355 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kirill A. Shutemov
|
5e0a760b44 |
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has changed the definition of MAX_ORDER to be inclusive. This has caused issues with code that was not yet upstream and depended on the previous definition. To draw attention to the altered meaning of the define, rename MAX_ORDER to MAX_PAGE_ORDER. Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kirill A. Shutemov
|
fd37721803 |
mm, treewide: introduce NR_PAGE_ORDERS
NR_PAGE_ORDERS defines the number of page orders supported by the page allocator, ranging from 0 to MAX_ORDER, MAX_ORDER + 1 in total. NR_PAGE_ORDERS assists in defining arrays of page orders and allows for more natural iteration over them. [kirill.shutemov@linux.intel.com: fixup for kerneldoc warning] Link: https://lkml.kernel.org/r/20240101111512.7empzyifq7kxtzk3@box Link: https://lkml.kernel.org/r/20231228144704.14033-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
b805ab3c69 |
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
Demotion can work well without CONFIG_NUMA_BALANCING. But the commit 23e9f0138963 ("mm/vmstat: move pgdemote_* to per-node stats") wrongly hid it behind CONFIG_NUMA_BALANCING. Fix it by moving them out of CONFIG_NUMA_BALANCING. Link: https://lkml.kernel.org/r/20231229022651.3229174-1-lizhijian@fujitsu.com Fixes: 23e9f0138963 ("mm/vmstat: move pgdemote_* to per-node stats") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Domenico Cerasuolo
|
7108cc3f76 |
mm: memcg: add per-memcg zswap writeback stat
Since zswap now writes back pages from memcg-specific LRUs, we now need a new stat to show writebacks count for each memcg. [nphamcs@gmail.com: rename ZSWP_WB to ZSWPWB] Link: https://lkml.kernel.org/r/20231205193307.2432803-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-5-nphamcs@gmail.com Suggested-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Nhat Pham <nphamcs@gmail.com> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
23e9f01389 |
mm/vmstat: move pgdemote_* to per-node stats
Demotion will migrate pages across nodes. Previously, only the global demotion statistics were accounted for. Changed them to per-node statistics, making it easier to observe where demotion occurs on each node. This will help to identify which nodes are under pressure. This patch also make pgdemote_* behind CONFIG_NUMA_BALANCING, since demotion is not available for !CONFIG_NUMA_BALANCING With this patch, here is a sample where node0 node1 are DRAM, node3 is PMEM: Global stats: $ grep demote /proc/vmstat pgdemote_kswapd 254288 pgdemote_direct 113497 pgdemote_khugepaged 0 Per-node stats: $ grep demote /sys/devices/system/node/node0/vmstat # demotion source pgdemote_kswapd 68454 pgdemote_direct 83431 pgdemote_khugepaged 0 $ grep demote /sys/devices/system/node/node1/vmstat # demotion source pgdemote_kswapd 185834 pgdemote_direct 30066 pgdemote_khugepaged 0 $ grep demote /sys/devices/system/node/node3/vmstat # demotion target pgdemote_kswapd 0 pgdemote_direct 0 pgdemote_khugepaged 0 Link: https://lkml.kernel.org/r/20231103031450.1456523-1-lizhijian@fujitsu.com Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Huang Ying
|
51a755c56d |
mm: tune PCP high automatically
The target to tune PCP high automatically is as follows, - Minimize allocation/freeing from/to shared zone - Minimize idle pages in PCP - Minimize pages in PCP if the system free pages is too few To reach these target, a tuning algorithm as follows is designed, - When we refill PCP via allocating from the zone, increase PCP high. Because if we had larger PCP, we could avoid to allocate from the zone. - In periodic vmstat updating kworker (via refresh_cpu_vm_stats()), decrease PCP high to try to free possible idle PCP pages. - When page reclaiming is active for the zone, stop increasing PCP high in allocating path, decrease PCP high and free some pages in freeing path. So, the PCP high can be tuned to the page allocating/freeing depth of workloads eventually. One issue of the algorithm is that if the number of pages allocated is much more than that of pages freed on a CPU, the PCP high may become the maximal value even if the allocating/freeing depth is small. But this isn't a severe issue, because there are no idle pages in this case. One alternative choice is to increase PCP high when we drain PCP via trying to free pages to the zone, but don't increase PCP high during PCP refilling. This can avoid the issue above. But if the number of pages allocated is much less than that of pages freed on a CPU, there will be many idle pages in PCP and it is hard to free these idle pages. 1/8 (>> 3) of PCP high will be decreased periodically. The value 1/8 is kind of arbitrary. Just to make sure that the idle PCP pages will be freed eventually. On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances in parallel (each with `make -j 28`) in 8 cgroup. This simulates the kbuild server that is used by 0-Day kbuild service. With the patch, the build time decreases 3.5%. The cycles% of the spinlock contention (mostly for zone lock) decreases from 11.0% to 0.5%. The number of PCP draining for high order pages freeing (free_high) decreases 65.6%. The number of pages allocated from zone (instead of from PCP) decreases 83.9%. Link: https://lkml.kernel.org/r/20231016053002.756205-8-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Mel Gorman <mgorman@techsingularity.net> Suggested-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Christoph Lameter <cl@linux.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Huang Ying
|
fa8c4f9a66 |
mm: fix draining remote pageset
If there is no memory allocation/freeing in the PCP (Per-CPU Pageset) of a remote zone (zone in remote NUMA node) after some time (3 seconds for now), the pages of the PCP of the remote zone will be drained to avoid memory wastage. This behavior was introduced in the commit 4ae7c03943fc ("[PATCH] Periodically drain non local pagesets") and the commit 4037d452202e ("Move remote node draining out of slab allocators") But, after the commit 7cc36bbddde5 ("vmstat: on-demand vmstat workers V8"), the vmstat updater worker which is used to drain the PCP of remote zones may not be re-queued when we are waiting for the timeout (pcp->expire != 0) if there are no vmstat changes on this CPU, for example, when the CPU goes idle or runs user space only workloads. This may cause the pages of a remote zone be kept in PCP of this CPU for long time. So that, the page reclaiming of the remote zone may be triggered prematurely. This isn't a severe problem in practice, because the PCP of the remote zone will be drained if some memory are allocated/freed again on this CPU. And, the PCP will eventually be drained during the direct reclaiming if necessary. Anyway, the problem still deserves a fix via guaranteeing that the vmstat updater worker will always be re-queued when we are waiting for the timeout. In effect, this restores the original behavior before the commit 7cc36bbddde5. We can reproduce the bug via allocating/freeing pages from a remote zone then go idle as follows. And the patch can fix it. - Run some workloads, use `numactl` to bind CPU to node 0 and memory to node 1. So the PCP of the CPU on node 0 for zone on node 1 will be filled. - After workloads finish, idle for 60s - Check /proc/zoneinfo With the original kernel, the number of pages in the PCP of the CPU on node 0 for zone on node 1 is non-zero after idle. With the patched kernel, it becomes 0 after idle. That is, we avoid to keep pages in the remote PCP during idle. Link: https://lkml.kernel.org/r/20231007062356.187621-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20230811090819.60845-1-ying.huang@intel.com Fixes: 7cc36bbddde5 ("vmstat: on-demand vmstat workers V8") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Uros Bizjak
|
77cd814835 |
mm/vmstat: use this_cpu_try_cmpxchg in mod_{zone,node}_state
Use this_cpu_try_cmpxchg instead of this_cpu_cmpxchg (*ptr, old, new) == old in mod_zone_state and mod_node_state. x86 CMPXCHG instruction returns success in ZF flag, so this change saves a compare after cmpxchg (and related move instruction in front of cmpxchg). Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg fails. There is no need to re-read the value in the loop. No functional change intended. Link: https://lkml.kernel.org/r/20230904150917.8318-1-ubizjak@gmail.com Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kemeng Shi
|
c6493f4bd7 |
mm/vmstat: remove unused page_ext.h from vmstat
No page_ext function or structure is used in vmstat. Just remove page_ext header from vmstat. Link: https://lkml.kernel.org/r/20230717113227.1897173-3-shikemeng@huaweicloud.com Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
6e17c6de3d |
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs.
