IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Commit e6fab54423 ("ARM/arm64: KVM: test properly for a PTE's
uncachedness") modified the logic to test whether a HYP or stage-2
mapping needs flushing, from [incorrectly] interpreting the page table
attributes to [incorrectly] checking whether the PFN that backs the
mapping is covered by host system RAM. The PFN number is part of the
output of the translation, not the input, so we have to use pte_pfn()
on the contents of the PTE, not __phys_to_pfn() on the HYP virtual
address or stage-2 intermediate physical address.
Fixes: e6fab54423 ("ARM/arm64: KVM: test properly for a PTE's uncachedness")
Cc: stable@vger.kernel.org
Tested-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The open coded tests for checking whether a PTE maps a page as
uncached use a flawed '(pte_val(xxx) & CONST) != CONST' pattern,
which is not guaranteed to work since the type of a mapping is
not a set of mutually exclusive bits
For HYP mappings, the type is an index into the MAIR table (i.e, the
index itself does not contain any information whatsoever about the
type of the mapping), and for stage-2 mappings it is a bit field where
normal memory and device types are defined as follows:
#define MT_S2_NORMAL 0xf
#define MT_S2_DEVICE_nGnRE 0x1
I.e., masking *and* comparing with the latter matches on the former,
and we have been getting lucky merely because the S2 device mappings
also have the PTE_UXN bit set, or we would misidentify memory mappings
as device mappings.
Since the unmap_range() code path (which contains one instance of the
flawed test) is used both for HYP mappings and stage-2 mappings, and
considering the difference between the two, it is non-trivial to fix
this by rewriting the tests in place, as it would involve passing
down the type of mapping through all the functions.
However, since HYP mappings and stage-2 mappings both deal with host
physical addresses, we can simply check whether the mapping is backed
by memory that is managed by the host kernel, and only perform the
D-cache maintenance if this is the case.
Cc: stable@vger.kernel.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
A critical bug has been found in device memory stage1 translation for
VMs with more then 4GB of address space. Once vm_pgoff size is smaller
then pa (which is true for LPAE case, u32 and u64 respectively) some
more significant bits of pa may be lost as a shift operation is performed
on u32 and later cast onto u64.
Example: vm_pgoff(u32)=0x00210030, PAGE_SHIFT=12
expected pa(u64): 0x0000002010030000
produced pa(u64): 0x0000000010030000
The fix is to change the order of operations (casting first onto phys_addr_t
and then shifting).
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[maz: fixed changelog and patch formatting]
Cc: stable@vger.kernel.org
Signed-off-by: Marek Majtyka <marek.majtyka@tieto.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
No need to cast the void pointer returned by kmalloc() in
arch/arm/kvm/mmu.c::kvm_alloc_stage2_pgd().
Signed-off-by: Firo Yang <firogm@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This lets the function access the new memory slot without going through
kvm_memslots and id_to_memslot. It will simplify the code when more
than one address space will be supported.
Unfortunately, the "const"ness of the new argument must be casted
away in two places. Fixing KVM to accept const struct kvm_memory_slot
pointers would require modifications in pretty much all architectures,
and is left for later.
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Architecture-specific helpers are not supposed to muck with
struct kvm_userspace_memory_region contents. Add const to
enforce this.
In order to eliminate the only write in __kvm_set_memory_region,
the cleaning of deleted slots is pulled up from update_memslots
to __kvm_set_memory_region.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_memslots provides lockdep checking. Use it consistently instead of
explicit dereferencing of kvm->memslots.
