rwsem to reparent.
Link: https://lkml.kernel.org/r/20230313112819.38938-7-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After we make slab shrink lockless with SRCU, the longest sleep
unregister_shrinker() will be a sleep waiting for all do_shrink_slab()
calls.
To avoid long unbreakable action in the unregister_shrinker(), add
shrinker_srcu_generation to restore a check similar to the
rwsem_is_contendent() check that we had before.
And for memcg slab shrink, we unlock SRCU and continue iterations from the
next shrinker id.
Link: https://lkml.kernel.org/r/20230313112819.38938-5-zhengqi.arch@bytedance.com
Signed-off-by: Kirill Tkhai <tkhai@ya.ru>
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Like global slab shrink, this commit also uses SRCU to make memcg slab
shrink lockless.
We can reproduce the down_read_trylock() hotspot through the
following script:
```
DIR="/root/shrinker/memcg/mnt"
do_create()
{
mkdir -p /sys/fs/cgroup/memory/test
mkdir -p /sys/fs/cgroup/perf_event/test
echo 4G > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
for i in `seq 0 $1`;
do
mkdir -p /sys/fs/cgroup/memory/test/$i;
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
mkdir -p $DIR/$i;
done
}
do_mount()
{
for i in `seq $1 $2`;
do
mount -t tmpfs $i $DIR/$i;
done
}
do_touch()
{
for i in `seq $1 $2`;
do
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
dd if=/dev/zero of=$DIR/$i/file$i bs=1M count=1 &
done
}
case "$1" in
touch)
do_touch $2 $3
;;
test)
do_create 4000
do_mount 0 4000
do_touch 0 3000
;;
*)
exit 1
;;
esac
```
Save the above script, then run test and touch commands.
Then we can use the following perf command to view hotspots:
perf top -U -F 999
1) Before applying this patchset:
32.31% [kernel] [k] down_read_trylock
19.40% [kernel] [k] pv_native_safe_halt
16.24% [kernel] [k] up_read
15.70% [kernel] [k] shrink_slab
4.69% [kernel] [k] _find_next_bit
2.62% [kernel] [k] shrink_node
1.78% [kernel] [k] shrink_lruvec
0.76% [kernel] [k] do_shrink_slab
2) After applying this patchset:
27.83% [kernel] [k] _find_next_bit
16.97% [kernel] [k] shrink_slab
15.82% [kernel] [k] pv_native_safe_halt
9.58% [kernel] [k] shrink_node
8.31% [kernel] [k] shrink_lruvec
5.64% [kernel] [k] do_shrink_slab
3.88% [kernel] [k] mem_cgroup_iter
At the same time, we use the following perf command to capture
IPC information:
perf stat -e cycles,instructions -G test -a --repeat 5 -- sleep 10
1) Before applying this patchset:
Performance counter stats for 'system wide' (5 runs):
454187219766 cycles test ( +- 1.84% )
78896433101 instructions test # 0.17 insn per cycle ( +- 0.44% )
10.0020430 +- 0.0000366 seconds time elapsed ( +- 0.00% )
2) After applying this patchset:
Performance counter stats for 'system wide' (5 runs):
841954709443 cycles test ( +- 15.80% ) (98.69%)
527258677936 instructions test # 0.63 insn per cycle ( +- 15.11% ) (98.68%)
10.01064 +- 0.00831 seconds time elapsed ( +- 0.08% )
We can see that IPC drops very seriously when calling
down_read_trylock() at high frequency. After using SRCU,
the IPC is at a normal level.
Link: https://lkml.kernel.org/r/20230313112819.38938-4-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Vlastimil Babka <Vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The shrinker_rwsem is a global read-write lock in shrinkers subsystem,
which protects most operations such as slab shrink, registration and
unregistration of shrinkers, etc. This can easily cause problems in the
following cases.
1) When the memory pressure is high and there are many
filesystems mounted or unmounted at the same time,
slab shrink will be affected (down_read_trylock()
failed).
Such as the real workload mentioned by Kirill Tkhai:
```
One of the real workloads from my experience is start
of an overcommitted node containing many starting
containers after node crash (or many resuming containers
after reboot for kernel update). In these cases memory
pressure is huge, and the node goes round in long reclaim.
```
2) If a shrinker is blocked (such as the case mentioned
in [1]) and a writer comes in (such as mount a fs),
then this writer will be blocked and cause all
subsequent shrinker-related operations to be blocked.
Even if there is no competitor when shrinking slab, there may still be a
problem. If we have a long shrinker list and we do not reclaim enough
memory with each shrinker, then the down_read_trylock() may be called with
high frequency. Because of the poor multicore scalability of atomic
operations, this can lead to a significant drop in IPC (instructions per
cycle).