- Yosry has also eliminated cgroup's atomic rstat flushing. - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability. - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning. - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface. - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree. - Johannes Weiner has done some cleanup work on the compaction code. - David Hildenbrand has contributed additional selftests for get_user_pages(). - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code. - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code. - Huang Ying has done some maintenance on the swap code's usage of device refcounting. - Christoph Hellwig has some cleanups for the filemap/directio code. - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses. - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings. - John Hubbard has a series of fixes to the MM selftesting code. - ZhangPeng continues the folio conversion campaign. - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock. - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8. - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management. - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code. - Vishal Moola also has done some folio conversion work. - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh J0qXCzqaaN8+BuEyLGDVPaXur9KirwY= =B7yQ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: - Yosry Ahmed brought back some cgroup v1 stats in OOM logs - Yosry has also eliminated cgroup's atomic rstat flushing - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree - Johannes Weiner has done some cleanup work on the compaction code - David Hildenbrand has contributed additional selftests for get_user_pages() - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code - Huang Ying has done some maintenance on the swap code's usage of device refcounting - Christoph Hellwig has some cleanups for the filemap/directio code - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings - John Hubbard has a series of fixes to the MM selftesting code - ZhangPeng continues the folio conversion campaign - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8 - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code - Vishal Moola also has done some folio conversion work - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch * tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits) mm/hugetlb: remove hugetlb_set_page_subpool() mm: nommu: correct the range of mmap_sem_read_lock in task_mem() hugetlb: revert use of page_cache_next_miss() Revert "page cache: fix page_cache_next/prev_miss off by one" mm/vmscan: fix root proactive reclaim unthrottling unbalanced node mm: memcg: rename and document global_reclaim() mm: kill [add|del]_page_to_lru_list() mm: compaction: convert to use a folio in isolate_migratepages_block() mm: zswap: fix double invalidate with exclusive loads mm: remove unnecessary pagevec includes mm: remove references to pagevec mm: rename invalidate_mapping_pagevec to mapping_try_invalidate mm: remove struct pagevec net: convert sunrpc from pagevec to folio_batch i915: convert i915_gpu_error to use a folio_batch pagevec: rename fbatch_count() mm: remove check_move_unevictable_pages() drm: convert drm_gem_put_pages() to use a folio_batch i915: convert shmem_sg_free_table() to use a folio_batch scatterlist: add sg_set_folio() ... |
||
Marcelo Tosatti
|
be5e015d10 |
vmstat: skip periodic vmstat update for isolated CPUs
Problem: The interruption caused by vmstat_update is undesirable for certain applications. With workloads that are running on isolated cpus with nohz full mode to shield off any kernel interruption. For example, a VM running a time sensitive application with a 50us maximum acceptable interruption (use case: soft PLC). oslat 1094.456862: sys_mlock(start: 7f7ed0000b60, len: 1000) oslat 1094.456971: workqueue_queue_work: ... function=vmstat_update ... oslat 1094.456974: sched_switch: prev_comm=oslat ... ==> next_comm=kworker/5:1 ... kworker 1094.456978: sched_switch: prev_comm=kworker/5:1 ==> next_comm=oslat ... The example above shows an additional 7us for the oslat -> kworker -> oslat switches. In the case of a virtualized CPU, and the vmstat_update interruption in the host (of a qemu-kvm vcpu), the latency penalty observed in the guest is higher than 50us, violating the acceptable latency threshold. The isolated vCPU can perform operations that modify per-CPU page counters, for example to complete I/O operations: CPU 11/KVM-9540 [001] dNh1. 2314.248584: mod_zone_page_state <-__folio_end_writeback CPU 11/KVM-9540 [001] dNh1. 2314.248585: <stack trace> => 0xffffffffc042b083 => mod_zone_page_state => __folio_end_writeback => folio_end_writeback => iomap_finish_ioend => blk_mq_end_request_batch => nvme_irq => __handle_irq_event_percpu => handle_irq_event => handle_edge_irq => __common_interrupt => common_interrupt => asm_common_interrupt => vmx_do_interrupt_nmi_irqoff => vmx_handle_exit_irqoff => vcpu_enter_guest => vcpu_run => kvm_arch_vcpu_ioctl_run => kvm_vcpu_ioctl => __x64_sys_ioctl => do_syscall_64 => entry_SYSCALL_64_after_hwframe In kernel users of vmstat counters either require the precise value and they are using zone_page_state_snapshot interface or they can live with an imprecision as the regular flushing can happen at arbitrary time and cumulative error can grow (see calculate_normal_threshold). From that POV the regular flushing can be postponed for CPUs that have been isolated from the kernel interference without critical infrastructure ever noticing. Skip regular flushing from vmstat_shepherd for all isolated CPUs to avoid interference with the isolated workload. Suggested by Michal Hocko. Link: https://lkml.kernel.org/r/ZIDoV/zxFKVmQl7W@tpad Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kirill A. Shutemov
|
dcdfdd40fa |
mm: Add support for unaccepted memory