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The main change here is a significant head.S rework that allows us to
boot on machines with physical memory at a really high address without
having to increase our mapped VA range. Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJVLnQpAAoJELescNyEwWM03RIH/iwcDc0MBZgkwfD5cnY+29p4
m89lMDo3SyGQT4NynHSw7P3R7c3zULmI+9hmJMw/yfjjjL6m7X+vVAF3xj1Am4Al
OzCqYLHyFnlRktzJ6dWeF1Ese7tWqPpxn+OCXgYNpz/r5MfF/HhlyX/qNzAQPKrw
ZpDvnt44DgUfweqjTbwQUg2wkyCRjmz57MQYxDcmJStdpHIu24jWOvDIo3OJGjyS
L49I9DU6DGUhkISZmmBE0T7vmKMD1BcgI7OIzX2WIqn521QT+GSLMhRxaHmK1s1V
A8gaMTwpo0xFhTAt7sbw/5+2663WmfRdZI+FtduvORsoxX6KdDn7DH1NQixIm8s=
=+F0I
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here are the core arm64 updates for 4.1.
Highlights include a significant rework to head.S (allowing us to boot
on machines with physical memory at a really high address), an AES
performance boost on Cortex-A57 and the ability to run a 32-bit
userspace with 64k pages (although this requires said userspace to be
built with a recent binutils).
The head.S rework spilt over into KVM, so there are some changes under
arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
In particular, the linker script changes caused us some issues in
-next, so there are a few merge commits where we had to apply fixes on
top of a stable branch.
Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
arm64: fix midr range for Cortex-A57 erratum 832075
arm64: errata: add workaround for cortex-a53 erratum #845719
arm64: Use bool function return values of true/false not 1/0
arm64: defconfig: updates for 4.1
arm64: Extract feature parsing code from cpu_errata.c
arm64: alternative: Allow immediate branch as alternative instruction
arm64: insn: Add aarch64_insn_decode_immediate
ARM: kvm: round HYP section to page size instead of log2 upper bound
ARM: kvm: assert on HYP section boundaries not actual code size
arm64: head.S: ensure idmap_t0sz is visible
arm64: pmu: add support for interrupt-affinity property
dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
arm64: head.S: ensure visibility of page tables
arm64: KVM: use ID map with increased VA range if required
arm64: mm: increase VA range of identity map
ARM: kvm: implement replacement for ld's LOG2CEIL()
arm64: proc: remove unused cpu_get_pgd macro
arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
arm64: remove __calc_phys_offset
arm64: merge __enable_mmu and __turn_mmu_on
...
This patch modifies the HYP init code so it can deal with system
RAM residing at an offset which exceeds the reach of VA_BITS.
Like for EL1, this involves configuring an additional level of
translation for the ID map. However, in case of EL2, this implies
that all translations use the extra level, as we cannot seamlessly
switch between translation tables with different numbers of
translation levels.
So add an extra translation table at the root level. Since the
ID map and the runtime HYP map are guaranteed not to overlap, they
can share this root level, and we can essentially merge these two
tables into one.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The HYP init bounce page is a runtime construct that ensures that the
HYP init code does not cross a page boundary. However, this is something
we can do perfectly well at build time, by aligning the code appropriately.
For arm64, we just align to 4 KB, and enforce that the code size is less
than 4 KB, regardless of the chosen page size.
For ARM, the whole code is less than 256 bytes, so we tweak the linker
script to align at a power of 2 upper bound of the code size
Note that this also fixes a benign off-by-one error in the original bounce
page code, where a bounce page would be allocated unnecessarily if the code
was exactly 1 page in size.
On ARM, it also fixes an issue with very large kernels reported by Arnd
Bergmann, where stub sections with linker emitted veneers could erroneously
trigger the size/alignment ASSERT() in the linker script.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have page aging in Stage-2, it becomes obvious that
we're doing way too much work handling the fault.
The page is not going anywhere (it is still mapped), the page
tables are already allocated, and all we want is to flip a bit
in the PMD or PTE. Also, we can avoid any form of TLB invalidation,
since a page with the AF bit off is not allowed to be cached.
An obvious solution is to have a separate handler for FSC_ACCESS,
where we pride ourselves to only do the very minimum amount of
work.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Until now, KVM/arm didn't care much for page aging (who was swapping
anyway?), and simply provided empty hooks to the core KVM code. With
server-type systems now being available, things are quite different.
