IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
- PMU driver updates:
- Add AMD Last Branch Record Extension Version 2 (LbrExtV2)
feature support for Zen 4 processors.
- Extend the perf ABI to provide branch speculation information,
if available, and use this on CPUs that have it (eg. LbrExtV2).
- Improve Intel PEBS TSC timestamp handling & integration.
- Add Intel Raptor Lake S CPU support.
- Add 'perf mem' and 'perf c2c' memory profiling support on
AMD CPUs by utilizing IBS tagged load/store samples.
- Clean up & optimize various x86 PMU details.
- HW breakpoints:
- Big rework to optimize the code for systems with hundreds of CPUs and
thousands of breakpoints:
- Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem
per-CPU rwsem that is read-locked during most of the key operations.
- Improve the O(#cpus * #tasks) logic in toggle_bp_slot()
and fetch_bp_busy_slots().
- Apply micro-optimizations & cleanups.
- Misc cleanups & enhancements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/2pMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIMA/+J+MCEVTt9kwZeBtHoPX7iZ5gnq1+McoQ
f6ALX19AO/ZSuA7EBA3cS3Ny5eyGy3ofYUnRW+POezu9CpflLW/5N27R2qkZFrWC
A09B86WH676ZrmXt+oI05rpZ2y/NGw4gJxLLa4/bWF3g9xLfo21i+YGKwdOnNFpl
DEdCVHtjlMcOAU3+on6fOYuhXDcYd7PKGcCfLE7muOMOAtwyj0bUDBt7m+hneZgy
qbZHzDU2DZ5L/LXiMyuZj5rC7V4xUbfZZfXglG38YCW1WTieS3IjefaU2tREhu7I
rRkCK48ULDNNJR3dZK8IzXJRxusq1ICPG68I+nm/K37oZyTZWtfYZWehW/d/TnPa
tUiTwimabz7UUqaGq9ZptxwINcAigax0nl6dZ3EseeGhkDE6j71/3kqrkKPz4jth
+fCwHLOrI3c4Gq5qWgPvqcUlUneKf3DlOMtzPKYg7sMhla2zQmFpYCPzKfm77U/Z
BclGOH3FiwaK6MIjPJRUXTePXqnUseqCR8PCH/UPQUeBEVHFcMvqCaa15nALed8x
dFi76VywR9mahouuLNq6sUNePlvDd2B124PygNwegLlBfY9QmKONg9qRKOnQpuJ6
UprRJjLOOucZ/N/jn6+ShHkqmXsnY2MhfUoHUoMQ0QAI+n++e+2AuePo251kKWr8
QlqKxd9PMQU=
=LcGg
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
"PMU driver updates:
- Add AMD Last Branch Record Extension Version 2 (LbrExtV2) feature
support for Zen 4 processors.
- Extend the perf ABI to provide branch speculation information, if
available, and use this on CPUs that have it (eg. LbrExtV2).
- Improve Intel PEBS TSC timestamp handling & integration.
- Add Intel Raptor Lake S CPU support.
- Add 'perf mem' and 'perf c2c' memory profiling support on AMD CPUs
by utilizing IBS tagged load/store samples.
- Clean up & optimize various x86 PMU details.
HW breakpoints:
- Big rework to optimize the code for systems with hundreds of CPUs
and thousands of breakpoints:
- Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem
per-CPU rwsem that is read-locked during most of the key
operations.
- Improve the O(#cpus * #tasks) logic in toggle_bp_slot() and
fetch_bp_busy_slots().
- Apply micro-optimizations & cleanups.
- Misc cleanups & enhancements"
* tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
perf/hw_breakpoint: Annotate tsk->perf_event_mutex vs ctx->mutex
perf: Fix pmu_filter_match()
perf: Fix lockdep_assert_event_ctx()
perf/x86/amd/lbr: Adjust LBR regardless of filtering
perf/x86/utils: Fix uninitialized var in get_branch_type()
perf/uapi: Define PERF_MEM_SNOOPX_PEER in kernel header file
perf/x86/amd: Support PERF_SAMPLE_PHY_ADDR
perf/x86/amd: Support PERF_SAMPLE_ADDR
perf/x86/amd: Support PERF_SAMPLE_{WEIGHT|WEIGHT_STRUCT}
perf/x86/amd: Support PERF_SAMPLE_DATA_SRC
perf/x86/amd: Add IBS OP_DATA2 DataSrc bit definitions
perf/mem: Introduce PERF_MEM_LVLNUM_{EXTN_MEM|IO}
perf/x86/uncore: Add new Raptor Lake S support
perf/x86/cstate: Add new Raptor Lake S support
perf/x86/msr: Add new Raptor Lake S support
perf/x86: Add new Raptor Lake S support
bpf: Check flags for branch stack in bpf_read_branch_records helper
perf, hw_breakpoint: Fix use-after-free if perf_event_open() fails
perf: Use sample_flags for raw_data
perf: Use sample_flags for addr
...
The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC
(or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but
it disables the memory-mapped APIC interface in favor of one that uses
MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR.
The MMIO/xAPIC interface has some problems, most notably the APIC LEAK
[1]. This bug allows an attacker to use the APIC MMIO interface to
extract data from the SGX enclave.
Introduce support for a new feature that will allow the BIOS to lock
the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the
kernel tries to disable the APIC or revert to legacy APIC mode a GP
fault will occur.
Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle
the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by
preventing the kernel from trying to disable the x2APIC.
On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are
enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If
legacy APIC is required, then it SGX and TDX need to be disabled in the
BIOS.
[1]: https://aepicleak.com/aepicleak.pdf
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Link: https://lkml.kernel.org/r/20220816231943.1152579-1-daniel.sneddon@linux.intel.com
If AMD Last Branch Record Extension Version 2 (LbrExtV2) is detected,
enable it alongside LBR Freeze on PMI when an event requests branch stack
i.e. PERF_SAMPLE_BRANCH_STACK.
Each branch record is represented by a pair of registers, LBR From and LBR
To. The freeze feature prevents any updates to these registers once a PMC
overflows. The contents remain unchanged until the freeze bit is cleared by
the PMI handler.
The branch records are read and copied to sample data before unfreezing.
However, only valid entries are copied. There is no additional register to
denote which of the register pairs represent the top of the stack (TOS)
since internal register renaming always ensures that the first pair (i.e.
index 0) is the one representing the most recent branch and so on.
The LBR registers are per-thread resources and are cleared explicitly
whenever a new task is scheduled in. There are no special implications on
the contents of these registers when transitioning to deep C-states.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/d3b8500a3627a0d4d0259b005891ee248f248d91.1660211399.git.sandipan.das@amd.com
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLqsGsACgkQEsHwGGHe
VUpXGg//ZEkxhf3Ri7X9PknAWNG6eIEqigKqWcdnOw+Oq/GMVb6q7JQsqowK7KBZ
AKcY5c/KkljTJNohditnfSOePyCG5nDTPgfkjzIawnaVdyJWMRCz/L4X2cv6ykDl
2l2EvQm4Ro8XAogYhE7GzDg/osaVfx93OkLCQj278VrEMWgM/dN2RZLpn+qiIkNt
DyFlQ7cr5UASh/svtKLko268oT4JwhQSbDHVFLMJ52VaLXX36yx4rValZHUKFdox
ZDyj+kiszFHYGsI94KAD0dYx76p6mHnwRc4y/HkVcO8vTacQ2b9yFYBGTiQatITf
0Nk1RIm9m3rzoJ82r/U0xSIDwbIhZlOVNm2QtCPkXqJZZFhopYsZUnq2TXhSWk4x
GQg/2dDY6gb/5MSdyLJmvrTUtzResVyb/hYL6SevOsIRnkwe35P6vDDyp15F3TYK
YvidZSfEyjtdLISBknqYRQD964dgNZu9ewrj+WuJNJr+A2fUvBzUebXjxHREsugN
jWp5GyuagEKTtneVCvjwnii+ptCm6yfzgZYLbHmmV+zhinyE9H1xiwVDvo5T7DDS
ZJCBgoioqMhp5qR59pkWz/S5SNGui2rzEHbAh4grANy8R/X5ASRv7UHT9uAo6ve1
xpw6qnE37CLzuLhj8IOdrnzWwLiq7qZ/lYN7m+mCMVlwRWobbOo=
=a8em
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 eIBRS fixes from Borislav Petkov:
"More from the CPU vulnerability nightmares front:
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed"
* tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add LFENCE to RSB fill sequence
x86/speculation: Add RSB VM Exit protections
* Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
* Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
* Disagregation of the vcpu flags in separate sets to better track
their use model.
* A fix for the GICv2-on-v3 selftest
* A small set of cosmetic fixes
RISC-V:
* Track ISA extensions used by Guest using bitmap
* Added system instruction emulation framework
* Added CSR emulation framework
* Added gfp_custom flag in struct kvm_mmu_memory_cache
* Added G-stage ioremap() and iounmap() functions
* Added support for Svpbmt inside Guest
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
x86:
* Permit guests to ignore single-bit ECC errors
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Use try_cmpxchg64 instead of cmpxchg64
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* Allow NX huge page mitigation to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
* Miscellaneous cleanups:
** MCE MSR emulation
** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
** PIO emulation
** Reorganize rmap API, mostly around rmap destruction
** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
** new selftests API for CPUID
Generic:
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
=PM8o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
Intel Performance Hybrid processors have a 2nd MSR
describing the turbo limits enforced on the Ecores.
Note, TRL and Secondary-TRL are usually R/O information,
but on overclock-capable parts, they can be written.