UEFI Specification version 2.9 introduces the concept of memory acceptance. Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, require memory to be accepted before it can be used by the guest. Accepting happens via a protocol specific to the Virtual Machine platform. There are several ways the kernel can deal with unaccepted memory: 1. Accept all the memory during boot. It is easy to implement and it doesn't have runtime cost once the system is booted. The downside is very long boot time. Accept can be parallelized to multiple CPUs to keep it manageable (i.e. via DEFERRED_STRUCT_PAGE_INIT), but it tends to saturate memory bandwidth and does not scale beyond the point. 2. Accept a block of memory on the first use. It requires more infrastructure and changes in page allocator to make it work, but it provides good boot time. On-demand memory accept means latency spikes every time kernel steps onto a new memory block. The spikes will go away once workload data set size gets stabilized or all memory gets accepted. 3. Accept all memory in background. Introduce a thread (or multiple) that gets memory accepted proactively. It will minimize time the system experience latency spikes on memory allocation while keeping low boot time. This approach cannot function on its own. It is an extension of #2: background memory acceptance requires functional scheduler, but the page allocator may need to tap into unaccepted memory before that. The downside of the approach is that these threads also steal CPU cycles and memory bandwidth from the user's workload and may hurt user experience. Implement #1 and #2 for now. #2 is the default. Some workloads may want to use #1 with accept_memory=eager in kernel command line. #3 can be implemented later based on user's demands. Support of unaccepted memory requires a few changes in core-mm code: - memblock accepts memory on allocation. It serves early boot memory allocations and doesn't limit them to pre-accepted pool of memory. - page allocator accepts memory on the first allocation of the page. When kernel runs out of accepted memory, it accepts memory until the high watermark is reached. It helps to minimize fragmentation. EFI code will provide two helpers if the platform supports unaccepted memory: - accept_memory() makes a range of physical addresses accepted. - range_contains_unaccepted_memory() checks anything within the range of physical addresses requires acceptance. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mike Rapoport <rppt@linux.ibm.com> # memblock Link: https://lore.kernel.org/r/20230606142637.5171-2-kirill.shutemov@linux.intel.com |
||
Suren Baghdasaryan
|
52f238653e |
mm: introduce per-VMA lock statistics
Add a new CONFIG_PER_VMA_LOCK_STATS config option to dump extra statistics about handling page fault under VMA lock. Link: https://lkml.kernel.org/r/20230227173632.3292573-29-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kirill A. Shutemov
|
23baf831a3 |
mm, treewide: redefine MAX_ORDER sanely
MAX_ORDER currently defined as number of orders page allocator supports: user can ask buddy allocator for page order between 0 and MAX_ORDER-1. This definition is counter-intuitive and lead to number of bugs all over the kernel. Change the definition of MAX_ORDER to be inclusive: the range of orders user can ask from buddy allocator is 0..MAX_ORDER now. [kirill@shutemov.name: fix min() warning] Link: https://lkml.kernel.org/r/20230315153800.32wib3n5rickolvh@box [akpm@linux-foundation.org: fix another min_t warning] [kirill@shutemov.name: fixups per Zi Yan] Link: https://lkml.kernel.org/r/20230316232144.b7ic4cif4kjiabws@box.shutemov.name [akpm@linux-foundation.org: fix underlining in docs] Link: https://lore.kernel.org/oe-kbuild-all/202303191025.VRCTk6mP-lkp@intel.com/ Link: https://lkml.kernel.org/r/20230315113133.11326-11-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
57e9cc50f4 |
mm: vmscan: split khugepaged stats from direct reclaim stats
Direct reclaim stats are useful for identifying a potential source for application latency, as well as spotting issues with kswapd. However, khugepaged currently distorts the picture: as a kernel thread it doesn't impose allocation latencies on userspace, and it explicitly opts out of kswapd reclaim. Its activity showing up in the direct reclaim stats is misleading. Counting it as kswapd reclaim could also cause confusion when trying to understand actual kswapd behavior. Break out khugepaged from the direct reclaim counters into new pgsteal_khugepaged, pgdemote_khugepaged, pgscan_khugepaged counters. Test with a huge executable (CONFIG_READ_ONLY_THP_FOR_FS): pgsteal_kswapd 1342185 pgsteal_direct 0 pgsteal_khugepaged 3623 pgscan_kswapd 1345025 pgscan_direct 0 pgscan_khugepaged 3623 Link: https://lkml.kernel.org/r/20221026180133.377671-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Eric Bergen <ebergen@meta.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
27bc50fc90 |
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ... |
||
Linus Torvalds
|
7f6dcffb44 |
Preempt RT cleanups:
Introduce preempt_[dis|enable_nested() and use it to clean up various places which have open coded PREEMPT_RT conditionals. On PREEMPT_RT enabled kernels, spinlocks and rwlocks are neither disabling preemption nor interrupts. Though there are a few places which depend on the implicit preemption/interrupt disable of those locks, e.g. seqcount write sections, per CPU statistics updates etc. PREEMPT_RT added open coded CONFIG_PREEMPT_RT conditionals to disable/enable preemption in the related code parts all over the place. That's hard to read and does not really explain why this is necessary. Linus suggested to use helper functions (preempt_disable_nested() and preempt_enable_nested()) and use those in the affected places. On !RT enabled kernels these functions are NOPs, but contain a lockdep assert to validate that preemption is actually disabled to catch call sites which do not have preemption disabled. Clean up the affected code paths in mm, dentry and lib. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmM9c8MTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYobrrEADHkvkCUHxRlarfinQY2rxEpC4nbnAg ibg+LWpDpqqZwkjADExu6+lsbb0mCdvlFyvSPwY2YcQAkj/bkTAXvdf3KjejTl++ B1J5/Cr5lyyKjajjl1efxdORgATBvwuEjR2moJiU868ZR3K4vgflN9n51A0U+NAn 3kOj/TYotFlyDNJeoK/8edqZwKaueXs3fsYGC1aq2X8mQLI4QDeaHUR6R8CU4w+X bVSIdKNluIYxyc3Eav5sDwzyF6gOSL+9DtZcVyXxJ6+PrkDdkptO23derVHk19WE ymdAwVX6S37L6HNhJgqeScs+s3xD8KDmvu5ktEAtqC0unBP8JwOFZKCZaaYj91j3 iMjMC4UFcXI5sERWhDXTSja2g0pYV6q3myfYfojxe6xXHlrVs42gCzDpOI4LZncM lvPfmhb7JR7zEmBEvVyEOX8B16ecWnUqgihU17a3ogGdKW1PRNWcWj3RmNXDmpGD YZsZSfsawMSJsDIrNRCydXrsiFBNIoVStN7K7c+blnNV8ER5rt24dqCJyUhrl4fB K8hNvDp+T8N0f6nlIUWk42vjhskEo2ijCnpvHSXQc1UL7WmLfaJf3/T9zlufPwqJ 7yVuWd9vZIb3iVAKz+LqOzLlHcgeJmYlbSBsj+Ay1UHPsNgYulDEKcuNniVoG39u zFgHu3OmIRueHA== =3M58 -----END PGP SIGNATURE----- Merge tag 'sched-rt-2022-10-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull preempt RT updates from Thomas Gleixner: "Introduce preempt_[dis|enable_nested() and use it to clean up various places which have open coded PREEMPT_RT conditionals. On PREEMPT_RT enabled kernels, spinlocks and rwlocks are neither disabling preemption nor interrupts. Though there are a few places which depend on the implicit preemption/interrupt disable of those locks, e.g. seqcount write sections, per CPU statistics updates etc. PREEMPT_RT added open coded CONFIG_PREEMPT_RT conditionals to disable/enable preemption in the related code parts all over the place. That's hard to read and does not really explain why this is necessary. Linus suggested to use helper functions (preempt_disable_nested() and preempt_enable_nested()) and use those in the affected places. On !RT enabled kernels these functions are NOPs, but contain a lockdep assert to validate that preemption is actually disabled to catch call sites which do not have preemption disabled. Clean up the affected code paths in mm, dentry and lib" * tag 'sched-rt-2022-10-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: u64_stats: Streamline the implementation flex_proportions: Disable preemption entering the write section. mm/compaction: Get rid of RT ifdeffery mm/memcontrol: Replace the PREEMPT_RT conditionals mm/debug: Provide VM_WARN_ON_IRQS_ENABLED() mm/vmstat: Use preempt_[dis|en]able_nested() dentry: Use preempt_[dis|en]able_nested() preempt: Provide preempt_[dis|en]able_nested() |