This patch implements very simple support for page aging, by clearing
the Access flag in the Stage-2 page tables. On access fault, the current
fault handling will write the PTE or PMD again, putting the Access flag
back on.
It should be possible to implement a much faster handling for Access
faults, but that's left for a later patch.
With this in place, performance in VMs is degraded much more gracefully.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So far, handle_hva_to_gpa was never required to return a value.
As we prepare to age pages at Stage-2, we need to be able to
return a value from the iterator (kvm_test_age_hva).
Adapt the code to handle this situation. No semantic change.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The kernel's pgd_index macro is designed to index a normal, page
sized array. KVM is a bit diffferent, as we can use concatenated
pages to have a bigger address space (for example 40bit IPA with
4kB pages gives us an 8kB PGD.
In the above case, the use of pgd_index will always return an index
inside the first 4kB, which makes a guest that has memory above
0x8000000000 rather unhappy, as it spins forever in a page fault,
whist the host happilly corrupts the lower pgd.
The obvious fix is to get our own kvm_pgd_index that does the right
thing(tm).
Tested on X-Gene with a hacked kvmtool that put memory at a stupidly
high address.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We're using __get_free_pages with to allocate the guest's stage-2
PGD. The standard behaviour of this function is to return a set of
pages where only the head page has a valid refcount.
This behaviour gets us into trouble when we're trying to increment
the refcount on a non-head page:
page:ffff7c00cfb693c0 count:0 mapcount:0 mapping: (null) index:0x0
flags: 0x4000000000000000()
page dumped because: VM_BUG_ON_PAGE((*({ __attribute__((unused)) typeof((&page->_count)->counter) __var = ( typeof((&page->_count)->counter)) 0; (volatile typeof((&page->_count)->counter) *)&((&page->_count)->counter); })) <= 0)
BUG: failure at include/linux/mm.h:548/get_page()!
Kernel panic - not syncing: BUG!
CPU: 1 PID: 1695 Comm: kvm-vcpu-0 Not tainted 4.0.0-rc1+ #3825
Hardware name: APM X-Gene Mustang board (DT)
Call trace:
[<ffff80000008a09c>] dump_backtrace+0x0/0x13c
[<ffff80000008a1e8>] show_stack+0x10/0x1c
[<ffff800000691da8>] dump_stack+0x74/0x94
[<ffff800000690d78>] panic+0x100/0x240
[<ffff8000000a0bc4>] stage2_get_pmd+0x17c/0x2bc
[<ffff8000000a1dc4>] kvm_handle_guest_abort+0x4b4/0x6b0
[<ffff8000000a420c>] handle_exit+0x58/0x180
[<ffff80000009e7a4>] kvm_arch_vcpu_ioctl_run+0x114/0x45c
[<ffff800000099df4>] kvm_vcpu_ioctl+0x2e0/0x754
[<ffff8000001c0a18>] do_vfs_ioctl+0x424/0x5c8
[<ffff8000001c0bfc>] SyS_ioctl+0x40/0x78
CPU0: stopping
A possible approach for this is to split the compound page using
split_page() at allocation time, and change the teardown path to
free one page at a time. It turns out that alloc_pages_exact() and
free_pages_exact() does exactly that.
While we're at it, the PGD allocation code is reworked to reduce
duplication.
This has been tested on an X-Gene platform with a 4kB/48bit-VA host
kernel, and kvmtool hacked to place memory in the second page of
the hardware PGD (PUD for the host kernel). Also regression-tested
on a Cubietruck (Cortex-A7).
[ Reworked to use alloc_pages_exact() and free_pages_exact() and to
return pointers directly instead of by reference as arguments
- Christoffer ]
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Common: Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other architectures).
This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
or TCP_RR netperf tests). This also has to be enabled manually for now,
but the plan is to auto-tune this in the future.
ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
tracking
s390: several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS: Bugfixes.
x86: Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested virtualization
improvements (nested APICv---a nice optimization), usual round of emulation
fixes. There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
ARM has other conflicts where functions are added in the same place
by 3.19-rc and 3.20 patches. These are not large though, and entirely
within KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
=7gdx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Let's assume a guest has created an uncached mapping, and written
to that page. Let's also assume that the host uses a cache-coherent
IO subsystem. Let's finally assume that the host is under memory
pressure and starts to swap things out.
Before this "uncached" page is evicted, we need to make sure
we invalidate potential speculated, clean cache lines that are
sitting there, or the IO subsystem is going to swap out the
cached view, loosing the data that has been written directly
into memory.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Trying to emulate the behaviour of set/way cache ops is fairly
pointless, as there are too many ways we can end-up missing stuff.
Also, there is some system caches out there that simply ignore
set/way operations.
So instead of trying to implement them, let's convert it to VA ops,
and use them as a way to re-enable the trapping of VM ops. That way,
we can detect the point when the MMU/caches are turned off, and do
a full VM flush (which is what the guest was trying to do anyway).
This allows a 32bit zImage to boot on the APM thingy, and will
probably help bootloaders in general.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We don't have to write protect guest memory for dirty logging if architecture
supports hardware dirty logging, such as PML on VMX, so rename it to be more
generic.
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A comment in the dirty page logging patch series mentioned incorrectly
spelled config symbols, just fix them up to match the real thing.
Reported-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch enables ARMv8 ditry page logging support. Plugs ARMv8 into generic
layer through Kconfig symbol, and drops earlier ARM64 constraints to enable
logging at architecture layer.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
This patch adds support for 2nd stage page fault handling while dirty page
logging. On huge page faults, huge pages are dissolved to normal pages, and
rebuilding of 2nd stage huge pages is blocked. In case migration is
canceled this restriction is removed and huge pages may be rebuilt again.
Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Add support to track dirty pages between user space KVM_GET_DIRTY_LOG ioctl
calls. We call kvm_get_dirty_log_protect() function to do most of the work.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
Add support for initial write protection of VM memslots. This patch
series assumes that huge PUDs will not be used in 2nd stage tables, which is
always valid on ARMv7
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
- spring cleaning: removed support for IA64, and for hardware-assisted
virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken because
the (non-KVM) XSAVES patches inadvertently changed the KVM userspace
ABI whenever XSAVES was enabled; hence, this part is going to stable.
Guest support is just a matter of exposing the feature and CPUID leaves
support.
Right now KVM is broken for PPC BookE in your tree (doesn't compile).
I'll reply to the pull request with a patch, please apply it either
before the pull request or in the merge commit, in order to preserve
bisectability somewhat.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJUkpg+AAoJEL/70l94x66DUmoH/jzXYkptSW9NGgm79KqxGJlD
lzLnLBkitVvx++Mz5YBhdJEhKKLUlCtifFT1zPJQ/pthQhIRSaaAwZyNGgUs5w5x
yMGKHiPQFyZRbmQtZhCInW0BftJoYHHciO3nUfHCZnp34My9MP2D55W7/z+fYFfQ
DuqBSE9ThyZJtZ4zh8NRA9fCOeuqwVYRyoBs820Wbsh4cpIBoIK63Dg7k+CLE+ZV
MZa/mRL6bAfsn9W5bnOUAgHJ3SPznnWbO3/g0aV+roL/5pffblprJx9lKNR08xUM
6hDFLop2gDehDJesDkY/o8Ckp1hEouvfsVpSShry4vcgtn0hgh2O5/6Orbmj6vE=
=Zwq1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"3.19 changes for KVM:
- spring cleaning: removed support for IA64, and for hardware-
assisted virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken
because the (non-KVM) XSAVES patches inadvertently changed the KVM
userspace ABI whenever XSAVES was enabled; hence, this part is
going to stable. Guest support is just a matter of exposing the
feature and CPUID leaves support"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (179 commits)
KVM: move APIC types to arch/x86/
KVM: PPC: Book3S: Enable in-kernel XICS emulation by default
KVM: PPC: Book3S HV: Improve H_CONFER implementation
KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
KVM: PPC: Book3S HV: Remove code for PPC970 processors
KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
arch: powerpc: kvm: book3s_pr.c: Remove unused function
arch: powerpc: kvm: book3s.c: Remove some unused functions
arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
KVM: PPC: Book3S HV: ptes are big endian
KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
KVM: PPC: Book3S HV: Fix KSM memory corruption
KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
KVM: PPC: Book3S HV: Fix computation of tlbie operand
KVM: PPC: Book3S HV: Add missing HPTE unlock
KVM: PPC: BookE: Improve irq inject tracepoint
arm/arm64: KVM: Require in-kernel vgic for the arch timers
...