Signed-off-by: Len Brown <len.brown@intel.com>
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken
bit for some speculation behaviour. It needs setting.
Note: very belatedly AMD released naming; it's now officially called
MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT
but shall remain the SPECTRAL CHICKEN.
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A new 64-bit control field "tertiary processor-based VM-execution
controls", is defined [1]. It's controlled by bit 17 of the primary
processor-based VM-execution controls.
Different from its brother VM-execution fields, this tertiary VM-
execution controls field is 64 bit. So it occupies 2 vmx_feature_leafs,
TERTIARY_CTLS_LOW and TERTIARY_CTLS_HIGH.
Its companion VMX capability reporting MSR,MSR_IA32_VMX_PROCBASED_CTLS3
(0x492), is also semantically different from its brothers, whose 64 bits
consist of all allow-1, rather than 32-bit allow-0 and 32-bit allow-1 [1][2].
Therefore, its init_vmx_capabilities() is a little different from others.
[1] ISE 6.2 "VMCS Changes"
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
[2] SDM Vol3. Appendix A.3
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153240.11549-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Update the Energy Model support code to allow the Energy Model to be
artificial, which means that the power values may not be on a uniform
scale with other devices providing power information, and update the
cpufreq_cooling and devfreq_cooling thermal drivers to support
artificial Energy Models (Lukasz Luba).
- Make DTPM check the Energy Model type (Lukasz Luba).
- Fix policy counter decrementation in cpufreq if Energy Model is in
use (Pierre Gondois).
- Add CPU-based scaling support to passive devfreq governor (Saravana
Kannan, Chanwoo Choi).
- Update the rk3399_dmc devfreq driver (Brian Norris).
- Export dev_pm_ops instead of suspend() and resume() in the IIO
chemical scd30 driver (Jonathan Cameron).
- Add namespace variants of EXPORT[_GPL]_SIMPLE_DEV_PM_OPS and
PM-runtime counterparts (Jonathan Cameron).
- Move symbol exports in the IIO chemical scd30 driver into the
IIO_SCD30 namespace (Jonathan Cameron).
- Avoid device PM-runtime usage count underflows (Rafael Wysocki).
- Allow dynamic debug to control printing of PM messages (David
Cohen).
- Fix some kernel-doc comments in hibernation code (Yang Li, Haowen
Bai).
- Preserve ACPI-table override during hibernation (Amadeusz Sławiński).
- Improve support for suspend-to-RAM for PSCI OSI mode (Ulf Hansson).
- Make Intel RAPL power capping driver support the RaptorLake and
AlderLake N processors (Zhang Rui, Sumeet Pawnikar).
- Remove redundant store to value after multiply in the RAPL power
capping driver (Colin Ian King).
- Add AlderLake processor support to the intel_idle driver (Zhang Rui).
- Fix regression leading to no genpd governor in the PSCI cpuidle
driver and fix the riscv-sbi cpuidle driver to allow a genpd
governor to be used (Ulf Hansson).
- Fix cpufreq governor clean up code to avoid using kfree() directly
to free kobject-based items (Kevin Hao).
- Prepare cpufreq for powerpc's asm/prom.h cleanup (Christophe Leroy).
- Make intel_pstate notify frequency invariance code when no_turbo is
turned on and off (Chen Yu).
- Add Sapphire Rapids OOB mode support to intel_pstate (Srinivas
Pandruvada).
- Make cpufreq avoid unnecessary frequency updates due to mismatch
between hardware and the frequency table (Viresh Kumar).
- Make remove_cpu_dev_symlink() clear the real_cpus mask to simplify
code (Viresh Kumar).
- Rearrange cpufreq_offline() and cpufreq_remove_dev() to make the
calling convention for some driver callbacks consistent (Rafael
Wysocki).
- Avoid accessing half-initialized cpufreq policies from the show()
and store() sysfs functions (Schspa Shi).
- Rearrange cpufreq_offline() to make the calling convention for some
driver callbacks consistent (Schspa Shi).
- Update CPPC handling in cpufreq (Pierre Gondois).
- Extend dev_pm_domain_detach() doc (Krzysztof Kozlowski).
- Move genpd's time-accounting to ktime_get_mono_fast_ns() (Ulf
Hansson).
- Improve the way genpd deals with its governors (Ulf Hansson).
- Update the turbostat utility to version 2022.04.16 (Len Brown,
Dan Merillat, Sumeet Pawnikar, Zephaniah E. Loss-Cutler-Hull, Chen
Yu).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmKL3hsSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxW4oP/RzMh6dclWXs3J/gUCKTqRepq6cb80tq
Q2r9xRRHwy6ZH/PVddGDHmhQ7d3NAv13s4srA9kznZognF3hzuxnGau226ilDqHh
qxVSBRjWY9ijxRBvkcCaa6HZm4Chb91pUX0CLpdYSl9BTgIdk66HZYaMsKhHU/di
j7KKHPdKyyQkssWnMjGEyuaF+UebiEgISCF3+X0eb6c1m7GHXpgLJVxNy0pKkUdK
j+n6+ms12OlVLtg1eIl0J5824w/rkK3ZdqfEXJSq++mNMqSj/KCI3yWpzsLKp9AB
xxhox/tPgJVyON8Vtbb2IkWkiQUKeSrAGIUYXWmnwIZYLPSGD7BPzr82Cxr7S/ez
imMB+1Qd3SsOQ9EdI9rGYgNsEF2vOs1xjMehSdUdmTz148IzBOBt4YyQeb/mfXqH
nh9eVuFCzqH1lAayYt6iP1+V5gQn9as/+rR91k4k4A6OKXomuQUGORLeHfuKMfNH
eBZ72tdXqiq6z+ag3lY3pBAMSm11epCOa3VR6QNaC7hrlY3AZP+o3tIUL6W813b+
V3l1gWApGHZE1hiDM95dll/dIt9IZpTRd3dlqF/YnFW7fPDrz71EGvhrZpO7vdO0
/G6eJcCDjqJVcbCE8Y77I6/AXjpVQ7PRPeNx6aW7jPcQhpVIgcsF2BGjk9anjXDs
3yHJs9R/HMmA
=Hewm
-----END PGP SIGNATURE-----
Merge tag 'pm-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add support for 'artificial' Energy Models in which power
numbers for different entities may be in different scales, add support
for some new hardware, fix bugs and clean up code in multiple places.
Specifics:
- Update the Energy Model support code to allow the Energy Model to
be artificial, which means that the power values may not be on a
uniform scale with other devices providing power information, and
update the cpufreq_cooling and devfreq_cooling thermal drivers to
support artificial Energy Models (Lukasz Luba).
- Make DTPM check the Energy Model type (Lukasz Luba).
- Fix policy counter decrementation in cpufreq if Energy Model is in
use (Pierre Gondois).
- Add CPU-based scaling support to passive devfreq governor (Saravana
Kannan, Chanwoo Choi).
- Update the rk3399_dmc devfreq driver (Brian Norris).
- Export dev_pm_ops instead of suspend() and resume() in the IIO
chemical scd30 driver (Jonathan Cameron).
- Add namespace variants of EXPORT[_GPL]_SIMPLE_DEV_PM_OPS and
PM-runtime counterparts (Jonathan Cameron).
- Move symbol exports in the IIO chemical scd30 driver into the
IIO_SCD30 namespace (Jonathan Cameron).
- Avoid device PM-runtime usage count underflows (Rafael Wysocki).
- Allow dynamic debug to control printing of PM messages (David
Cohen).
- Fix some kernel-doc comments in hibernation code (Yang Li, Haowen
Bai).
- Preserve ACPI-table override during hibernation (Amadeusz
Sławiński).
- Improve support for suspend-to-RAM for PSCI OSI mode (Ulf Hansson).
- Make Intel RAPL power capping driver support the RaptorLake and
AlderLake N processors (Zhang Rui, Sumeet Pawnikar).
- Remove redundant store to value after multiply in the RAPL power
capping driver (Colin Ian King).
- Add AlderLake processor support to the intel_idle driver (Zhang
Rui).
- Fix regression leading to no genpd governor in the PSCI cpuidle
driver and fix the riscv-sbi cpuidle driver to allow a genpd
governor to be used (Ulf Hansson).
- Fix cpufreq governor clean up code to avoid using kfree() directly
to free kobject-based items (Kevin Hao).
- Prepare cpufreq for powerpc's asm/prom.h cleanup (Christophe
Leroy).
- Make intel_pstate notify frequency invariance code when no_turbo is
turned on and off (Chen Yu).
- Add Sapphire Rapids OOB mode support to intel_pstate (Srinivas
Pandruvada).
- Make cpufreq avoid unnecessary frequency updates due to mismatch
between hardware and the frequency table (Viresh Kumar).
- Make remove_cpu_dev_symlink() clear the real_cpus mask to simplify
code (Viresh Kumar).
- Rearrange cpufreq_offline() and cpufreq_remove_dev() to make the
calling convention for some driver callbacks consistent (Rafael
Wysocki).
- Avoid accessing half-initialized cpufreq policies from the show()
and store() sysfs functions (Schspa Shi).
- Rearrange cpufreq_offline() to make the calling convention for some
driver callbacks consistent (Schspa Shi).
- Update CPPC handling in cpufreq (Pierre Gondois).
- Extend dev_pm_domain_detach() doc (Krzysztof Kozlowski).
- Move genpd's time-accounting to ktime_get_mono_fast_ns() (Ulf
Hansson).
- Improve the way genpd deals with its governors (Ulf Hansson).
