IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl8UzA4eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGQ7cH/3v+Gv+SmHJCvaT2
CSu0+7okVnYbY3UTb3hykk7/aOqb6284KjxR03r0CWFzsEsZVhC5pvvruASSiMQg
Pi04sLqv6CsGLHd1n+pl4AUYEaxq6k4KS3uU3HHSWxrahDDApQoRUx2F8lpOxyj8
RiwnoO60IMPA7IFJqzcZuFqsgdxqiiYvnzT461KX8Mrw6fyMXeR2KAj2NwMX8dZN
At21Sf8+LSoh6q2HnugfiUd/jR10XbfxIIx2lXgIinb15GXgWydEQVrDJ7cUV7ix
Jd0S+dtOtp+lWtFHDoyjjqqsMV7+G8i/rFNZoxSkyZqsUTaKzaR6JD3moSyoYZgG
0+eXO4A=
=9EpR
-----END PGP SIGNATURE-----
Merge v5.8-rc6 into drm-next
I've got a silent conflict + two trees based on fixes to merge.
Fixes a silent merge with amdgpu
Signed-off-by: Dave Airlie <airlied@redhat.com>
Both cmp_u32 and cmp_u64 are comparing the pointers instead of the value
at those pointers. This will result in incorrect/unsorted list. Fix it
by deferencing the pointers before comparison.
Fixes: 4ba74e53ada3 ("drm/i915/selftests: Verify frequency scaling with RPS")
Fixes: 8757797ff9c9 ("drm/i915/selftests: Repeat the rps clock frequency measurement")
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200709154931.23310-1-sudeep.holla@arm.com
(cherry picked from commit 2196dfea896f7027b43bae848890ce4aec5c8724)
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
A couple of very simple tests to ensure that the basic properties of
per-engine busyness accounting [0% and 100% busy] are faithful.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200617130916.15261-1-chris@chris-wilson.co.uk
Since we temporarily disable the heartbeat and restore back to the
default value, we can use the stored defaults on the engine and avoid
using a local.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200519063123.20673-3-chris@chris-wilson.co.uk
(cherry picked from commit 3a230a554dbbc6cd5016cf1b56ee77cfcd48c7d8)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Be consistent, and even when we know we had used a WC, flush the mapped
object after writing into it. The flush understands the mapping type and
will only clflush if !I915_MAP_WC, but will always insert a wmb [sfence]
so that we can be sure that all writes are visible.
v2: Add the unconditional wmb so we are know that we always flush the
writes to memory/HW at that point.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200511141304.599-1-chris@chris-wilson.co.uk
The bspec lists both the clock frequency and the effective interval. The
interval corresponds to observed behaviour, so adjust the frequency to
match.
v2: Mika rightfully asked if we could measure the clock frequency from a
selftest.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200427154554.12736-1-chris@chris-wilson.co.uk
For many configuration details within RC6 and RPS we are programming
intervals for the internal clocks. From gen11, these clocks are
configuration via the RPM_CONFIG and so for convenience, we would like
to convert to/from more natural units (ns).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200424162805.25920-2-chris@chris-wilson.co.uk
For verifying reciving the EI interrupts, we need to hold the GPU in
very precise conditions (in terms of C0 cycles during the EI). If we
preempt the busy load to handle the heartbeat, this may perturb the busy
load causing us to miss the interrupt.
The other tests, while not as time sensitive, may also be slightly
perturbed, so apply the heartbeat protection across all the
measurements.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200422083855.26842-1-chris@chris-wilson.co.uk
Having noticed that MI_BB_START is incurring a memory stall (see the
correlation with uncore frequency), we have to unroll the loop in order
to diminish the impact of the MI_BB_START on the instruction throughput.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200421171351.19575-1-chris@chris-wilson.co.uk
Let's isolate the impact of cpu frequency selection on determing the GPU
throughput in response to selection of RPS frequencies.
For real systems, we do have to be concerned with the impact of
integrating c-states, p-states and rp-states, but for the sake of
proving whether or not RPS works, one baby step at a time.
For the record, as one would hope, it does not seem to impact on the
measured performance, but we do it anyway to reduce the number of
variables. Later, we can extend the testing to encourage the the
cpu/pkg to try and sleep while the GPU is busy.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200421142236.8614-1-chris@chris-wilson.co.uk
Link: https://patchwork.freedesktop.org/patch/msgid/20200421142236.8614-1-chris@chris-wilson.co.uk
If we detect that the RPS end points do not scale perfectly, take the
time to measure all the in between values as well. We are aborting the
test, so we might as well spend the available time gathering critical
debug information instead.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200421124636.22554-1-chris@chris-wilson.co.uk
After having testing all the RPS controls individually, we need to take
a step back and check how our RPS worker integrates them to perform
dynamic GPU reclocking. So do that by submitting a spinner and wait and
see what happens.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200420172739.11620-6-chris@chris-wilson.co.uk
If we can not manipulate the frequency with RPS, then comparing min/max
power consumption is pointless / misleading. We will leave the warning
about not being able to control the frequency selection via RPS to other
tests so as not to confuse this more specialised check.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200420172739.11620-2-chris@chris-wilson.co.uk
One of the core tenents of reclocking the GPU is that its throughput
scales with the clock frequency. We can observe this by incrementing a
loop counter on the GPU, and compare the different execution rates at
the notional RPS frequencies.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200420172739.11620-1-chris@chris-wilson.co.uk
A basic premise of RPS is that at lower frequencies, not only do we run
slower, but we save power compared to higher frequencies. For example,
when idle, we set the minimum frequency just in case there is some
residual current. Since the power curve should be a physical
relationship, if we find no power saving it's likely that we've broken
our frequency handling, so test!
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200417152018.13079-2-chris@chris-wilson.co.uk
It seems that although (perhaps because of the memory stall?) the
spinner has signaled that it has started, it still takes some time to
spin up to 100% utilisation of the HW. Since the test depends on the
full utilisation of the HW to trigger the RPS interrupt, wait a little
bit and flush the interrupt status to be sure that the event we see if
from the spinner.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200417093928.17822-1-chris@chris-wilson.co.uk
Since we depend upon RPS generating interrupts after evaluation
intervals to determine when to up/down clock the GPU, it is imperative
that we successfully enable interrupt generation! Verify that we do see
an interrupt if we keep the GPU busy for an entire EI.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200415170318.16771-1-chris@chris-wilson.co.uk