||
Linus Torvalds
|
ef688f8b8c |
The first batch of KVM patches, mostly covering x86, which I
am sending out early due to me travelling next week. There is a lone mm patch for which Andrew gave an informal ack at https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org. I will send the bulk of ARM work, as well as other architectures, at the end of next week. ARM: * Account stage2 page table allocations in memory stats. x86: * Account EPT/NPT arm64 page table allocations in memory stats. * Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses. * Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of Hyper-V now support eVMCS fields associated with features that are enumerated to the guest. * Use KVM's sanitized VMCS config as the basis for the values of nested VMX capabilities MSRs. * A myriad event/exception fixes and cleanups. Most notably, pending exceptions morph into VM-Exits earlier, as soon as the exception is queued, instead of waiting until the next vmentry. This fixed a longstanding issue where the exceptions would incorrecly become double-faults instead of triggering a vmexit; the common case of page-fault vmexits had a special workaround, but now it's fixed for good. * A handful of fixes for memory leaks in error paths. * Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow. * Never write to memory from non-sleepable kvm_vcpu_check_block() * Selftests refinements and cleanups. * Misc typo cleanups. Generic: * remove KVM_REQ_UNHALT -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/ FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4 3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE +cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig== =/hqX -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "The first batch of KVM patches, mostly covering x86. ARM: - Account stage2 page table allocations in memory stats x86: - Account EPT/NPT arm64 page table allocations in memory stats - Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses - Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of Hyper-V now support eVMCS fields associated with features that are enumerated to the guest - Use KVM's sanitized VMCS config as the basis for the values of nested VMX capabilities MSRs - A myriad event/exception fixes and cleanups. Most notably, pending exceptions morph into VM-Exits earlier, as soon as the exception is queued, instead of waiting until the next vmentry. This fixed a longstanding issue where the exceptions would incorrecly become double-faults instead of triggering a vmexit; the common case of page-fault vmexits had a special workaround, but now it's fixed for good - A handful of fixes for memory leaks in error paths - Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow - Never write to memory from non-sleepable kvm_vcpu_check_block() - Selftests refinements and cleanups - Misc typo cleanups Generic: - remove KVM_REQ_UNHALT" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits) KVM: remove KVM_REQ_UNHALT KVM: mips, x86: do not rely on KVM_REQ_UNHALT KVM: x86: never write to memory from kvm_vcpu_check_block() KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set KVM: x86: lapic does not have to process INIT if it is blocked KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed KVM: nVMX: Make an event request when pending an MTF nested VM-Exit KVM: x86: make vendor code check for all nested events mailmap: Update Oliver's email address KVM: x86: Allow force_emulation_prefix to be written without a reload KVM: selftests: Add an x86-only test to verify nested exception queueing KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events() KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions KVM: x86: Morph pending exceptions to pending VM-Exits at queue time ... |
||
Liam R. Howlett
|
7964cf8caa |
mm: remove vmacache
By using the maple tree and the maple tree state, the vmacache is no longer beneficial and is complicating the VMA code. Remove the vmacache to reduce the work in keeping it up to date and code complexity. Link: https://lkml.kernel.org/r/20220906194824.2110408-26-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Aneesh Kumar K.V
|
6c542ab757 |
mm/demotion: build demotion targets based on explicit memory tiers
This patch switch the demotion target building logic to use memory tiers instead of NUMA distance. All N_MEMORY NUMA nodes will be placed in the default memory tier and additional memory tiers will be added by drivers like dax kmem. This patch builds the demotion target for a NUMA node by looking at all memory tiers below the tier to which the NUMA node belongs. The closest node in the immediately following memory tier is used as a demotion target. Since we are now only building demotion target for N_MEMORY NUMA nodes the CPU hotplug calls are removed in this patch. Link: https://lkml.kernel.org/r/20220818131042.113280-6-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Jagdish Gediya <jvgediya.oss@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Thomas Gleixner
|
7a025e91ab |
mm/vmstat: Use preempt_[dis|en]able_nested()
Replace the open coded CONFIG_PREEMPT_RT conditional preempt_enable/disable() pairs with the new helper functions which hide the underlying implementation details. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lore.kernel.org/r/20220825164131.402717-4-bigeasy@linutronix.de |
||
Huang Ying
|
c6833e1000 |
memory tiering: rate limit NUMA migration throughput
In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patch as the page promotion rate limit mechanism. The number of the candidate pages to be promoted to the fast memory node via NUMA balancing is counted, if the count exceeds the limit specified by the users, the NUMA balancing promotion will be stopped until the next second. A new sysctl knob kernel.numa_balancing_promote_rate_limit_MBps is added for the users to specify the limit. Link: https://lkml.kernel.org/r/20220713083954.34196-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: osalvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yosry Ahmed
|
ebc97a52b5 |
mm: add NR_SECONDARY_PAGETABLE to count secondary page table uses.