- Update the turbostat utility to version 2022.04.16 (Len Brown, Dan
Merillat, Sumeet Pawnikar, Zephaniah E. Loss-Cutler-Hull, Chen Yu)"
* tag 'pm-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (94 commits)
PM: domains: Trust domain-idle-states from DT to be correct by genpd
PM: domains: Measure power-on/off latencies in genpd based on a governor
PM: domains: Allocate governor data dynamically based on a genpd governor
PM: domains: Clean up some code in pm_genpd_init() and genpd_remove()
PM: domains: Fix initialization of genpd's next_wakeup
PM: domains: Fixup QoS latency measurements for IRQ safe devices in genpd
PM: domains: Measure suspend/resume latencies in genpd based on governor
PM: domains: Move the next_wakeup variable into the struct gpd_timing_data
PM: domains: Allocate gpd_timing_data dynamically based on governor
PM: domains: Skip another warning in irq_safe_dev_in_sleep_domain()
PM: domains: Rename irq_safe_dev_in_no_sleep_domain() in genpd
PM: domains: Don't check PM_QOS_FLAG_NO_POWER_OFF in genpd
PM: domains: Drop redundant code for genpd always-on governor
PM: domains: Add GENPD_FLAG_RPM_ALWAYS_ON for the always-on governor
powercap: intel_rapl: remove redundant store to value after multiply
cpufreq: CPPC: Enable dvfs_possible_from_any_cpu
cpufreq: CPPC: Enable fast_switch
ACPI: CPPC: Assume no transition latency if no PCCT
ACPI: bus: Set CPPC _OSC bits for all and when CPPC_LIB is supported
ACPI: CPPC: Check _OSC for flexible address space
...
Platform PMU changes:
=====================
- x86/intel:
- Add new Intel Alder Lake and Raptor Lake support
- x86/amd:
- AMD Zen4 IBS extensions support
- Add AMD PerfMonV2 support
- Add AMD Fam19h Branch Sampling support
Generic changes:
================
- signal: Deliver SIGTRAP on perf event asynchronously if blocked
Perf instrumentation can be driven via SIGTRAP, but this causes a problem
when SIGTRAP is blocked by a task & terminate the task.
Allow user-space to request these signals asynchronously (after they get
unblocked) & also give the information to the signal handler when this
happens:
" To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).
The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise). "
- Unify/standardize the /sys/devices/cpu/events/* output format.
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLuiURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ioSRAAgM3PneFHn5MFiuV/8ZfP3xMHNUOYOCgN
JhALRcUhDdL4N9pS0DSImfXvAlYPJ/TZK8qBRNDsRgygp5vjrbr9zH2HdZBW1gyV
qi3bpuNS+METnfNyumAoBeOYbMIvpm3NDUX+w68Xvkd1g8ykyno8Zc2H2hj3IDsW
cK3ErP0CZLsnBZsymy29/bxCYhfxsED6J06hOa8R3Tvl4XYg/27Z+tEuZ4GYeFS8
VikulYB9RhRWUbhkzwjyRSbTWyvsuXP+xD28ymUIxXaNCDOwxK8uYtVepUFIBO8X
cZgtwT2faV3y5ZAnz02M+/JZl+Jz5EPm037vNQp9aJsTuAbAGnxh/hL0cBVuDqhv
Nh9wkqS8FqwAbtpvg/IeamzqN5z/Yn2Q/Jyk/4oWipmeddXWUL7sYVoSduTGJJkz
cZz2ciNQbnOCzv0ZSjihrGMqPaT+/wI/iLW3ouLoZXpfTtVVRiiLuI1DDAZ1rd2r
D6djV8JjHIs71V/6E9ahVATxq8yMdikd7u734rA5K3XSxIBTYrdshbOhddzgeE7d
chQ7XvpQXDoFrZtxkHXP5iIeNF7fU9MWNWaEcsrZaWEB/8UpD6eL2if1Kl8mog+h
J4+zR1LWRHh8TNRfos3yCP2PSbbS6LPVsYLJzP+bb+pxgqdJ+urxfmxoCtY5trNI
zHT52xfdxSo=
=UqYA
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
"Platform PMU changes:
- x86/intel:
- Add new Intel Alder Lake and Raptor Lake support
- x86/amd:
- AMD Zen4 IBS extensions support
- Add AMD PerfMonV2 support
- Add AMD Fam19h Branch Sampling support
Generic changes:
- signal: Deliver SIGTRAP on perf event asynchronously if blocked
Perf instrumentation can be driven via SIGTRAP, but this causes a
problem when SIGTRAP is blocked by a task & terminate the task.
Allow user-space to request these signals asynchronously (after
they get unblocked) & also give the information to the signal
handler when this happens:
"To give user space the ability to clearly distinguish
synchronous from asynchronous signals, introduce
siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for
flags in case more binary information is required in future).
The resolution to the problem is then to (a) no longer force the
signal (avoiding the terminations), but (b) tell user space via
si_perf_flags if the signal was synchronous or not, so that such
signals can be handled differently (e.g. let user space decide
to ignore or consider the data imprecise). "
- Unify/standardize the /sys/devices/cpu/events/* output format.
- Misc fixes & cleanups"
* tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
perf/x86/amd/core: Fix reloading events for SVM
perf/x86/amd: Run AMD BRS code only on supported hw
perf/x86/amd: Fix AMD BRS period adjustment
perf/x86/amd: Remove unused variable 'hwc'
perf/ibs: Fix comment
perf/amd/ibs: Advertise zen4_ibs_extensions as pmu capability attribute
perf/amd/ibs: Add support for L3 miss filtering
perf/amd/ibs: Use ->is_visible callback for dynamic attributes
perf/amd/ibs: Cascade pmu init functions' return value
perf/x86/uncore: Add new Alder Lake and Raptor Lake support
perf/x86/uncore: Clean up uncore_pci_ids[]
perf/x86/cstate: Add new Alder Lake and Raptor Lake support
perf/x86/msr: Add new Alder Lake and Raptor Lake support
perf/x86: Add new Alder Lake and Raptor Lake support
perf/amd/ibs: Use interrupt regs ip for stack unwinding
perf/x86/amd/core: Add PerfMonV2 overflow handling
perf/x86/amd/core: Add PerfMonV2 counter control
perf/x86/amd/core: Detect available counters
perf/x86/amd/core: Detect PerfMonV2 support
x86/msr: Add PerfCntrGlobal* registers
...
Highlights:
- New drivers:
- Intel "In Field Scan" (IFS) support
- Winmate FM07/FM07P buttons
- Mellanox SN2201 support
- AMD PMC driver enhancements
- Lots of various other small fixes and hardware-id additions
The following is an automated git shortlog grouped by driver:
Documentation:
- In-Field Scan
Documentation/ABI:
- Add new attributes for mlxreg-io sysfs interfaces
- sysfs-class-firmware-attributes: Misc. cleanups
- sysfs-class-firmware-attributes: Fix Sphinx errors
- sysfs-driver-intel_sdsi: Fix sphinx warnings
acerhdf:
- Cleanup str_starts_with()
amd-pmc:
- Fix build error unused-function
- Shuffle location of amd_pmc_get_smu_version()
- Avoid reading SMU version at probe time
- Move FCH init to first use
- Move SMU logging setup out of init
- Fix compilation without CONFIG_SUSPEND
amd_hsmp:
- Add HSMP protocol version 5 messages
asus-nb-wmi:
- Add keymap for MyASUS key
asus-wmi:
- Update unknown code message
- Use kobj_to_dev()
- Fix driver not binding when fan curve control probe fails
- Potential buffer overflow in asus_wmi_evaluate_method_buf()
barco-p50-gpio:
- Fix duplicate included linux/io.h
dell-laptop:
- Add quirk entry for Latitude 7520
gigabyte-wmi:
- Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI
- added support for B660 GAMING X DDR4 motherboard
hp-wmi:
- Correct code style related issues
intel-hid:
- fix _DSM function index handling
intel-uncore-freq:
- Prevent driver loading in guests
intel_cht_int33fe:
- Set driver data
platform/mellanox:
- Add support for new SN2201 system
platform/surface:
- aggregator: Fix initialization order when compiling as builtin module
- gpe: Add support for Surface Pro 8
platform/x86/dell:
- add buffer allocation/free functions for SMI calls
platform/x86/intel:
- Fix 'rmmod pmt_telemetry' panic
- pmc/core: Use kobj_to_dev()
- pmc/core: change pmc_lpm_modes to static
platform/x86/intel/ifs:
- Add CPU_SUP_INTEL dependency
- add ABI documentation for IFS
- Add IFS sysfs interface
- Add scan test support
- Authenticate and copy to secured memory
- Check IFS Image sanity
- Read IFS firmware image
- Add stub driver for In-Field Scan
platform/x86/intel/sdsi:
- Fix bug in multi packet reads
- Poll on ready bit for writes
- Handle leaky bucket
platform_data/mlxreg:
- Add field for notification callback
pmc_atom:
- dont export pmc_atom_read - no modular users
- remove unused pmc_atom_write()
samsung-laptop:
- use kobj_to_dev()
- Fix an unsigned comparison which can never be negative
stop_machine:
- Add stop_core_cpuslocked() for per-core operations
think-lmi:
- certificate support clean ups
thinkpad_acpi:
- Correct dual fan probe
- Add a s2idle resume quirk for a number of laptops
- Convert btusb DMI list to quirks
tools/power/x86/intel-speed-select:
- Fix warning for perf_cap.cpu
- Display error on turbo mode disabled
- fix build failure when using -Wl,--as-needed
toshiba_acpi:
- use kobj_to_dev()
trace:
- platform/x86/intel/ifs: Add trace point to track Intel IFS operations
winmate-fm07-keys:
- Winmate FM07/FM07P buttons
wmi:
- replace usage of found with dedicated list iterator variable
x86/microcode/intel:
- Expose collect_cpu_info_early() for IFS
x86/msr-index:
- Define INTEGRITY_CAPABILITIES MSR
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEEuvA7XScYQRpenhd+kuxHeUQDJ9wFAmKKlA0UHGhkZWdvZWRl
QHJlZGhhdC5jb20ACgkQkuxHeUQDJ9w0Iwf+PYoq7qtU6j6N2f8gL2s65JpKiSPP
CkgnCzTP+khvNnTWMQS8RW9VE6YrHXmN/+d3UAvRrHsOYm3nyZT5aPju9xJ6Xyfn
5ZdMVvYxz7cm3lC6ay8AQt0Cmy6im/+lzP5vA5K68IYh0fPX/dvuOU57pNvXYFfk
Yz5/Gm0t0C4CKVqkcdU/zkNawHP+2+SyQe+Ua2srz7S3DAqUci0lqLr/w9Xk2Yij
nCgEWFB1Qjd2NoyRRe44ksLQ0dXpD4ADDzED+KPp6VTGnw61Eznf9319Z5ONNa/O
VAaSCcDNKps8d3ZpfCpLb3Rs4ztBCkRnkLFczJBgPsBiuDmyTT2/yeEtNg==
=HdEG
-----END PGP SIGNATURE-----
Merge tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86
Pull x86 platform driver updates from Hans de Goede:
"This includes some small changes to kernel/stop_machine.c and arch/x86
which are deps of the new Intel IFS support.
