IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In time for 2.6.20, we can get rid of this junk.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When booting a NUMA system with nodes that have no memory (eg by limiting
memory), bootmem_alloc_core tried to find pages in an uninitialized
bootmem_map. This caused a null pointer access. This fix adds a check, so
that NULL is returned. That will enable the caller (bootmem_alloc_nopanic)
to alloc memory on other without a panic.
Signed-off-by: Christian Krafft <krafft@de.ibm.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Martin Bligh <mbligh@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce ARCH_LOW_ADDRESS_LIMIT which can be set per architecture to
override the 4GB default limit used by the bootmem allocater within
__alloc_bootmem_low() and __alloc_bootmem_low_node(). E.g. s390 needs a
2GB limit instead of 4GB.
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It fixes various coding style issues, specially when spaces are useless. For
example '*' go next to the function name.
Signed-off-by: Franck Bui-Huu <vagabon.xyz@gmail.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It also creates get_mapsize() helper in order to make the code more readable
when it calculates the boot bitmap size.
Signed-off-by: Franck Bui-Huu <vagabon.xyz@gmail.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch marks an unused export as EXPORT_UNUSED_SYMBOL.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The node setup code would try to allocate the node metadata in the node
itself, but that fails if there is no memory in there.
This can happen with memory hotplug when the hotplug area defines an so
far empty node.
Now use bootmem to try to allocate the mem_map in other nodes.
And if it fails don't panic, but just ignore the node.
To make this work I added a new __alloc_bootmem_nopanic function that
does what its name implies.
TBD should try to use nearby nodes here. Currently we just use any.
It's hard to do it better because bootmem doesn't have proper fallback
lists yet.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a list_head to bootmem_data_t and make bootmems use it. bootmem list is
sorted by node_boot_start.
Only nodes against which init_bootmem() is called are linked to the list.
(i386 allocates bootmem only from one node(0) not from all online nodes.)
A summary:
1. for_each_online_pgdat() traverses all *online* nodes.
2. alloc_bootmem() allocates memory only from initialized-for-bootmem nodes.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes problems with very large nodes (over 128GB) filling up all of
the first 4GB with their mem_map and not leaving enough space for the
swiotlb.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch cleans up the way the bootmem allocator frees pages.
A new function, __free_pages_bootmem(), is provided in mm/page_alloc.c that is
called from mm/bootmem.c to turn pages over to the main allocator. All the
bits of code to initialise pages (clearing PG_reserved and setting the page
count) are moved to here. The checks on page validity are removed, on the
assumption that the struct page arrays will have been prepared correctly.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Patch cleans up the alloc_bootmem fix for swiotlb. Patch removes
alloc_bootmem_*_limit api and fixes alloc_boot_*low api to do the right
thing -- allocate from low32 memory.
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Hitting BUG_ON() in __alloc_bootmem_core() when there is no free page
available in the first node's memory. For the case of kdump on PPC64
(Power 4 machine), the captured kernel is used two memory regions - memory
for TCE tables (tce-base and tce-size at top of RAM and reserved) and
captured kernel memory region (crashk_base and crashk_size). Since we
reserve the memory for the first node, we should be returning from
__alloc_bootmem_core() to search for the next node (pg_dat).
Currently, find_next_zero_bit() is returning the n^th bit (eidx) when there
is no free page. Then, test_bit() is failed since we set 0xff only for the
actual size initially (init_bootmem_core()) even though rounded up to one
page for bdata->node_bootmem_map. We are hitting the BUG_ON after failing
to enter second "for" loop.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove PageReserved() calls from core code by tightening VM_RESERVED
handling in mm/ to cover PageReserved functionality.
PageReserved special casing is removed from get_page and put_page.
All setting and clearing of PageReserved is retained, and it is now flagged
in the page_alloc checks to help ensure we don't introduce any refcount
based freeing of Reserved pages.
MAP_PRIVATE, PROT_WRITE of VM_RESERVED regions is tentatively being
deprecated. We never completely handled it correctly anyway, and is be
reintroduced in future if required (Hugh has a proof of concept).
Once PageReserved() calls are removed from kernel/power/swsusp.c, and all
arch/ and driver code, the Set and Clear calls, and the PG_reserved bit can
be trivially removed.
Last real user of PageReserved is swsusp, which uses PageReserved to
determine whether a struct page points to valid memory or not. This still
needs to be addressed (a generic page_is_ram() should work).
A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and
thus mapcounted and count towards shared rss). These writes to the struct
page could cause excessive cacheline bouncing on big systems. There are a
number of ways this could be addressed if it is an issue.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Refcount bug fix for filemap_xip.c
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This introduces a limit parameter to the core bootmem allocator; The new
parameter indicates that physical memory allocated by the bootmem
allocator should be within the requested limit.
We also introduce alloc_bootmem_low_pages_limit, alloc_bootmem_node_limit,
alloc_bootmem_low_pages_node_limit apis, but alloc_bootmem_low_pages_limit
is the only api used for swiotlb.
The existing alloc_bootmem_low_pages() api could instead have been
changed and made to pass right limit to the core allocator. But that
would make the patch more intrusive for 2.6.14, as other arches use
alloc_bootmem_low_pages(). We may be done that post 2.6.14 as a
cleanup.
With this, swiotlb gets memory within 4G for both x86_64 and ia64
arches.
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Ravikiran G Thirumalai <kiran@scalex86.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As requested by Thomas Gleixner <tglx@linutronix.de>:
"5d3d0f7704ed0bc7eaca0501eeae3e5da1ea6c87 breaks a couple of ARM
boards, which depend on the historical bootmem allocation order.
There is a cleaner solution around to remove the pgdat list
completely, but this is a topic for post 2.6.14
Andi signalled ACK already."
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This leads to bootmem allocating first from node 0 instead
of from the last node. This avoids swiotlb allocating on the last node, which
doesn't really work on a machine with >4GB.
Note: there is a better patch around from someone else that gets
rid of the pgdat list completely.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch makes use of ALIGN() to remove duplicate round-up code.
Signed-off-by: Nick Wilson <njw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch retrieves the max_pfn being used by previous kernel and stores it
in a safe location (saved_max_pfn) before it is overwritten due to user
defined memory map. This pfn is used to make sure that user does not try to
read the physical memory beyond saved_max_pfn.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!