We keep track of several kernel memory stats (total kernel memory, page tables, stack, vmalloc, etc) on multiple levels (global, per-node, per-memcg, etc). These stats give insights to users to how much memory is used by the kernel and for what purposes. Currently, memory used by KVM mmu is not accounted in any of those kernel memory stats. This patch series accounts the memory pages used by KVM for page tables in those stats in a new NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account for other types of secondary pages tables (e.g. iommu page tables). KVM has a decent number of large allocations that aren't for page tables, but for most of them, the number/size of those allocations scales linearly with either the number of vCPUs or the amount of memory assigned to the VM. KVM's secondary page table allocations do not scale linearly, especially when nested virtualization is in use. From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's per-VM pages_{4k,2m,1g} stats unless the guest is doing something bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is forced to allocate a large number of page tables even though the guest isn't accessing that much memory). However, someone would need to either understand how KVM works to make that connection, or know (or be told) to go look at KVM's stats if they're running VMs to better decipher the stats. Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE is informative. For example, when backing a VM with THP vs. HugeTLB, NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order of magnitude higher with THP. So having this stat will at the very least prove to be useful for understanding tradeoffs between VM backing types, and likely even steer folks towards potential optimizations. The original discussion with more details about the rationale: https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org This stat will be used by subsequent patches to count KVM mmu memory usage. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
Hao Lee
|
a39c5d3ce0 |
mm: add DEVICE_ZONE to FOR_ALL_ZONES
FOR_ALL_ZONES should be consistent with enum zone_type. Otherwise, __count_zid_vm_events have the potential to add count to wrong item when zid is ZONE_DEVICE. Link: https://lkml.kernel.org/r/20220807154442.GA18167@haolee.io Signed-off-by: Hao Lee <haolee.swjtu@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
d0e60d46bc |
Bitmap patches for 5.19-rc1
This series includes the following patchsets: - bitmap: optimize bitmap_weight() usage(w/o bitmap_weight_cmp), from me; - lib/bitmap.c make bitmap_print_bitmask_to_buf parseable, from Mauro Carvalho Chehab; - include/linux/find: Fix documentation, from Anna-Maria Behnsen; - bitmap: fix conversion from/to fix-sized arrays, from me; - bitmap: Fix return values to be unsigned, from Kees Cook. It has been in linux-next for at least a week with no problems. -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmKaEzYACgkQsUSA/Tof vsiGKwv8Dgr3G0mLbSfmHZqdFMIsmSmwhxlEH6eBNtX6vjQbGafe/Buhj/1oSY8N NYC4+5Br6s7MmMRth3Kp6UECdl94TS3Ka06T+lVBKkG+C+B1w1/svqUMM2ZCQF3e Z5R/HhR6av9X9Qb2mWSasWLkWp629NjdtRsJSDWiVt1emVVwh+iwxQnMH9VuE+ao z3mvaQfSRhe4h+xCZOiohzFP+0jZb1EnPrQAIVzNUjigo7mglpNvVyO7p/8LU7gD dIjfGmSbtsHU72J+/0lotRqjhjORl1F/EILf8pIzx5Ga7ExUGhOzGWAj7/3uZxfA Cp1Z/QV271MGwv/sNdSPwCCJHf51eOmsbyOyUScjb3gFRwIStEa1jB4hKwLhS5wF 3kh4kqu3WGuIQAdxkUpDBsy3CQjAPDkvtRJorwyWGbjwa9xUETESAgH7XCCTsgWc 0sIuldWWaxC581+fAP1Dzmo8uuWBURTaOrVmRMILQHMTw54zoFyLY+VI9gEAT9aV gnPr3M4F =U7DN -----END PGP SIGNATURE----- Merge tag 'bitmap-for-5.19-rc1' of https://github.com/norov/linux Pull bitmap updates from Yury Norov: - bitmap: optimize bitmap_weight() usage, from me - lib/bitmap.c make bitmap_print_bitmask_to_buf parseable, from Mauro Carvalho Chehab - include/linux/find: Fix documentation, from Anna-Maria Behnsen - bitmap: fix conversion from/to fix-sized arrays, from me - bitmap: Fix return values to be unsigned, from Kees Cook It has been in linux-next for at least a week with no problems. * tag 'bitmap-for-5.19-rc1' of https://github.com/norov/linux: (31 commits) nodemask: Fix return values to be unsigned bitmap: Fix return values to be unsigned KVM: x86: hyper-v: replace bitmap_weight() with hweight64() KVM: x86: hyper-v: fix type of valid_bank_mask ia64: cleanup remove_siblinginfo() drm/amd/pm: use bitmap_{from,to}_arr32 where appropriate KVM: s390: replace bitmap_copy with bitmap_{from,to}_arr64 where appropriate lib/bitmap: add test for bitmap_{from,to}_arr64 lib: add bitmap_{from,to}_arr64 lib/bitmap: extend comment for bitmap_(from,to)_arr32() include/linux/find: Fix documentation lib/bitmap.c make bitmap_print_bitmask_to_buf parseable MAINTAINERS: add cpumask and nodemask files to BITMAP_API arch/x86: replace nodes_weight with nodes_empty where appropriate mm/vmstat: replace cpumask_weight with cpumask_empty where appropriate clocksource: replace cpumask_weight with cpumask_empty in clocksource.c genirq/affinity: replace cpumask_weight with cpumask_empty where appropriate irq: mips: replace cpumask_weight with cpumask_empty where appropriate drm/i915/pmu: replace cpumask_weight with cpumask_empty where appropriate arch/x86: replace cpumask_weight with cpumask_empty where appropriate ... |
||
Yury Norov
|
b55032f106 |
mm/vmstat: replace cpumask_weight with cpumask_empty where appropriate
mm/vmstat.c code calls cpumask_weight() to check if any bit of a given cpumask is set. We can do it more efficiently with cpumask_empty() because cpumask_empty() stops traversing the cpumask as soon as it finds first set bit, while cpumask_weight() counts all bits unconditionally. Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> |
||
Johannes Weiner
|
f6498b776d |
mm: zswap: add basic meminfo and vmstat coverage
Currently it requires poking at debugfs to figure out the size and population of the zswap cache on a host. There are no counters for reads and writes against the cache. As a result, it's difficult to understand zswap behavior on production systems. Print zswap memory consumption and how many pages are zswapped out in /proc/meminfo. Count zswapouts and zswapins in /proc/vmstat. Link: https://lkml.kernel.org/r/20220510152847.230957-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yang Yang
|
94bfe85bde |
mm/vmstat: add events for ksm cow