So many times in history ([2],[3],[4],[5]), some people wanted to replace
shrinker_rwsem trylock with SRCU in the slab shrink, but all these patches
were abandoned because SRCU was not unconditionally enabled.
But now, since commit 1cd0bd06093c ("rcu: Remove CONFIG_SRCU"), the SRCU
is unconditionally enabled. So it's time to use SRCU to protect readers
who previously held shrinker_rwsem.
This commit uses SRCU to make global slab shrink lockless,
the memcg slab shrink is handled in the subsequent patch.
[1]. https://lore.kernel.org/lkml/20191129214541.3110-1-ptikhomirov@virtuozzo.com/
[2]. https://lore.kernel.org/all/1437080113.3596.2.camel@stgolabs.net/
[3]. https://lore.kernel.org/lkml/1510609063-3327-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp/
[4]. https://lore.kernel.org/lkml/153365347929.19074.12509495712735843805.stgit@localhost.localdomain/
[5]. https://lore.kernel.org/lkml/20210927074823.5825-1-sultan@kerneltoast.com/
Link: https://lkml.kernel.org/r/20230313112819.38938-3-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "make slab shrink lockless", v5.
This patch series aims to make slab shrink lockless.
1. Background
=============
On our servers, we often find the following system cpu hotspots:
52.22% [kernel] [k] down_read_trylock
19.60% [kernel] [k] up_read
8.86% [kernel] [k] shrink_slab
2.44% [kernel] [k] idr_find
1.25% [kernel] [k] count_shadow_nodes
1.18% [kernel] [k] shrink lruvec
0.71% [kernel] [k] mem_cgroup_iter
0.71% [kernel] [k] shrink_node
0.55% [kernel] [k] find_next_bit
And we used bpftrace to capture its calltrace as follows:
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
do_try_to_free_pages+232
try_to_free_pages+243
_alloc_pages_slowpath+771
_alloc_pages_nodemask+702
pagecache_get_page+255
filemap_fault+1361
ext4_filemap_fault+44
__do_fault+76
handle_mm_fault+3543
do_user_addr_fault+442
do_page_fault+48
page_fault+62
]: 1161690
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
balance_pgdat+690
kswapd+389
kthread+246
ret_from_fork+31
]: 8424884
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
do_try_to_free_pages+232
try_to_free_pages+243
__alloc_pages_slowpath+771
__alloc_pages_nodemask+702
__do_page_cache_readahead+244
filemap_fault+1674
ext4_filemap_fault+44
__do_fault+76
handle_mm_fault+3543
do_user_addr_fault+442
do_page_fault+48
page_fault+62
]: 20917631
We can see that down_read_trylock() of shrinker_rwsem is being called with
high frequency at that time. Because of the poor multicore scalability of
atomic operations, this can lead to a significant drop in IPC
(instructions per cycle).
And more, the shrinker_rwsem is a global read-write lock in shrinkers
subsystem, which protects most operations such as slab shrink,
registration and unregistration of shrinkers, etc. This can easily cause
problems in the following cases.
1) When the memory pressure is high and there are many filesystems
mounted or unmounted at the same time, slab shrink will be affected
(down_read_trylock() failed).
Such as the real workload mentioned by Kirill Tkhai:
```
One of the real workloads from my experience is start of an
overcommitted node containing many starting containers after node crash
(or many resuming containers after reboot for kernel update). In these
cases memory pressure is huge, and the node goes round in long reclaim.
```
2) If a shrinker is blocked (such as the case mentioned in [1]) and a
writer comes in (such as mount a fs), then this writer will be blocked
and cause all subsequent shrinker-related operations to be blocked.
[1]. https://lore.kernel.org/lkml/20191129214541.3110-1-ptikhomirov@virtuozzo.com/
All the above cases can be solved by replacing the shrinker_rwsem trylocks
with SRCU.
2. Survey
=========
Before doing the code implementation, I found that there were many similar
submissions in the community:
a. Davidlohr Bueso submitted a patch in 2015.
Subject: [PATCH -next v2] mm: srcu-ify shrinkers
Link: https://lore.kernel.org/all/1437080113.3596.2.camel@stgolabs.net/
Result: It was finally merged into the linux-next branch,
but failed on arm allnoconfig (without CONFIG_SRCU)
b. Tetsuo Handa submitted a patchset in 2017.
Subject: [PATCH 1/2] mm,vmscan: Kill global shrinker lock.