Highlights:
- New drivers:
- Intel "In Field Scan" (IFS) support
- Winmate FM07/FM07P buttons
- Mellanox SN2201 support
- AMD PMC driver enhancements
- Lots of various other small fixes and hardware-id additions"
* tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (54 commits)
platform/x86/intel/ifs: Add CPU_SUP_INTEL dependency
platform/x86: intel_cht_int33fe: Set driver data
platform/x86: intel-hid: fix _DSM function index handling
platform/x86: toshiba_acpi: use kobj_to_dev()
platform/x86: samsung-laptop: use kobj_to_dev()
platform/x86: gigabyte-wmi: Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI
tools/power/x86/intel-speed-select: Fix warning for perf_cap.cpu
tools/power/x86/intel-speed-select: Display error on turbo mode disabled
Documentation: In-Field Scan
platform/x86/intel/ifs: add ABI documentation for IFS
trace: platform/x86/intel/ifs: Add trace point to track Intel IFS operations
platform/x86/intel/ifs: Add IFS sysfs interface
platform/x86/intel/ifs: Add scan test support
platform/x86/intel/ifs: Authenticate and copy to secured memory
platform/x86/intel/ifs: Check IFS Image sanity
platform/x86/intel/ifs: Read IFS firmware image
platform/x86/intel/ifs: Add stub driver for In-Field Scan
stop_machine: Add stop_core_cpuslocked() for per-core operations
x86/msr-index: Define INTEGRITY_CAPABILITIES MSR
x86/microcode/intel: Expose collect_cpu_info_early() for IFS
...
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a SNP
guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLU2AACgkQEsHwGGHe
VUpb/Q//f4LGiJf4nw1flzpe90uIsHNwAafng3NOjeXmhI/EcOlqPf23WHPCgg3Z
2umfa4sRZyj4aZubDd7tYAoq4qWrQ7pO7viWCNTh0InxBAILOoMPMuq2jSAbq0zV
ASUJXeQ2bqjYxX4JV4N5f3HT2l+k68M0mpGLN0H+O+LV9pFS7dz7Jnsg+gW4ZP25
PMPLf6FNzO/1tU1aoYu80YDP1ne4eReLrNzA7Y/rx+S2NAetNwPn21AALVgoD4Nu
vFdKh4MHgtVbwaQuh0csb/+4vD+tDXAhc8lbIl+Abl9ZxJaDWtAJW5D9e2CnsHk1
NOkHwnrzizzhtGK1g56YPUVRFAWhZYMOI1hR0zGPLQaVqBnN4b+iahPeRiV0XnGE
PSbIHSfJdeiCkvLMCdIAmpE5mRshhRSUfl1CXTCdetMn8xV/qz/vG6bXssf8yhTV
cfLGPHU7gfVmsbR9nk5a8KZ78PaytxOxfIDXvCy8JfQwlIWtieaCcjncrj+sdMJy
0fdOuwvi4jma0cyYuPolKiS1Hn4ldeibvxXT7CZQlIx6jZShMbpfpTTJs11XdtHm
PdDAc1TY3AqI33mpy9DhDQmx/+EhOGxY3HNLT7evRhv4CfdQeK3cPVUWgo4bGNVv
ZnFz7nvmwpyufltW9K8mhEZV267174jXGl6/idxybnlVE7ESr2Y=
=Y8kW
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull AMD SEV-SNP support from Borislav Petkov:
"The third AMD confidential computing feature called Secure Nested
Paging.
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a
SNP guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on"
* tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/entry: Fixup objtool/ibt validation
x86/sev: Mark the code returning to user space as syscall gap
x86/sev: Annotate stack change in the #VC handler
x86/sev: Remove duplicated assignment to variable info
x86/sev: Fix address space sparse warning
x86/sev: Get the AP jump table address from secrets page
x86/sev: Add missing __init annotations to SEV init routines
virt: sevguest: Rename the sevguest dir and files to sev-guest
virt: sevguest: Change driver name to reflect generic SEV support
x86/boot: Put globals that are accessed early into the .data section
x86/boot: Add an efi.h header for the decompressor
virt: sevguest: Fix bool function returning negative value
virt: sevguest: Fix return value check in alloc_shared_pages()
x86/sev-es: Replace open-coded hlt-loop with sev_es_terminate()
virt: sevguest: Add documentation for SEV-SNP CPUID Enforcement
virt: sevguest: Add support to get extended report
virt: sevguest: Add support to derive key
virt: Add SEV-SNP guest driver
x86/sev: Register SEV-SNP guest request platform device
x86/sev: Provide support for SNP guest request NAEs
...
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The INTEGRITY_CAPABILITIES MSR is enumerated by bit 2 of the
CORE_CAPABILITIES MSR.
Add defines for the CORE_CAPS enumeration as well as for the integrity
MSR.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220506225410.1652287-3-tony.luck@intel.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Add MSR definitions that will be used to enable the new AMD
Performance Monitoring Version 2 (PerfMonV2) features. These
include:
* Performance Counter Global Control (PerfCntrGlobalCtl)
* Performance Counter Global Status (PerfCntrGlobalStatus)
* Performance Counter Global Status Clear (PerfCntrGlobalStatusClr)
The new Performance Counter Global Control and Status MSRs
provide an interface for enabling or disabling multiple
counters at the same time and for testing overflow without
probing the individual registers for each PMC.
The availability of these registers is indicated through the
PerfMonV2 feature bit of CPUID leaf 0x80000022 EAX.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/cdc0d8f75bd519848731b5c64d924f5a0619a573.1650515382.git.sandipan.das@amd.com
Pull turbostat changes for 5.19 from Len Brown:
"Chen Yu (1):
tools/power turbostat: Support thermal throttle count print
Dan Merillat (1):
tools/power turbostat: fix dump for AMD cpus
Len Brown (5):
tools/power turbostat: tweak --show and --hide capability
tools/power turbostat: fix ICX DRAM power numbers
tools/power turbostat: be more useful as non-root
tools/power turbostat: No build warnings with -Wextra
tools/power turbostat: version 2022.04.16
Sumeet Pawnikar (2):
tools/power turbostat: Add Power Limit4 support
tools/power turbostat: print power values upto three decimal
Zephaniah E. Loss-Cutler-Hull (2):
tools/power turbostat: Allow -e for all names.
tools/power turbostat: Allow printing header every N iterations"
* 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux:
tools/power turbostat: version 2022.04.16
tools/power turbostat: No build warnings with -Wextra
tools/power turbostat: be more useful as non-root
tools/power turbostat: fix ICX DRAM power numbers
tools/power turbostat: Support thermal throttle count print
tools/power turbostat: Allow printing header every N iterations
tools/power turbostat: Allow -e for all names.
tools/power turbostat: print power values upto three decimal
tools/power turbostat: Add Power Limit4 support
tools/power turbostat: fix dump for AMD cpus
tools/power turbostat: tweak --show and --hide capability
A microcode update on some Intel processors causes all TSX transactions
to always abort by default[*]. Microcode also added functionality to
re-enable TSX for development purposes. With this microcode loaded, if
tsx=on was passed on the cmdline, and TSX development mode was already
enabled before the kernel boot, it may make the system vulnerable to TSX
Asynchronous Abort (TAA).
To be on safer side, unconditionally disable TSX development mode during
boot. If a viable use case appears, this can be revisited later.
[*]: Intel TSX Disable Update for Selected Processors, doc ID: 643557
[ bp: Drop unstable web link, massage heavily. ]
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/347bd844da3a333a9793c6687d4e4eb3b2419a3e.1646943780.git.pawan.kumar.gupta@linux.intel.com
The CC_ATTR_GUEST_SEV_SNP can be used by the guest to query whether the
SNP (Secure Nested Paging) feature is active.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-10-brijesh.singh@amd.com
Add support for the AMD Fam19h 16-deep branch sampling feature as
described in the AMD PPR Fam19h Model 01h Revision B1. This is a model
specific extension. It is not an architected AMD feature.