Users may use ksm by calling madvise(, , MADV_MERGEABLE) when they want to save memory, it's a tradeoff by suffering delay on ksm cow. Users can get to know how much memory ksm saved by reading /sys/kernel/mm/ksm/pages_sharing, but they don't know what's the costs of ksm cow, and this is important of some delay sensitive tasks. So add ksm cow events to help users evaluate whether or how to use ksm. Also update Documentation/admin-guide/mm/ksm.rst with new added events. Link: https://lkml.kernel.org/r/20220331035616.2390805-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: xu xin <xu.xin16@zte.com.cn> Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Saravanan D <saravanand@fb.com> Cc: Minchan Kim <minchan@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Oscar Salvador
|
7d6e2d9638 |
mm: untangle config dependencies for demote-on-reclaim
At the time demote-on-reclaim was introduced, it was tied to CONFIG_HOTPLUG_CPU + CONFIG_MIGRATE, but that is not really accurate. The only two things we need to depend on are CONFIG_NUMA + CONFIG_MIGRATE, so clean this up. Furthermore, we only register the hotplug memory notifier when the system has CONFIG_MEMORY_HOTPLUG. Link: https://lkml.kernel.org/r/20220322224016.4574-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Suggested-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Oscar Salvador
|
734c15700c |
mm: only re-generate demotion targets when a numa node changes its N_CPU state
Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Yang
|
4d45c3aff5 |
mm/vmstat: add event for ksm swapping in copy
When faults in from swap what used to be a KSM page and that page had been swapped in before, system has to make a copy, and leaves remerging the pages to a later pass of ksmd. That is not good for performace, we'd better to reduce this kind of copy. There are some ways to reduce it, for example lessen swappiness or madvise(, , MADV_MERGEABLE) range. So add this event to support doing this tuning. Just like this patch: "mm, THP, swap: add THP swapping out fallback counting". Link: https://lkml.kernel.org/r/20220113023839.758845-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Cc: Hugh Dickins <hughd@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Saravanan D <saravanand@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
e39bb6be9f |
NUMA Balancing: add page promotion counter
Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13 With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are different. After commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"), the PMEM could be used as the cost-effective volatile memory in separate NUMA nodes. In a typical memory tiering system, there are CPUs, DRAM and PMEM in each physical NUMA node. The CPUs and the DRAM will be put in one logical node, while the PMEM will be put in another (faked) logical node. To optimize the system overall performance, the hot pages should be placed in DRAM node. To do that, we need to identify the hot pages in the PMEM node and migrate them to DRAM node via NUMA migration. In the original NUMA balancing, there are already a set of existing mechanisms to identify the pages recently accessed by the CPUs in a node and migrate the pages to the node. So we can reuse these mechanisms to build the mechanisms to optimize the page placement in the memory tiering system. This is implemented in this patchset. At the other hand, the cold pages should be placed in PMEM node. So, we also need to identify the cold pages in the DRAM node and migrate them to PMEM node. In commit 26aa2d199d6f ("mm/migrate: demote pages during reclaim"), a mechanism to demote the cold DRAM pages to PMEM node under memory pressure is implemented. Based on that, the cold DRAM pages can be demoted to PMEM node proactively to free some memory space on DRAM node to accommodate the promoted hot PMEM pages. This is implemented in this patchset too. We have tested the solution with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. This patch (of 3): In a system with multiple memory types, e.g. DRAM and PMEM, the CPU and DRAM in one socket will be put in one NUMA node as before, while the PMEM will be put in another NUMA node as described in the description of the commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"). So, the NUMA balancing mechanism will identify all PMEM accesses as remote access and try to promote the PMEM pages to DRAM. To distinguish the number of the inter-type promoted pages from that of the inter-socket migrated pages. A new vmstat count is added. The counter is per-node (count in the target node). So this can be used to identify promotion imbalance among the NUMA nodes. Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Yang
|
e9ea874a8f |
mm/vmstat: add events for THP max_ptes_* exceeds
There are interfaces to adjust max_ptes_none, max_ptes_swap, max_ptes_shared values, see /sys/kernel/mm/transparent_hugepage/khugepaged/. But system administrator may not know which value is the best. So Add those events to support adjusting max_ptes_* to suitable values. For example, if default max_ptes_swap value causes too much failures, and system uses zram whose IO is fast, administrator could increase max_ptes_swap until THP_SCAN_EXCEED_SWAP_PTE not increase anymore. Link: https://lkml.kernel.org/r/20211225094036.574157-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Saravanan D <saravanand@fb.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Lin Feng
|
a997058679 |
mm: vmstat.c: make extfrag_index show more pretty
fragmentation_index may return -1000 and the corresponding formated value showed by seq_printf will take a negative signatrue, but other positive formated values don't take a positive signatrue, so the output becomes unaligned. before: Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999 after this patch: Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999 Link: https://lkml.kernel.org/r/20211019103241.134797-1-linf@wangsu.com Signed-off-by: Lin Feng <linf@wangsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liu Shixin
|
af1c31acc8 |
mm/vmstat: annotate data race for zone->free_area[order].nr_free