Link: https://lore.kernel.org/lkml/1510609063-3327-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp/
Result: Finally chose to use the current simple way (break
when rwsem_is_contended()). And Christoph Hellwig suggested to
using SRCU, but SRCU was not unconditionally enabled at the
time.
c. Kirill Tkhai submitted a patchset in 2018.
Subject: [PATCH RFC 00/10] Introduce lockless shrink_slab()
Link: https://lore.kernel.org/lkml/153365347929.19074.12509495712735843805.stgit@localhost.localdomain/
Result: At that time, SRCU was not unconditionally enabled,
and there were some objections to enabling SRCU. Later,
because Kirill's focus was moved to other things, this patchset
was not continued to be updated.
d. Sultan Alsawaf submitted a patch in 2021.
Subject: [PATCH] mm: vmscan: Replace shrinker_rwsem trylocks with SRCU protection
Link: https://lore.kernel.org/lkml/20210927074823.5825-1-sultan@kerneltoast.com/
Result: Rejected because SRCU was not unconditionally enabled.
We can find that almost all these historical commits were abandoned
because SRCU was not unconditionally enabled. But now SRCU has been
unconditionally enable by Paul E. McKenney in 2023 [2], so it's time to
replace shrinker_rwsem trylocks with SRCU.
[2] https://lore.kernel.org/lkml/20230105003759.GA1769545@paulmck-ThinkPad-P17-Gen-1/
3. Reproduction and testing
===========================
We can reproduce the down_read_trylock() hotspot through the following script:
```
#!/bin/bash
DIR="/root/shrinker/memcg/mnt"
do_create()
{
mkdir -p /sys/fs/cgroup/memory/test
mkdir -p /sys/fs/cgroup/perf_event/test
echo 4G > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
for i in `seq 0 $1`;
do
mkdir -p /sys/fs/cgroup/memory/test/$i;
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
mkdir -p $DIR/$i;
done
}
do_mount()
{
for i in `seq $1 $2`;
do
mount -t tmpfs $i $DIR/$i;
done
}
do_touch()
{
for i in `seq $1 $2`;
do
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
dd if=/dev/zero of=$DIR/$i/file$i bs=1M count=1 &
done
}
case "$1" in
touch)
do_touch $2 $3
;;
test)
do_create 4000
do_mount 0 4000
do_touch 0 3000
;;
*)
exit 1
;;
esac
```
Save the above script, then run test and touch commands. Then we can use
the following perf command to view hotspots:
perf top -U -F 999
1) Before applying this patchset:
32.31% [kernel] [k] down_read_trylock
19.40% [kernel] [k] pv_native_safe_halt
16.24% [kernel] [k] up_read
15.70% [kernel] [k] shrink_slab
4.69% [kernel] [k] _find_next_bit
2.62% [kernel] [k] shrink_node
1.78% [kernel] [k] shrink_lruvec
0.76% [kernel] [k] do_shrink_slab
2) After applying this patchset:
27.83% [kernel] [k] _find_next_bit
16.97% [kernel] [k] shrink_slab
15.82% [kernel] [k] pv_native_safe_halt
9.58% [kernel] [k] shrink_node
8.31% [kernel] [k] shrink_lruvec
5.64% [kernel] [k] do_shrink_slab
3.88% [kernel] [k] mem_cgroup_iter
At the same time, we use the following perf command to capture IPC
information:
perf stat -e cycles,instructions -G test -a --repeat 5 -- sleep 10
1) Before applying this patchset:
Performance counter stats for 'system wide' (5 runs):
454187219766 cycles test ( +- 1.84% )
78896433101 instructions test # 0.17 insn per cycle ( +- 0.44% )
10.0020430 +- 0.0000366 seconds time elapsed ( +- 0.00% )
2) After applying this patchset:
Performance counter stats for 'system wide' (5 runs):
841954709443 cycles test ( +- 15.80% ) (98.69%)
527258677936 instructions test # 0.63 insn per cycle ( +- 15.11% ) (98.68%)
10.01064 +- 0.00831 seconds time elapsed ( +- 0.08% )
We can see that IPC drops very seriously when calling down_read_trylock()
at high frequency. After using SRCU, the IPC is at a normal level.
This patch (of 8):
To prepare for the subsequent lockless memcg slab shrink, add a map_nr_max
field to struct shrinker_info to records its own real shrinker_nr_max.
Link: https://lkml.kernel.org/r/20230313112819.38938-1-zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/20230313112819.38938-2-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Suggested-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch improves the design doc. Specifically,
1. add a section for the per-memcg mm_struct list, and
2. add a section for the PID controller.
Link: https://lkml.kernel.org/r/20230214035445.1250139-2-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch cleans up the sysfs code. Specifically,
1. use sysfs_emit(),
2. use __ATTR_RW(), and
3. constify multi-gen LRU struct attribute_group.