Introduce a new function to unmap user RAM regions in the stage2 page
tables. This is needed on reboot (or when the guest turns off the MMU)
to ensure we fault in pages again and make the dcache, RAM, and icache
coherent.
Using unmap_stage2_range for the whole guest physical range does not
work, because that unmaps IO regions (such as the GIC) which will not be
recreated or in the best case faulted in on a page-by-page basis.
Call this function on secondary and subsequent calls to the
KVM_ARM_VCPU_INIT ioctl so that a reset VCPU will detect the guest
Stage-1 MMU is off when faulting in pages and make the caches coherent.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Instead of using kvm_is_mmio_pfn() to decide whether a host region
should be stage 2 mapped with device attributes, add a new static
function kvm_is_device_pfn() that disregards RAM pages with the
reserved bit set, as those should usually not be mapped as device
memory.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Readonly memslots are often used to implement emulation of ROMs and
NOR flashes, in which case the guest may legally map these regions as
uncached.
To deal with the incoherency associated with uncached guest mappings,
treat all readonly memslots as incoherent, and ensure that pages that
belong to regions tagged as such are flushed to DRAM before being passed
to the guest.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To allow handling of incoherent memslots in a subsequent patch, this
patch adds a paramater 'ipa_uncached' to cache_coherent_guest_page()
so that we can instruct it to flush the page's contents to DRAM even
if the guest has caching globally enabled.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of using kvm_is_mmio_pfn() to decide whether a host region
should be stage 2 mapped with device attributes, add a new static
function kvm_is_device_pfn() that disregards RAM pages with the
reserved bit set, as those should usually not be mapped as device
memory.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit:
b886576 ARM: KVM: user_mem_abort: support stage 2 MMIO page mapping
introduced some code in user_mem_abort that failed to compile if
STRICT_MM_TYPECHECKS was enabled.
This patch fixes up the failing comparison.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Reviewed-by: Kim Phillips <kim.phillips@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When creating or moving a memslot, make sure the IPA space is within the
addressable range of the guest. Otherwise, user space can create too
large a memslot and KVM would try to access potentially unallocated page
table entries when inserting entries in the Stage-2 page tables.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch adds the necessary support for all host kernel PGSIZE and
VA_SPACE configuration options for both EL2 and the Stage-2 page tables.
However, for 40bit and 42bit PARange systems, the architecture mandates
that VTCR_EL2.SL0 is maximum 1, resulting in fewer levels of stage-2
pagge tables than levels of host kernel page tables. At the same time,
systems with a PARange > 42bit, we limit the IPA range by always setting
VTCR_EL2.T0SZ to 24.
To solve the situation with different levels of page tables for Stage-2
translation than the host kernel page tables, we allocate a dummy PGD
with pointers to our actual inital level Stage-2 page table, in order
for us to reuse the kernel pgtable manipulation primitives. Reproducing
all these in KVM does not look pretty and unnecessarily complicates the
32-bit side.
Systems with a PARange < 40bits are not yet supported.
[ I have reworked this patch from its original form submitted by
Jungseok to take the architecture constraints into consideration.
There were too many changes from the original patch for me to
preserve the authorship. Thanks to Catalin Marinas for his help in
figuring out a good solution to this challenge. I have also fixed
various bugs and missing error code handling from the original
patch. - Christoffer ]
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is really no point in faulting in memory regions page by page
if they are not backed by demand paged system RAM but by a linear
passthrough mapping of a host MMIO region. So instead, detect such
regions at setup time and install the mappings for the backing all
at once.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Add support for read-only MMIO passthrough mappings by adding a
'writable' parameter to kvm_phys_addr_ioremap. For the moment,
mappings will be read-write even if 'writable' is false, but once
the definition of PAGE_S2_DEVICE gets changed, those mappings will
be created read-only.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Handle the potential NULL return value of find_vma_intersection()
before dereferencing it.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When we catch something that's not a permission fault or a translation
fault, we log the unsupported FSC in the kernel log, but we were masking
off the bottom bits of the FSC which was not very helpful.
Also correctly report the FSC for data and instruction faults rather
than telling people it was a DFCS, which doesn't exist in the ARM ARM.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The ISS encoding for an exception from a Data Abort has a WnR
bit[6] that indicates whether the Data Abort was caused by a
read or a write instruction. While there are several fields
in the encoding that are only valid if the ISV bit[24] is set,
WnR is not one of them, so we can read it unconditionally.
Instead of fixing both implementations of kvm_is_write_fault()
in place, reimplement it just once using kvm_vcpu_dabt_iswrite(),
which already does the right thing with respect to the WnR bit.
Also fix up the callers to pass 'vcpu'
Acked-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When userspace loads code and data in a read-only memory regions, KVM
needs to be able to handle this on arm and arm64. Specifically this is
used when running code directly from a read-only flash device; the
common scenario is a UEFI blob loaded with the -bios option in QEMU.
Note that the MMIO exit on writes to a read-only memory is ABI and can
be used to emulate block-erase style flash devices.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
A userspace process can map device MMIO memory via VFIO or /dev/mem,
e.g., for platform device passthrough support in QEMU.
During early development, we found the PAGE_S2 memory type being used
for MMIO mappings. This patch corrects that by using the more strongly
ordered memory type for device MMIO mappings: PAGE_S2_DEVICE.
Signed-off-by: Kim Phillips <kim.phillips@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently when a KVM region is deleted or moved after
KVM_SET_USER_MEMORY_REGION ioctl, the corresponding
intermediate physical memory is not unmapped.
This patch corrects this and unmaps the region's IPA range
in kvm_arch_commit_memory_region using unmap_stage2_range.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
unmap_range() was utterly broken, to quote Marc, and broke in all sorts
of situations. It was also quite complicated to follow and didn't
follow the usual scheme of having a separate iterating function for each
level of page tables.
Address this by refactoring the code and introduce a pgd_clear()
function.
Reviewed-by: Jungseok Lee <jays.lee@samsung.com>
Reviewed-by: Mario Smarduch <m.smarduch@samsung.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The kvm/mmu code shared by arm and arm64 uses kalloc() to allocate
a bounce page (if hypervisor init code crosses page boundary) and
hypervisor PGDs. The problem is that kalloc() does not guarantee
the proper alignment. In the case of the bounce page, the page sized
buffer allocated may also cross a page boundary negating the purpose
and leading to a hang during kvm initialization. Likewise the PGDs
allocated may not meet the minimum alignment requirements of the
underlying MMU. This patch uses __get_free_page() to guarantee the
worst case alignment needs of the bounce page and PGDs on both arm
and arm64.
Cc: <stable@vger.kernel.org> # 3.10+
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Compiling with THP enabled leads to the following warning:
arch/arm/kvm/mmu.c: In function ‘unmap_range’:
arch/arm/kvm/mmu.c:177:39: warning: ‘pte’ may be used uninitialized in this function [-Wmaybe-uninitialized]
if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
^
Code inspection reveals that these two cases are mutually exclusive,
so GCC is a bit overzealous here. Silence it anyway by initializing
pte to NULL and testing it later on.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>