KCSAN reports a data-race on v5.10 which also exists on mainline: BUG: KCSAN: data-race in extfrag_for_order+0x33/0x2d0 race at unknown origin, with read to 0xffff9ee9bfffab48 of 8 bytes by task 34 on cpu 1: extfrag_for_order+0x33/0x2d0 kcompactd+0x5f0/0xce0 kthread+0x1f9/0x220 ret_from_fork+0x22/0x30 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 34 Comm: kcompactd0 Not tainted 5.10.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Access to zone->free_area[order].nr_free in extfrag_for_order() and frag_show_print() is lockless. That's intentional and the stats are a rough estimate anyway. Annotate them with data_race(). [liushixin2@huawei.com: add comments] Link: https://lkml.kernel.org/r/20210918084655.2696522-1-liushixin2@huawei.com Link: https://lkml.kernel.org/r/20210908015606.3999871-1-liushixin2@huawei.com Signed-off-by: Liu Shixin <liushixin2@huawei.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8cd7c588de |
mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liangcai Fan
|
a6ea8b5b9f |
mm/page_alloc.c: show watermark_boost of zone in zoneinfo
min/low/high_wmark_pages(z) is defined as (z->_watermark[WMARK_MIN/LOW/HIGH] + z->watermark_boost) If kswapd is frequently woken up due to the increase of min/low/high_wmark_pages, printing watermark_boost can quickly locate whether watermark_boost or _watermark[WMARK_MIN/LOW/HIGH] caused min/low/high_wmark_pages to increase. Link: https://lkml.kernel.org/r/1632472566-12246-1-git-send-email-liangcaifan19@gmail.com Signed-off-by: Liangcai Fan <liangcaifan19@gmail.com> Cc: Chunyan Zhang <zhang.lyra@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Geert Uytterhoeven
|
ebeac3ea99 |
mm: move fold_vm_numa_events() to fix NUMA without SMP
If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig): sh4-linux-gnu-ld: mm/vmstat.o: in function `vmstat_start': vmstat.c:(.text+0x97c): undefined reference to `fold_vm_numa_events' sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_vmstat': node.c:(.text+0x140): undefined reference to `fold_vm_numa_events' sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_numastat': node.c:(.text+0x1d0): undefined reference to `fold_vm_numa_events' Fix this by moving fold_vm_numa_events() outside the SMP-only section. Link: https://lkml.kernel.org/r/9d16ccdd9ef32803d7100c84f737de6a749314fb.1631781495.git.geert+renesas@glider.be Fixes: f19298b9516c1a03 ("mm/vmstat: convert NUMA statistics to basic NUMA counters") Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Gon Solo <gonsolo@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
c68ed79457 |
mm/vmstat: protect per cpu variables with preempt disable on RT
Disable preemption on -RT for the vmstat code. On vanila the code runs in IRQ-off regions while on -RT it may not when stats are updated under a local_lock. "preempt_disable" ensures that the same resources is not updated in parallel due to preemption. This patch differs from the preempt-rt version where __count_vm_event and __count_vm_events are also protected. The counters are explicitly "allowed to be to be racy" so there is no need to protect them from preemption. Only the accurate page stats that are updated by a read-modify-write need protection. This patch also differs in that a preempt_[en|dis]able_rt helper is not used. As vmstat is the only user of the helper, it was suggested that it be open-coded in vmstat.c instead of risking the helper being used in unnecessary contexts. Link: https://lkml.kernel.org/r/20210805160019.1137-2-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
14726903c8 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "173 patches. Subsystems affected by this series: ia64, ocfs2, block, and mm (debug, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock, oom-kill, migration, ksm, percpu, vmstat, and madvise)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits) mm/madvise: add MADV_WILLNEED to process_madvise() mm/vmstat: remove unneeded return value mm/vmstat: simplify the array size calculation mm/vmstat: correct some wrong comments mm/percpu,c: remove obsolete comments of pcpu_chunk_populated() selftests: vm: add COW time test for KSM pages selftests: vm: add KSM merging time test mm: KSM: fix data type selftests: vm: add KSM merging across nodes test selftests: vm: add KSM zero page merging test selftests: vm: add KSM unmerge test selftests: vm: add KSM merge test mm/migrate: correct kernel-doc notation mm: wire up syscall process_mrelease mm: introduce process_mrelease system call memblock: make memblock_find_in_range method private mm/mempolicy.c: use in_task() in mempolicy_slab_node() mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies mm/mempolicy: advertise new MPOL_PREFERRED_MANY mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY ... |
||
Miaohe Lin
|
33090af973 |
mm/vmstat: remove unneeded return value
The return value of pagetypeinfo_showfree and pagetypeinfo_showblockcount are unused now. Remove them. Link: https://lkml.kernel.org/r/20210715122911.15700-4-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
64632fd3eb |
mm/vmstat: simplify the array size calculation
We can replace the array_num * sizeof(array[0]) with sizeof(array) to simplify the code. Link: https://lkml.kernel.org/r/20210715122911.15700-3-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
ea15ba17b4 |
mm/vmstat: correct some wrong comments
Patch series "Cleanup for vmstat". This series contains cleanups to remove unneeded return value, correct wrong comment and simplify the array size calculation. More details can be found in the respective changelogs. This patch (of 3): Correct wrong fls(mem+1) to fls(mem)+1 and remove the duplicated comment with quiet_vmstat(). Link: https://lkml.kernel.org/r/20210715122911.15700-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210715122911.15700-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
668e4147d8 |
mm/vmscan: add page demotion counter
Account the number of demoted pages. Add pgdemote_kswapd and pgdemote_direct VM counters showed in /proc/vmstat. [ daveh: - __count_vm_events() a bit, and made them look at the THP size directly rather than getting data from migrate_pages() ] Link: https://lkml.kernel.org/r/20210721063926.3024591-5-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-6-ying.huang@intel.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Wei Xu <weixugc@google.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
7625eccd18 |
mm: Replace deprecated CPU-hotplug functions.