Link: https://lkml.kernel.org/r/20230214035445.1250139-1-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds a new flag, PF_USER_WORKER, that's used for behavior common to
to both PF_IO_WORKER and users like vhost which will use a new helper
instead of create_io_thread because they require different behavior for
operations like signal handling.
The common behavior PF_USER_WORKER covers is the vm reclaim handling.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Patch series "Change the return value for page isolation functions", v3.
Now the page isolation functions did not return a boolean to indicate
success or not, instead it will return a negative error when failed
to isolate a page. So below code used in most places seem a boolean
success/failure thing, which can confuse people whether the isolation
is successful.
if (folio_isolate_lru(folio))
continue;
Moreover the page isolation functions only return 0 or -EBUSY, and
most users did not care about the negative error except for few users,
thus we can convert all page isolation functions to return a boolean
value, which can remove the confusion to make code more clear.
No functional changes intended in this patch series.
This patch (of 4):
Now the folio_isolate_lru() did not return a boolean value to indicate
isolation success or not, however below code checking the return value can
make people think that it was a boolean success/failure thing, which makes
people easy to make mistakes (see the fix patch[1]).
if (folio_isolate_lru(folio))
continue;
Thus it's better to check the negative error value expilictly returned by
folio_isolate_lru(), which makes code more clear per Linus's
suggestion[2]. Moreover Matthew suggested we can convert the isolation
functions to return a boolean[3], since most users did not care about the
negative error value, and can also remove the confusing of checking return
value.
So this patch converts the folio_isolate_lru() to return a boolean value,
which means return 'true' to indicate the folio isolation is successful,
and 'false' means a failure to isolation. Meanwhile changing all users'
logic of checking the isolation state.
No functional changes intended.
[1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u
[2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/
[3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/
Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently there are two kmem-related helper functions with a confusing
semantics: memcg_kmem_enabled() and mem_cgroup_kmem_disabled().
The problem is that an obvious expectation
memcg_kmem_enabled() == !mem_cgroup_kmem_disabled(),
can be false.
mem_cgroup_kmem_disabled() is similar to mem_cgroup_disabled(): it returns
true only if CONFIG_MEMCG_KMEM is not set or the kmem accounting is
disabled using a boot time kernel option "cgroup.memory=nokmem". It never
changes the value dynamically.
memcg_kmem_enabled() is different: it always returns false until the first
non-root memory cgroup will get online (assuming the kernel memory
accounting is enabled). It's goal is to improve the performance on
systems without the cgroupfs mounted/memory controller enabled or on the
systems with only the root memory cgroup.
To make things more obvious and avoid potential bugs, let's rename
memcg_kmem_enabled() to memcg_kmem_online().
Link: https://lkml.kernel.org/r/20230213192922.1146370-1-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Recall that the per-node memcg LRU has two generations and they alternate
when the last memcg (of a given node) is moved from one to the other.
Each generation is also sharded into multiple bins to improve scalability.
A reclaimer starts with a random bin (in the old generation) and, if it
fails, it will retry, i.e., to try the rest of the bins.
If a reclaimer fails with the last memcg, it should move this memcg to the
young generation first, which causes the generations to alternate, and
then retry. Otherwise, the retries will be futile because all other bins
are empty.
Link: https://lkml.kernel.org/r/20230213075322.1416966-1-yuzhao@google.com
Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The debugfs_remove_recursive() is invoked by unregister_shrinker(), which
is holding the write lock of shrinker_rwsem. It will waits for the
handler of debugfs file complete. The handler also needs to hold the read
lock of shrinker_rwsem to do something. So it may cause the following
deadlock:
CPU0 CPU1
debugfs_file_get()
shrinker_debugfs_count_show()/shrinker_debugfs_scan_write()
unregister_shrinker()
--> down_write(&shrinker_rwsem);
debugfs_remove_recursive()
// wait for (A)
--> wait_for_completion();
// wait for (B)
--> down_read_killable(&shrinker_rwsem)
debugfs_file_put() -- (A)
up_write() -- (B)
The down_read_killable() can be killed, so that the above deadlock can be
recovered. But it still requires an extra kill action, otherwise it will
block all subsequent shrinker-related operations, so it's better to fix
it.
[akpm@linux-foundation.org: fix CONFIG_SHRINKER_DEBUG=n stub]
Link: https://lkml.kernel.org/r/20230202105612.64641-1-zhengqi.arch@bytedance.com
Fixes: 5035ebc644ae ("mm: shrinkers: introduce debugfs interface for memory shrinkers")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>