The Branch Sampling (BRS) operates with a 16-deep saturating buffer in MSR
registers. There is no branch type filtering. All control flow changes are
captured. BRS relies on specific programming of the core PMU of Fam19h. In
particular, the following requirements must be met:
- the sampling period be greater than 16 (BRS depth)
- the sampling period must use a fixed and not frequency mode
BRS interacts with the NMI interrupt as well. Because enabling BRS is
expensive, it is only activated after P event occurrences, where P is the
desired sampling period. At P occurrences of the event, the counter
overflows, the CPU catches the interrupt, activates BRS for 16 branches until
it saturates, and then delivers the NMI to the kernel. Between the overflow
and the time BRS activates more branches may be executed skewing the period.
All along, the sampling event keeps counting. The skid may be attenuated by
reducing the sampling period by 16 (subsequent patch).
BRS is integrated into perf_events seamlessly via the same
PERF_RECORD_BRANCH_STACK sample format. BRS generates perf_branch_entry
records in the sampling buffer. No prediction information is supported. The
branches are stored in reverse order of execution. The most recent branch is
the first entry in each record.
No modification to the perf tool is necessary.
BRS can be used with any sampling event. However, it is recommended to use
the RETIRED_BRANCH_INSTRUCTIONS event because it matches what the BRS
captures.
$ perf record -b -c 1000037 -e cpu/event=0xc2,name=ret_br_instructions/ test
$ perf report -D
56531696056126 0x193c000 [0x1a8]: PERF_RECORD_SAMPLE(IP, 0x2): 18122/18230: 0x401d24 period: 1000037 addr: 0
... branch stack: nr:16
..... 0: 0000000000401d24 -> 0000000000401d5a 0 cycles 0
..... 1: 0000000000401d5c -> 0000000000401d24 0 cycles 0
..... 2: 0000000000401d22 -> 0000000000401d5c 0 cycles 0
..... 3: 0000000000401d5e -> 0000000000401d22 0 cycles 0
..... 4: 0000000000401d20 -> 0000000000401d5e 0 cycles 0
..... 5: 0000000000401d3e -> 0000000000401d20 0 cycles 0
..... 6: 0000000000401d42 -> 0000000000401d3e 0 cycles 0
..... 7: 0000000000401d3c -> 0000000000401d42 0 cycles 0
..... 8: 0000000000401d44 -> 0000000000401d3c 0 cycles 0
..... 9: 0000000000401d3a -> 0000000000401d44 0 cycles 0
..... 10: 0000000000401d46 -> 0000000000401d3a 0 cycles 0
..... 11: 0000000000401d38 -> 0000000000401d46 0 cycles 0
..... 12: 0000000000401d48 -> 0000000000401d38 0 cycles 0
..... 13: 0000000000401d36 -> 0000000000401d48 0 cycles 0
..... 14: 0000000000401d4a -> 0000000000401d36 0 cycles 0
..... 15: 0000000000401d34 -> 0000000000401d4a 0 cycles 0
... thread: test:18230
...... dso: test
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220322221517.2510440-4-eranian@google.com
coarse grained, hardware based, forward edge Control-Flow-Integrity mechanism
where any indirect CALL/JMP must target an ENDBR instruction or suffer #CP.
Additionally, since Alderlake (12th gen)/Sapphire-Rapids, speculation is
limited to 2 instructions (and typically fewer) on branch targets not starting
with ENDBR. CET-IBT also limits speculation of the next sequential instruction
after the indirect CALL/JMP [1].
CET-IBT is fundamentally incompatible with retpolines, but provides, as
described above, speculation limits itself.
[1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEv3OU3/byMaA0LqWJdkfhpEvA5LoFAmI/LI8VHHBldGVyekBp
bmZyYWRlYWQub3JnAAoJEHZH4aRLwOS6ZnkP/2QCgQLTu6oRxv9O020CHwlaSEeD
1Hoy3loum5q5hAi1Ik3dR9p0H5u64c9qbrBVxaFoNKaLt5GKrtHaDSHNk2L/CFHX
urpH65uvTLxbyZzcahkAahoJ71XU+m7PcrHLWMunw9sy10rExYVsUOlFyoyG6XCF
BDCNZpdkC09ZM3vwlWGMZd5Pp+6HcZNPyoV9tpvWAS2l+WYFWAID7mflbpQ+tA8b
y/hM6b3Ud0rT2ubuG1iUpopgNdwqQZ+HisMPGprh+wKZkYwS2l8pUTrz0MaBkFde
go7fW16kFy2HQzGm6aIEBmfcg0palP/mFVaWP0zS62LwhJSWTn5G6xWBr3yxSsht
9gWCiI0oDZuTg698MedWmomdG2SK6yAuZuqmdKtLLoWfWgviPEi7TDFG/cKtZdAW
ag8GM8T4iyYZzpCEcWO9GWbjo6TTGq30JBQefCBG47GjD0csv2ubXXx0Iey+jOwT
x3E8wnv9dl8V9FSd/tMpTFmje8ges23yGrWtNpb5BRBuWTeuGiBPZED2BNyyIf+T
dmewi2ufNMONgyNp27bDKopY81CPAQq9cVxqNm9Cg3eWPFnpOq2KGYEvisZ/rpEL
EjMQeUBsy/C3AUFAleu1vwNnkwP/7JfKYpN00gnSyeQNZpqwxXBCKnHNgOMTXyJz
beB/7u2KIUbKEkSN
=jZfK
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CET-IBT (Control-Flow-Integrity) support from Peter Zijlstra:
"Add support for Intel CET-IBT, available since Tigerlake (11th gen),
which is a coarse grained, hardware based, forward edge
Control-Flow-Integrity mechanism where any indirect CALL/JMP must
target an ENDBR instruction or suffer #CP.
Additionally, since Alderlake (12th gen)/Sapphire-Rapids, speculation
is limited to 2 instructions (and typically fewer) on branch targets
not starting with ENDBR. CET-IBT also limits speculation of the next
sequential instruction after the indirect CALL/JMP [1].
CET-IBT is fundamentally incompatible with retpolines, but provides,
as described above, speculation limits itself"
[1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
* tag 'x86_core_for_5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
kvm/emulate: Fix SETcc emulation for ENDBR
x86/Kconfig: Only allow CONFIG_X86_KERNEL_IBT with ld.lld >= 14.0.0
x86/Kconfig: Only enable CONFIG_CC_HAS_IBT for clang >= 14.0.0
kbuild: Fixup the IBT kbuild changes
x86/Kconfig: Do not allow CONFIG_X86_X32_ABI=y with llvm-objcopy
x86: Remove toolchain check for X32 ABI capability
x86/alternative: Use .ibt_endbr_seal to seal indirect calls
objtool: Find unused ENDBR instructions
objtool: Validate IBT assumptions
objtool: Add IBT/ENDBR decoding
objtool: Read the NOENDBR annotation
x86: Annotate idtentry_df()
x86,objtool: Move the ASM_REACHABLE annotation to objtool.h
x86: Annotate call_on_stack()
objtool: Rework ASM_REACHABLE
x86: Mark __invalid_creds() __noreturn
exit: Mark do_group_exit() __noreturn
x86: Mark stop_this_cpu() __noreturn
objtool: Ignore extra-symbol code
objtool: Rename --duplicate to --lto
...
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI4WdIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jdTA/7BADTYzFCbdwPzHt2mR8osv7k+pDvYxs9
wxNjyi1X7N8cPkhqgIg9CfdhdyDOqo7+J4fG17f2qbwjNK7b2Fb1/U6ZoZaf+f8F
W0e2LX5KZTXUhkA+TEjrXvYD9FmJaCPM/l2RQg8U7okBs2kb0H6QT2Yn21wd1roC
WwI5KFiWSVS1IzpVLaXjDh+FJfJHd75ReMqJeus+QoVQ9NHeuI+t4DglSB1IBi54
d/zeVXE/Y4dFTQOrU06S2HxcOEptvXZsPmVLvKab/veeGGyWiGPxQpvu6bXm6u3x
0sV+dn67zut2m2pQlUZUucgGTSYIZTpOe+rNukTB9hJ4XeN4/1ohOOCrOuYM+63P
lGFbN1v+LD7Wc6C2eEhw8G5GEL0qbwzFNQ06O3EOFi7C7GKn7WS/ET6XuuMOERFk
uxEPb4pFtbBlJ0SriCprFJSd5NL3PORZlLIhv4hGH5hilLR1TFeKDuwZaM4noQxU
dL3rKGLi9H+P46Eni9H28+0gDISbv1xL+WivHOFQNmhBqAZO52ZcF3J+dgBaR1B5
pBxVTycFpZMjxSZnqTE0gMsFaLIpVGc+75Chns1rajR0mEtRtJUQUbYz4tK4zb0E
dZR1p+VF6+DYmSRhiqeaTi9uz9oE8kMa8o/EcbFIg/9BgEnUwJXU20bjnar30xQ7
9OIn7r9hjHI=
=XPuo
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf event updates from Ingo Molnar:
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
perf: Add irq and exception return branch types
perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
perf/x86/intel/pt: Add a capability and config bit for event tracing
perf/x86/intel: Increase max number of the fixed counters
KVM: x86: use the KVM side max supported fixed counter
perf/x86/intel: Enable PEBS format 5
perf/core: Allow kernel address filter when not filtering the kernel
perf/x86/intel/pt: Fix address filter config for 32-bit kernel
perf/core: Fix address filter parser for multiple filters
x86: Share definition of __is_canonical_address()
perf/x86/intel/pt: Relax address filter validation
Merge Intel Hardware Feedback Interface (HFI) thermal driver for
5.18-rc1 and update the intel-speed-select utility to support that
driver.
* thermal-hfi:
tools/power/x86/intel-speed-select: v1.12 release
tools/power/x86/intel-speed-select: HFI support
tools/power/x86/intel-speed-select: OOB daemon mode
thermal: intel: hfi: INTEL_HFI_THERMAL depends on NET
thermal: netlink: Fix parameter type of thermal_genl_cpu_capability_event() stub
thermal: intel: hfi: Notify user space for HFI events
thermal: netlink: Add a new event to notify CPU capabilities change
thermal: intel: hfi: Enable notification interrupt
thermal: intel: hfi: Handle CPU hotplug events
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface
x86/cpu: Add definitions for the Intel Hardware Feedback Interface
x86/Documentation: Describe the Intel Hardware Feedback Interface
The bits required to make the hardware go.. Of note is that, provided
the syscall entry points are covered with ENDBR, #CP doesn't need to
be an IST because we'll never hit the syscall gap.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154318.582331711@infradead.org
As of Intel SDM (https://www.intel.com/sdm) version 076, there is a new
Intel PT feature called TNT-Disable which is enabled config bit 55.
TNT-Disable disables Taken-Not-Taken packets to reduce the tracing
overhead, but with the result that exact control flow information is
lost.
Add a capability and config bit for TNT-Disable.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Adrian Hunter <adrian.hunter@intel.com>
Link: https://lore.kernel.org/r/20220126104815.2807416-3-adrian.hunter@intel.com
As of Intel SDM (https://www.intel.com/sdm) version 076, there is a new
Intel PT feature called Event Trace which is enabled config bit 31.
Event Trace exposes details about asynchronous events such as interrupts
and VM-Entry/Exit.
Add a capability and config bit for Event Trace.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Adrian Hunter <adrian.hunter@intel.com>
Link: https://lore.kernel.org/r/20220126104815.2807416-2-adrian.hunter@intel.com
asm/svm.h is the correct place for all values that are defined in
the SVM spec, and that includes AVIC.
Also add some values from the spec that were not defined before
and will be soon useful.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220207155447.840194-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the CPUID feature bit and the model-specific registers needed to
identify and configure the Intel Hardware Feedback Interface.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
AMD CPPC (Collaborative Processor Performance Control) function uses MSR
registers to manage the performance hints. So add the MSR register macro
here.
Signed-off-by: Huang Rui <ray.huang@amd.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
XFD introduces two MSRs:
- IA32_XFD to enable/disable a feature controlled by XFD
- IA32_XFD_ERR to expose to the #NM trap handler which feature
was tried to be used for the first time.
Both use the same xstate-component bitmap format, used by XCR0.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-14-chang.seok.bae@intel.com
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models and
do not enable kernel workarounds for those CPUs when TSX transactions
always abort, as a result of that microcode update.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDZhzEACgkQEsHwGGHe
VUo5ow//eRwlb1OL/D3jzLT4nTYX8+XdufaJF1HBr1Cf3mdNkiEgyu2bvsXNTpN/
ZP7CFCHibgYeHJ7qTTkhoK1DCe4YHjj450oCgg7pv40Mv9E29Rpszie8y8e/ngkc
g9OiAeEd4A32v8bRMAOOX0UZN4afismXBW0k4iwOAguNFiZ/usrrVYTZpJe3wG65
/YM9FdDZ+Mt7BavJdVyGh03PpzoSMrKyEQ673CHhERQyy5oEublrDSmtt5hQJv1W
4tgNOWpw57Gi7Vs7UYd7VvBQKwQZKeQeHJWu1TXUB6pw0lKYvULH6m0dasvc6cGb
WtCBvbQU9MRP0LvdvYOdgmSgn400z7mEwlUWmAFJLIUlDsuRpZmVQ4C1/OUnOSdx
amb7I3bp1z6Rqjs9ADW5h87qDA+q5OmbIZeIDvuRypQOB3yEktAEdUvWb65b1Fgm
9CpzebxyaOUM9YRxDzDd2joZYKnfI3stF6UCrVXaZwYei+Jmzn5gc8ZOoOX9g6gO
eX/sLW2RWRx6XxilaWZijOHJTjokVUpEnD12aGtKO6ou5QbFTwldc2Metpua42cL
5p8wRxEYeKT/EE/GKy/qIEp624QaInSEmfyq8RFKU4em7GSaSUmoQF5151LfnoRY
ARHkEdz+T8s5RI5xSvUZLRMNYjig9tZas3blYfbJHnU7V2+bspQ=
=wW+k
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- New AMD models support
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models
and do not enable kernel workarounds for those CPUs when TSX
transactions always abort, as a result of that microcode update.
* tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Clear CPUID bits when TSX always force aborts
x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated
x86/msr: Define new bits in TSX_FORCE_ABORT MSR
perf/x86/rapl: Use CPUID bit on AMD and Hygon parts
x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems
x86/amd_nb: Add AMD family 19h model 50h PCI ids
x86/cpu: Fix core name for Sapphire Rapids
Intel client processors that support the IA32_TSX_FORCE_ABORT MSR
related to perf counter interaction [1] received a microcode update that
deprecates the Transactional Synchronization Extension (TSX) feature.
The bit FORCE_ABORT_RTM now defaults to 1, writes to this bit are
ignored. A new bit TSX_CPUID_CLEAR clears the TSX related CPUID bits.
The summary of changes to the IA32_TSX_FORCE_ABORT MSR are:
Bit 0: FORCE_ABORT_RTM (legacy bit, new default=1) Status bit that
indicates if RTM transactions are always aborted. This bit is
essentially !SDV_ENABLE_RTM(Bit 2). Writes to this bit are ignored.
Bit 1: TSX_CPUID_CLEAR (new bit, default=0) When set, CPUID.HLE = 0
and CPUID.RTM = 0.
Bit 2: SDV_ENABLE_RTM (new bit, default=0) When clear, XBEGIN will
always abort with EAX code 0. When set, XBEGIN will not be forced to
abort (but will always abort in SGX enclaves). This bit is intended to
be used on developer systems. If this bit is set, transactional
atomicity correctness is not certain. SDV = Software Development
Vehicle (SDV), i.e. developer systems.
Performance monitoring counter 3 is usable in all cases, regardless of
the value of above bits.
Add support for a new CPUID bit - CPUID.RTM_ALWAYS_ABORT (CPUID 7.EDX[11])
- to indicate the status of always abort behavior.
[1] [ bp: Look for document ID 604224, "Performance Monitoring Impact
of Intel Transactional Synchronization Extension Memory". Since
there's no way for us to have stable links to documents... ]
[ bp: Massage and extend commit message. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Link: https://lkml.kernel.org/r/9add61915b4a4eedad74fbd869107863a28b428e.1623704845.git-series.pawan.kumar.gupta@linux.intel.com
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability enumeration method
introduced on the latest Intel platforms. This table is in a well-defined PCI
namespace location and is read via MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter blocks, but
fancier counters still need to be enumerated explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
cores.
The CPU-side feature set is entirely symmetrical - but on the PMU side there's
core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The immediate motivation
is to support low-overhead sampling-based race detection for user-space code. The
feature consists of the following main changes:
- Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
inheritance of events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the new field can be used
to introduce support for other types of metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
goUMOL/D0lg=
=NhQ7
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
Newer CPUs provide a second mechanism to detect operations with lock
prefix which go accross a cache line boundary. Such operations have to
take bus lock which causes a system wide performance degradation when
these operations happen frequently.
The new mechanism is not using the #AC exception. It triggers #DB and is
restricted to operations in user space. Kernel side split lock access can
only be detected by the #AC based variant. Contrary to the #AC based
mechanism the #DB based variant triggers _after_ the instruction was
executed. The mechanism is CPUID enumerated and contrary to the #AC
version which is based on the magic TEST_CTRL_MSR and model/family based
enumeration on the way to become architectural.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGkr8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodUKD/9tUXhInR7+1ykEHpMvdmSp48vqY3nc
sKmT22pPl+OchnJ62mw3T8gKpBYVleJmcCaY2qVx7hfaVcWApLGJvX4tmfXmv422
XDSJ6b8Os6wfgx5FR//I17z8ZtXnnuKkPrTMoRsQUw2qLq31y6fdQv+GW/cc1Kpw
mengjmPE+HnpaKbtuQfPdc4a+UvLjvzBMAlDZPTBPKYrP4FFqYVnUVwyTg5aLVDY
gHz4V8+b502RS/zPfTAtE3J848od+NmcUPdFlcG9DVA+hR0Rl0thvruCTFiD2vVh
i9DJ7INof5FoJDEzh0dGsD7x+MB6OY8GZyHdUMeGgIRPtWkqrG52feQQIn2YYlaL
fB3DlpNv7NIJ/0JMlALvh8S0tEoOcYdHqH+M/3K/zbzecg/FAo+lVo8WciGLPqWs
ykUG5/f/OnlTvgB8po1ebJu0h0jHnoK9heWWXk9zWIRVDPXHFOWKW3kSbTTb3icR
9hfjP/SNejpmt9Ju1OTwsgnV7NALIdVX+G5jyIEsjFl31Co1RZNYhHLFvi11FWlQ
/ssvFK9O5ZkliocGCAN9+yuOnM26VqWSCE4fis6/2aSgD2Y4Gpvb//cP96SrcNAH
u8eXNvGLlniJP3F3JImWIfIPQTrpvQhcU4eZ6NtviXqj/utQXX6c9PZ1PLYpcvUh
9AWF8rwhT8X4oA==
=lmi8
-----END PGP SIGNATURE-----
Merge tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 bus lock detection updates from Thomas Gleixner:
"Support for enhanced split lock detection:
Newer CPUs provide a second mechanism to detect operations with lock
prefix which go accross a cache line boundary. Such operations have to
take bus lock which causes a system wide performance degradation when
these operations happen frequently.
The new mechanism is not using the #AC exception. It triggers #DB and
is restricted to operations in user space. Kernel side split lock
access can only be detected by the #AC based variant.
Contrary to the #AC based mechanism the #DB based variant triggers
_after_ the instruction was executed. The mechanism is CPUID
enumerated and contrary to the #AC version which is based on the magic
TEST_CTRL_MSR and model/family based enumeration on the way to become
architectural"
* tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/admin-guide: Change doc for split_lock_detect parameter
x86/traps: Handle #DB for bus lock
x86/cpufeatures: Enumerate #DB for bus lock detection
Some platforms, e.g. Alder Lake, have hybrid architecture. Although most
PMU capabilities are the same, there are still some unique PMU
capabilities for different hybrid PMUs. Perf should register a dedicated
pmu for each hybrid PMU.
Add a new struct x86_hybrid_pmu, which saves the dedicated pmu and
capabilities for each hybrid PMU.
The architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicates the
architecture features which are available on all hybrid PMUs. The
architecture features are stored in the global x86_pmu.intel_cap.
For Alder Lake, the model-specific features are perf metrics and
PEBS-via-PT. The corresponding bits of the global x86_pmu.intel_cap
should be 0 for these two features. Perf should not use the global
intel_cap to check the features on a hybrid system.
Add a dedicated intel_cap in the x86_hybrid_pmu to store the
model-specific capabilities. Use the dedicated intel_cap to replace
the global intel_cap for thse two features. The dedicated intel_cap
will be set in the following "Add Alder Lake Hybrid support" patch.
Add is_hybrid() to distinguish a hybrid system. ADL may have an
alternative configuration. With that configuration, the
X86_FEATURE_HYBRID_CPU is not set. Perf cannot rely on the feature bit.
Add a new static_key_false, perf_is_hybrid, to indicate a hybrid system.
It will be assigned in the following "Add Alder Lake Hybrid support"
patch as well.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-5-git-send-email-kan.liang@linux.intel.com
Bus locks degrade performance for the whole system, not just for the CPU
that requested the bus lock. Two CPU features "#AC for split lock" and
"#DB for bus lock" provide hooks so that the operating system may choose
one of several mitigation strategies.
#AC for split lock is already implemented. Add code to use the #DB for
bus lock feature to cover additional situations with new options to
mitigate.
split_lock_detect=
#AC for split lock #DB for bus lock
off Do nothing Do nothing
warn Kernel OOPs Warn once per task and
Warn once per task and and continues to run.
disable future checking
When both features are
supported, warn in #AC
fatal Kernel OOPs Send SIGBUS to user.
Send SIGBUS to user
When both features are
supported, fatal in #AC
ratelimit:N Do nothing Limit bus lock rate to
N per second in the
current non-root user.
Default option is "warn".
Hardware only generates #DB for bus lock detect when CPL>0 to avoid
nested #DB from multiple bus locks while the first #DB is being handled.
So no need to handle #DB for bus lock detected in the kernel.
#DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR
while #AC for split lock is enabled by split lock detection bit 29 in
TEST_CTRL MSR.
Both breakpoint and bus lock in the same instruction can trigger one #DB.
The bus lock is handled before the breakpoint in the #DB handler.
Delivery of #DB for bus lock in userspace clears DR6[11], which is set by
the #DB handler right after reading DR6.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
There are two definitions for the TSC deadline MSR in msr-index.h,
one with an underscore and one without. Axe one of them and move
all the references over to the other one.
[ bp: Fixup the MSR define in handle_fastpath_set_msr_irqoff() too. ]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200305174706.0D6B8EE4@viggo.jf.intel.com
* PSCI relay at EL2 when "protected KVM" is enabled
* New exception injection code
* Simplification of AArch32 system register handling
* Fix PMU accesses when no PMU is enabled
* Expose CSV3 on non-Meltdown hosts
* Cache hierarchy discovery fixes
* PV steal-time cleanups
* Allow function pointers at EL2
* Various host EL2 entry cleanups
* Simplification of the EL2 vector allocation
s390:
* memcg accouting for s390 specific parts of kvm and gmap
* selftest for diag318
* new kvm_stat for when async_pf falls back to sync
x86:
* Tracepoints for the new pagetable code from 5.10
* Catch VFIO and KVM irqfd events before userspace
* Reporting dirty pages to userspace with a ring buffer
* SEV-ES host support
* Nested VMX support for wait-for-SIPI activity state
* New feature flag (AVX512 FP16)
* New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
* Selftest improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
=ISud
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
- Use local_clock() instead of jiffies in the cpufreq statistics to
improve accuracy (Viresh Kumar).
- Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq
drivers (Viresh Kumar).
- Clean up the cpufreq core, the intel_pstate driver and the
schedutil cpufreq governor (Rafael Wysocki).
- Fix up error code paths in the sti-cpufreq and mediatek cpufreq
drivers (Yangtao Li, Qinglang Miao).
- Fix cpufreq_online() to return error codes instead of success (0)
in all cases when it fails (Wang ShaoBo).
- Add mt8167 support to the mediatek cpufreq driver and blacklist
mt8516 in the cpufreq-dt-platdev driver (Fabien Parent).
- Modify the tegra194 cpufreq driver to always return values from
the frequency table as the current frequency and clean up that
driver (Sumit Gupta, Jon Hunter).
- Modify the arm_scmi cpufreq driver to allow it to discover the
power scale present in the performance protocol and provide this
information to the Energy Model (Lukasz Luba).
- Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali
Rohár).
- Clean up the CPPC cpufreq driver (Ionela Voinescu).
- Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd
Bergmann).
- Rework the poling interval selection for the polling state in
cpuidle (Mel Gorman).
- Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle
driver (Ulf Hansson).
- Modify the OPP framework to support empty (node-less) OPP tables
in DT for passing dependency information (Nicola Mazzucato).
- Fix potential lockdep issue in the OPP core and clean up the OPP
core (Viresh Kumar).
- Modify dev_pm_opp_put_regulators() to accept a NULL argument and
update its users accordingly (Viresh Kumar).
- Add frequency changes tracepoint to devfreq (Matthias Kaehlcke).
- Add support for governor feature flags to devfreq, make devfreq
sysfs file permissions depend on the governor and clean up the
devfreq core (Chanwoo Choi).
- Clean up the tegra20 devfreq driver and deprecate it to allow
another driver based on EMC_STAT to be used instead of it (Dmitry
Osipenko).
- Add interconnect support to the tegra30 devfreq driver, allow it
to take the interconnect and OPP information from DT and clean it
up ((Dmitry Osipenko).
- Add interconnect support to the exynos-bus devfreq driver along
with interconnect properties documentation (Sylwester Nawrocki).
- Add suport for AMD Fam17h and Fam19h processors to the RAPL power
capping driver (Victor Ding, Kim Phillips).
- Fix handling of overly long constraint names in the powercap
framework (Lukasz Luba).
- Fix the wakeup configuration handling for bridges in the ACPI
device power management core (Rafael Wysocki).
- Add support for using an abstract scale for power units in the
Energy Model (EM) and document it (Lukasz Luba).
- Add em_cpu_energy() micro-optimization to the EM (Pavankumar
Kondeti).
- Modify the generic power domains (genpd) framwework to support
suspend-to-idle (Ulf Hansson).
- Fix creation of debugfs nodes in genpd (Thierry Strudel).
- Clean up genpd (Lina Iyer).
- Clean up the core system-wide suspend code and make it print
driver flags for devices with debug enabled (Alex Shi, Patrice
Chotard, Chen Yu).
- Modify the ACPI system reboot code to make it prepare for system
power off to avoid confusing the platform firmware (Kai-Heng Feng).
- Update the pm-graph (multiple changes, mostly usability-related)
and cpupower (online and offline CPU information support) PM
utilities (Todd Brandt, Brahadambal Srinivasan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl/Y8mcSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxjY4QAKsNFJeEtjGCxq7MxQIML3QLAsdJM9of
9kkY9skMEw4v1TRmyy7sW9jZW2pLSRcLJwWRKWu4143qUS3YUp2DQ0lqX4WyXoWu
BhnkhkMUl6iCeBO8CWnt8zsTuqSa20A13sL9LyqN1+7OZKHD8StbT4hKjBncdNNN
4aDj+1uAPyOgj2iCUZuHQ8DtpBvOLjgTh367vbhbufjeJ//8/9+R7s4Xzrj7wtmv
JlE0LDgvge9QeGTpjhxQJzn0q2/H5fg9jbmjPXUfbHJNuyKhrqnmjGyrN5m256JI
8DqGqQtJpmFp7Ihrur3uKTk3gWO05YwJ1FdeEooAKEjEMObm5xuYhKVRoDhmlJAu
G6ui+OAUvNR0FffJtbzvWe/pLovLGOEOHdvTrZxUF8Abo6br3untTm8rKTi1fhaF
wWndSMw0apGsPzCx5T+bE7AbJz2QHFpLhaVAutenuCzNI8xoMlxNKEzsaVz/+FqL
Pq/PdFaM4vNlMbv7hkb/fujkCs/v3EcX2ihzvt7I2o8dBS0D1X8A4mnuWJmiGslw
1ftbJ6M9XacwkPBTHPgeXxJh2C1yxxe5VQ9Z5fWWi7sPOUeJnUwxKaluv+coFndQ
sO6JxsPQ4hQihg8yOxLEkL6Wn68sZlmp+u2Oj+TPFAsAGANIA8rJlBPo1ppJWvdQ
j1OCIc/qzwpH
=BVdX
-----END PGP SIGNATURE-----
Merge tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These update cpufreq (core and drivers), cpuidle (polling state
implementation and the PSCI driver), the OPP (operating performance
points) framework, devfreq (core and drivers), the power capping RAPL
(Running Average Power Limit) driver, the Energy Model support, the
generic power domains (genpd) framework, the ACPI device power
management, the core system-wide suspend code and power management
utilities.
Specifics:
- Use local_clock() instead of jiffies in the cpufreq statistics to
improve accuracy (Viresh Kumar).
- Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq
drivers (Viresh Kumar).
- Clean up the cpufreq core, the intel_pstate driver and the
schedutil cpufreq governor (Rafael Wysocki).
- Fix up error code paths in the sti-cpufreq and mediatek cpufreq
drivers (Yangtao Li, Qinglang Miao).
- Fix cpufreq_online() to return error codes instead of success (0)
in all cases when it fails (Wang ShaoBo).
- Add mt8167 support to the mediatek cpufreq driver and blacklist
mt8516 in the cpufreq-dt-platdev driver (Fabien Parent).
- Modify the tegra194 cpufreq driver to always return values from the
frequency table as the current frequency and clean up that driver
(Sumit Gupta, Jon Hunter).
- Modify the arm_scmi cpufreq driver to allow it to discover the
power scale present in the performance protocol and provide this
information to the Energy Model (Lukasz Luba).
- Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali
Rohár).
- Clean up the CPPC cpufreq driver (Ionela Voinescu).
- Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd
Bergmann).
- Rework the poling interval selection for the polling state in
cpuidle (Mel Gorman).
- Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle driver
(Ulf Hansson).
- Modify the OPP framework to support empty (node-less) OPP tables in
DT for passing dependency information (Nicola Mazzucato).
- Fix potential lockdep issue in the OPP core and clean up the OPP
core (Viresh Kumar).
- Modify dev_pm_opp_put_regulators() to accept a NULL argument and
update its users accordingly (Viresh Kumar).
- Add frequency changes tracepoint to devfreq (Matthias Kaehlcke).
- Add support for governor feature flags to devfreq, make devfreq
sysfs file permissions depend on the governor and clean up the
devfreq core (Chanwoo Choi).
- Clean up the tegra20 devfreq driver and deprecate it to allow
another driver based on EMC_STAT to be used instead of it (Dmitry
Osipenko).
- Add interconnect support to the tegra30 devfreq driver, allow it to
take the interconnect and OPP information from DT and clean it up
(Dmitry Osipenko).
- Add interconnect support to the exynos-bus devfreq driver along
with interconnect properties documentation (Sylwester Nawrocki).
- Add suport for AMD Fam17h and Fam19h processors to the RAPL power
capping driver (Victor Ding, Kim Phillips).
- Fix handling of overly long constraint names in the powercap
framework (Lukasz Luba).
- Fix the wakeup configuration handling for bridges in the ACPI
device power management core (Rafael Wysocki).
- Add support for using an abstract scale for power units in the
Energy Model (EM) and document it (Lukasz Luba).
- Add em_cpu_energy() micro-optimization to the EM (Pavankumar
Kondeti).
- Modify the generic power domains (genpd) framwework to support
suspend-to-idle (Ulf Hansson).
- Fix creation of debugfs nodes in genpd (Thierry Strudel).
- Clean up genpd (Lina Iyer).
- Clean up the core system-wide suspend code and make it print driver
flags for devices with debug enabled (Alex Shi, Patrice Chotard,
Chen Yu).
- Modify the ACPI system reboot code to make it prepare for system
power off to avoid confusing the platform firmware (Kai-Heng Feng).
- Update the pm-graph (multiple changes, mostly usability-related)
and cpupower (online and offline CPU information support) PM
utilities (Todd Brandt, Brahadambal Srinivasan)"
* tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (86 commits)
cpufreq: Fix cpufreq_online() return value on errors
cpufreq: Fix up several kerneldoc comments
cpufreq: stats: Use local_clock() instead of jiffies
cpufreq: schedutil: Simplify sugov_update_next_freq()
cpufreq: intel_pstate: Simplify intel_cpufreq_update_pstate()
PM: domains: create debugfs nodes when adding power domains
opp: of: Allow empty opp-table with opp-shared
dt-bindings: opp: Allow empty OPP tables
media: venus: dev_pm_opp_put_*() accepts NULL argument
drm/panfrost: dev_pm_opp_put_*() accepts NULL argument
drm/lima: dev_pm_opp_put_*() accepts NULL argument
PM / devfreq: exynos: dev_pm_opp_put_*() accepts NULL argument
cpufreq: qcom-cpufreq-nvmem: dev_pm_opp_put_*() accepts NULL argument
cpufreq: dt: dev_pm_opp_put_regulators() accepts NULL argument
opp: Allow dev_pm_opp_put_*() APIs to accept NULL opp_table
opp: Don't create an OPP table from dev_pm_opp_get_opp_table()
cpufreq: dt: Don't (ab)use dev_pm_opp_get_opp_table() to create OPP table
opp: Reduce the size of critical section in _opp_kref_release()
PM / EM: Micro optimization in em_cpu_energy
cpufreq: arm_scmi: Discover the power scale in performance protocol
...
applications to populate protected regions of user code and data called
enclaves. Once activated, the new hardware protects enclave code and
data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to
run in enclaves, but there are also projects that try to run limited
unmodified software in enclaves."
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used by
SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XTtMACgkQEsHwGGHe
VUqxFw/+NZGf2b3CWPcrvwXCpkvSpIrqh1jQwyvkZyJ1gen7Vy8dkvf99h8+zQPI
4wSArEyjhYJKAAmBNefLKi/Cs/bdkGzLlZyDGqtM641XRjf0xXIpQkOBb6UBa+Pv
to8veQmVH2bBTM49qnd+H1wM6FzYvhTYCD8xr4HlLXtIfpP2CK2GvCb8s/4LifgD
fTucZX9TFwLgVkWOHWHN0n8XMR2Fjb2YCrwjFMKyr/M2W+pPoOCTIt4PWDuXiOeG
rFP7R4DT9jDg8ht5j2dHQT/Bo8TvTCB4Oj98MrX1TTgkSjLJySSMfyQg5EwNfSIa
HC0lg/6qwAxnhWX7cCCBETNZ4aYDmz/dxcCSsLbomGP9nMaUgUy7qn5nNuNbJilb
oCBsr8LDMzu1LJzmkduM8Uw6OINh+J8ICoVXaR5pS7gSZz/+vqIP/rK691AiqhJL
QeMkI9gQ83jEXpr/AV7ABCjGCAeqELOkgravUyTDev24eEc0LyU0qENpgxqWSTca
OvwSWSwNuhCKd2IyKZBnOmjXGwvncwX0gp1KxL9WuLkR6O8XldLAYmVCwVAOrIh7
snRot8+3qNjELa65Nh5DapwLJrU24TRoKLHLgfWK8dlqrMejNtXKucQ574Np0feR
p2hrNisOrtCwxAt7OAgWygw8agN6cJiY18onIsr4wSBm5H7Syb0=
=k7tj
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGC support from Borislav Petkov:
"Intel Software Guard eXtensions enablement. This has been long in the
making, we were one revision number short of 42. :)
Intel SGX is new hardware functionality that can be used by
applications to populate protected regions of user code and data
called enclaves. Once activated, the new hardware protects enclave
code and data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to run
in enclaves, but there are also projects that try to run limited
unmodified software in enclaves.
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used
by SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others"
* tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
x86/sgx: Return -EINVAL on a zero length buffer in sgx_ioc_enclave_add_pages()
x86/sgx: Fix a typo in kernel-doc markup
x86/sgx: Fix sgx_ioc_enclave_provision() kernel-doc comment
x86/sgx: Return -ERESTARTSYS in sgx_ioc_enclave_add_pages()
selftests/sgx: Use a statically generated 3072-bit RSA key
x86/sgx: Clarify 'laundry_list' locking
x86/sgx: Update MAINTAINERS
Documentation/x86: Document SGX kernel architecture
x86/sgx: Add ptrace() support for the SGX driver
x86/sgx: Add a page reclaimer
selftests/x86: Add a selftest for SGX
x86/vdso: Implement a vDSO for Intel SGX enclave call
x86/traps: Attempt to fixup exceptions in vDSO before signaling
x86/fault: Add a helper function to sanitize error code
x86/vdso: Add support for exception fixup in vDSO functions
x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
x86/sgx: Add SGX_IOC_ENCLAVE_INIT
x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES
x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
x86/sgx: Add an SGX misc driver interface
...
On systems that do not have hardware enforced cache coherency between
encrypted and unencrypted mappings of the same physical page, the
hypervisor can use the VM page flush MSR (0xc001011e) to flush the cache
contents of an SEV guest page. When a small number of pages are being
flushed, this can be used in place of issuing a WBINVD across all CPUs.
CPUID 0x8000001f_eax[2] is used to determine if the VM page flush MSR is
available. Add a CPUID feature to indicate it is supported and define the
MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f1966379e31f9b208db5257509c4a089a87d33d0.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>