The functions get_online_cpus() and put_online_cpus() have been deprecated during the CPU hotplug rework. They map directly to cpus_read_lock() and cpus_read_unlock(). Replace deprecated CPU-hotplug functions with the official version. The behavior remains unchanged. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210803141621.780504-21-bigeasy@linutronix.de |
||
Mel Gorman
|
3ac44a346a |
mm/vmstat: inline NUMA event counter updates
__count_numa_event is small enough to be treated similarly to __count_vm_event so inline it. Link: https://lkml.kernel.org/r/20210512095458.30632-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
f19298b951 |
mm/vmstat: convert NUMA statistics to basic NUMA counters
NUMA statistics are maintained on the zone level for hits, misses, foreign etc but nothing relies on them being perfectly accurate for functional correctness. The counters are used by userspace to get a general overview of a workloads NUMA behaviour but the page allocator incurs a high cost to maintain perfect accuracy similar to what is required for a vmstat like NR_FREE_PAGES. There even is a sysctl vm.numa_stat to allow userspace to turn off the collection of NUMA statistics like NUMA_HIT. This patch converts NUMA_HIT and friends to be NUMA events with similar accuracy to VM events. There is a possibility that slight errors will be introduced but the overall trend as seen by userspace will be similar. The counters are no longer updated from vmstat_refresh context as it is unnecessary overhead for counters that may never be read by userspace. Note that counters could be maintained at the node level to save space but it would have a user-visible impact due to /proc/zoneinfo. [lkp@intel.com: Fix misplaced closing brace for !CONFIG_NUMA] Link: https://lkml.kernel.org/r/20210512095458.30632-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
28f836b677 |
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking requirements with vmstat and the zone lock which is inconvenient and causes some issues. For example, the PCP list and vmstat share the same per-cpu space meaning that it's possible that vmstat updates dirty cache lines holding per-cpu lists across CPUs unless padding is used. Second, PREEMPT_RT does not want to disable IRQs for too long in the page allocator. This series splits the locking requirements and uses locks types more suitable for PREEMPT_RT, reduces the time when special locking is required for stats and reduces the time when IRQs need to be disabled on !PREEMPT_RT kernels. Why local_lock? PREEMPT_RT considers the following sequence to be unsafe as documented in Documentation/locking/locktypes.rst local_irq_disable(); spin_lock(&lock); The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save) -> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to separate this out, it generally means there are points where we enable IRQs and reenable them again immediately. To prevent a migration and the per-cpu pointer going stale, migrate_disable is also needed. That is a custom lock that is similar, but worse, than local_lock. Furthermore, on PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By converting to local_lock which disables migration on PREEMPT_RT, the locking requirements can be separated and start moving the protections for PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a bonus, local_lock also means that PROVE_LOCKING does something useful. After that, it's obvious that zone_statistics incurs too much overhead and leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels. zone_statistics uses perfectly accurate counters requiring IRQs be disabled for parallel RMW sequences when inaccurate ones like vm_events would do. The series makes the NUMA statistics (NUMA_HIT and friends) inaccurate counters that then require no special protection on !PREEMPT_RT. The bulk page allocator can then do stat updates in bulk with IRQs enabled which should improve the efficiency. Technically, this could have been done without the local_lock and vmstat conversion work and the order simply reflects the timing of when different series were implemented. Finally, there are places where we conflate IRQs being disabled for the PCP with the IRQ-safe zone spinlock. The remainder of the series reduces the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels. By the end of the series, page_alloc.c does not call local_irq_save so the locking scope is a bit clearer. The one exception is that modifying NR_FREE_PAGES still happens in places where it's known the IRQs are disabled as it's harmless for PREEMPT_RT and would be expensive to split the locking there. No performance data is included because despite the overhead of the stats, it's within the noise for most workloads on !PREEMPT_RT. However, Jesper Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @ 3.60GHz CPU on the first version of this series. Focusing on the array variant of the bulk page allocator reveals the following. (CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz) ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size Baseline Patched 1 56.383 54.225 (+3.83%) 2 40.047 35.492 (+11.38%) 3 37.339 32.643 (+12.58%) 4 35.578 30.992 (+12.89%) 8 33.592 29.606 (+11.87%) 16 32.362 28.532 (+11.85%) 32 31.476 27.728 (+11.91%) 64 30.633 27.252 (+11.04%) 128 30.596 27.090 (+11.46%) While this is a positive outcome, the series is more likely to be interesting to the RT people in terms of getting parts of the PREEMPT_RT tree into mainline. This patch (of 9): The per-cpu page allocator lists and the per-cpu vmstat deltas are stored in the same struct per_cpu_pages even though vmstats have no direct impact on the per-cpu page lists. This is inconsistent because the vmstats for a node are stored on a dedicated structure. The bigger issue is that the per_cpu_pages structure is not cache-aligned and stat updates either cache conflict with adjacent per-cpu lists incurring a runtime cost or padding is required incurring a memory cost. This patch splits the per-cpu pagelists and the vmstat deltas into separate structures. It's mostly a mechanical conversion but some variable renaming is done to clearly distinguish the per-cpu pages structure (pcp) from the vmstats (pzstats). Superficially, this appears to increase the size of the per_cpu_pages structure but the movement of expire fills a structure hole so there is no impact overall. [mgorman@techsingularity.net: make it W=1 cleaner] Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net [mgorman@techsingularity.net: make it W=1 even cleaner] Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net [lkp@intel.com: check struct per_cpu_zonestat has a non-zero size] [vbabka@suse.cz: Init zone->per_cpu_zonestats properly] Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
f0953a1bba |
mm: fix typos in comments
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Saravanan D
|
575299ea18 |
x86/mm: track linear mapping split events
To help with debugging the sluggishness caused by TLB miss/reload, we introduce monotonic hugepage [direct mapped] split event counts since system state: SYSTEM_RUNNING to be displayed as part of /proc/vmstat in x86 servers The lifetime split event information will be displayed at the bottom of /proc/vmstat .... swap_ra 0 swap_ra_hit 0 direct_map_level2_splits 94 direct_map_level3_splits 4 nr_unstable 0 .... One of the many lasting sources of direct hugepage splits is kernel tracing (kprobes, tracepoints). Note that the kernel's code segment [512 MB] points to the same physical addresses that have been already mapped in the kernel's direct mapping range. Source : Documentation/x86/x86_64/mm.rst When we enable kernel tracing, the kernel has to modify attributes/permissions of the text segment hugepages that are direct mapped causing them to split. Kernel's direct mapped hugepages do not coalesce back after split and remain in place for the remainder of the lifetime. An instance of direct page splits when we turn on dynamic kernel tracing .... cat /proc/vmstat | grep -i direct_map_level direct_map_level2_splits 784 direct_map_level3_splits 12 bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @ [pid, comm] = count(); }' cat /proc/vmstat | grep -i direct_map_level direct_map_level2_splits 789 direct_map_level3_splits 12 .... Link: https://lkml.kernel.org/r/20210218235744.1040634-1-saravanand@fb.com Signed-off-by: Saravanan D <saravanand@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |