IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 2a76352ad2 ]
Currently we add individual copy of same OPP table for each CPU within
the cluster. This is redundant and doesn't reflect the reality.
We can't use core cpumask to set policy->cpus in ve_spc_cpufreq_init()
anymore as it gets called via cpuhp_cpufreq_online()->cpufreq_online()
->cpufreq_driver->init() and the cpumask gets updated upon CPU hotplug
operations. It also may cause issues when the vexpress_spc_cpufreq
driver is built as a module.
Since ve_spc_clk_init is built-in device initcall, we should be able to
use the same topology_core_cpumask to set the opp sharing cpumask via
dev_pm_opp_set_sharing_cpus and use the same later in the driver via
dev_pm_opp_get_sharing_cpus.
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 72a81ad9d6 ]
If an SMT capable system is not IPL'ed from the first CPU the setup of
the physical to logical CPU mapping is broken: the IPL core gets CPU
number 0, but then the next core gets CPU number 1. Correct would be
that all SMT threads of CPU 0 get the subsequent logical CPU numbers.
This is important since a lot of code (like e.g. the CPU topology
code) assumes that CPU maps are setup like this. If the mapping is
broken the system will not IPL due to broken topology masks:
[ 1.716341] BUG: arch topology broken
[ 1.716342] the SMT domain not a subset of the MC domain
[ 1.716343] BUG: arch topology broken
[ 1.716344] the MC domain not a subset of the BOOK domain
This scenario can usually not happen since LPARs are always IPL'ed
from CPU 0 and also re-IPL is intiated from CPU 0. However older
kernels did initiate re-IPL on an arbitrary CPU. If therefore a re-IPL
from an old kernel into a new kernel is initiated this may lead to
crash.
Fix this by setting up the physical to logical CPU mapping correctly.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 934bda59f2 ]
While developing KASAN for 64-bit book3s, I hit the following stack
over-read.
It occurs because the hypercall to put characters onto the terminal
takes 2 longs (128 bits/16 bytes) of characters at a time, and so
hvc_put_chars() would unconditionally copy 16 bytes from the argument
buffer, regardless of supplied length. However, udbg_hvc_putc() can
call hvc_put_chars() with a single-byte buffer, leading to the error.
==================================================================
BUG: KASAN: stack-out-of-bounds in hvc_put_chars+0xdc/0x110
Read of size 8 at addr c0000000023e7a90 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Not tainted 5.2.0-rc2-next-20190528-02824-g048a6ab4835b #113
Call Trace:
dump_stack+0x104/0x154 (unreliable)
print_address_description+0xa0/0x30c
__kasan_report+0x20c/0x224
kasan_report+0x18/0x30
__asan_report_load8_noabort+0x24/0x40
hvc_put_chars+0xdc/0x110
hvterm_raw_put_chars+0x9c/0x110
udbg_hvc_putc+0x154/0x200
udbg_write+0xf0/0x240
console_unlock+0x868/0xd30
register_console+0x970/0xe90
register_early_udbg_console+0xf8/0x114
setup_arch+0x108/0x790
start_kernel+0x104/0x784
start_here_common+0x1c/0x534
Memory state around the buggy address:
c0000000023e7980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0000000023e7a00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1
>c0000000023e7a80: f1 f1 01 f2 f2 f2 00 00 00 00 00 00 00 00 00 00
^
c0000000023e7b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0000000023e7b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Document that a 16-byte buffer is requred, and provide it in udbg.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bbcc5672b0 upstream.
Declaring __current_thread_info as a global register variable has the
effect of preventing GCC from saving & restoring its value in cases
where the ABI would typically do so.
To quote GCC documentation:
> If the register is a call-saved register, call ABI is affected: the
> register will not be restored in function epilogue sequences after the
> variable has been assigned. Therefore, functions cannot safely return
> to callers that assume standard ABI.
When our position independent VDSO is built for the n32 or n64 ABIs all
functions it exposes should be preserving the value of $gp/$28 for their
caller, but in the presence of the __current_thread_info global register
variable GCC stops doing so & simply clobbers $gp/$28 when calculating
the address of the GOT.
In cases where the VDSO returns success this problem will typically be
masked by the caller in libc returning & restoring $gp/$28 itself, but
that is by no means guaranteed. In cases where the VDSO returns an error
libc will typically contain a fallback path which will now fail
(typically with a bad memory access) if it attempts anything which
relies upon the value of $gp/$28 - eg. accessing anything via the GOT.
One fix for this would be to move the declaration of
__current_thread_info inside the current_thread_info() function,
demoting it from global register variable to local register variable &
avoiding inadvertently creating a non-standard calling ABI for the VDSO.
Unfortunately this causes issues for clang, which doesn't support local
register variables as pointed out by commit fe92da0f35 ("MIPS: Changed
current_thread_info() to an equivalent supported by both clang and GCC")
which introduced the global register variable before we had a VDSO to
worry about.
Instead, fix this by continuing to use the global register variable for
the kernel proper but declare __current_thread_info as a simple extern
variable when building the VDSO. It should never be referenced, and will
cause a link error if it is. This resolves the calling convention issue
for the VDSO without having any impact upon the build of the kernel
itself for either clang or gcc.
Signed-off-by: Paul Burton <paulburton@kernel.org>
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Reported-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Tested-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Brauner <christian.brauner@canonical.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: <stable@vger.kernel.org> # v4.4+
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0539ad0b22 ]
The s390 CPU Measurement sampling facility has an overflow condition
which fires when all entries in a SBD are used.
The measurement alert interrupt is triggered and reads out all samples
in this SDB. It then tests the successor SDB, if this SBD is not full,
the interrupt handler does not read any samples at all from this SDB
The design waits for the hardware to fill this SBD and then trigger
another meassurement alert interrupt.
This scheme works nicely until
an perf_event_overflow() function call discards the sample due to
a too high sampling rate.
The interrupt handler has logic to read out a partially filled SDB
when the perf event overflow condition in linux common code is met.
This causes the CPUM sampling measurement hardware and the PMU
device driver to operate on the same SBD's trailer entry.
This should not happen.
This can be seen here using this trace:
cpumsf_pmu_add: tear:0xb5286000
hw_perf_event_update: sdbt 0xb5286000 full 1 over 0 flush_all:0
hw_perf_event_update: sdbt 0xb5286008 full 0 over 0 flush_all:0
above shows 1. interrupt
hw_perf_event_update: sdbt 0xb5286008 full 1 over 0 flush_all:0
hw_perf_event_update: sdbt 0xb5286008 full 0 over 0 flush_all:0
above shows 2. interrupt
... this goes on fine until...
hw_perf_event_update: sdbt 0xb5286068 full 1 over 0 flush_all:0
perf_push_sample1: overflow
one or more samples read from the IRQ handler are rejected by
perf_event_overflow() and the IRQ handler advances to the next SDB
and modifies the trailer entry of a partially filled SDB.
hw_perf_event_update: sdbt 0xb5286070 full 0 over 0 flush_all:1
timestamp: 14:32:52.519953
Next time the IRQ handler is called for this SDB the trailer entry shows
an overflow count of 19 missed entries.
hw_perf_event_update: sdbt 0xb5286070 full 1 over 19 flush_all:1
timestamp: 14:32:52.970058
Remove access to a follow on SDB when event overflow happened.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 39d4a501a9 ]
Function perf_event_ever_overflow() and perf_event_account_interrupt()
are called every time samples are processed by the interrupt handler.
However function perf_event_account_interrupt() has checks to avoid being
flooded with interrupts (more then 1000 samples are received per
task_tick). Samples are then dropped and a PERF_RECORD_THROTTLED is
added to the perf data. The perf subsystem limit calculation is:
maximum sample frequency := 100000 --> 1 samples per 10 us
task_tick = 10ms = 10000us --> 1000 samples per task_tick
The work flow is
measurement_alert() uses SDBT head and each SBDT points to 511
SDB pages, each with 126 sample entries. After processing 8 SBDs
and for each valid sample calling:
perf_event_overflow()
perf_event_account_interrupts()
there is a considerable amount of samples being dropped, especially when
the sample frequency is very high and near the 100000 limit.
To avoid the high amount of samples being dropped near the end of a
task_tick time frame, increment the sampling interval in case of
dropped events. The CPU Measurement sampling facility on the s390
supports only intervals, specifiing how many CPU cycles have to be
executed before a sample is generated. Increase the interval when the
samples being generated hit the task_tick limit.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 247f265fa5 ]
Each SBDT is located at a 4KB page and contains 512 entries.
Each entry of a SDBT points to a SDB, a 4KB page containing
sampled data. The last entry is a link to another SDBT page.
When an event is created the function sequence executed is:
__hw_perf_event_init()
+--> allocate_buffers()
+--> realloc_sampling_buffers()
+---> alloc_sample_data_block()
Both functions realloc_sampling_buffers() and
alloc_sample_data_block() allocate pages and the allocation
can fail. This is handled correctly and all allocated
pages are freed and error -ENOMEM is returned to the
top calling function. Finally the event is not created.
Once the event has been created, the amount of initially
allocated SDBT and SDB can be too low. This is detected
during measurement interrupt handling, where the amount
of lost samples is calculated. If the number of lost samples
is too high considering sampling frequency and already allocated
SBDs, the number of SDBs is enlarged during the next execution
of cpumsf_pmu_enable().
If more SBDs need to be allocated, functions
realloc_sampling_buffers()
+---> alloc-sample_data_block()
are called to allocate more pages. Page allocation may fail
and the returned error is ignored. A SDBT and SDB setup
already exists.
However the modified SDBTs and SDBs might end up in a situation
where the first entry of an SDBT does not point to an SDB,
but another SDBT, basicly an SBDT without payload.
This can not be handled by the interrupt handler, where an SDBT
must have at least one entry pointing to an SBD.
Add a check to avoid SDBTs with out payload (SDBs) when enlarging
the buffer setup.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a8de1304b7 ]
The DTC v1.5.1 added references to (U)INT32_MAX.
This is no problem for user-space programs since <stdint.h> defines
(U)INT32_MAX along with (u)int32_t.
For the kernel space, libfdt_env.h needs to be adjusted before we
pull in the changes.
In the kernel, we usually use s/u32 instead of (u)int32_t for the
fixed-width types.
Accordingly, we already have S/U32_MAX for their max values.
So, we should not add (U)INT32_MAX to <linux/limits.h> any more.
Instead, add them to the in-kernel libfdt_env.h to compile the
latest libfdt.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4e706af3cd ]
The issue was showing "Mitigation" message via sysfs whatever the
state of "RFI Flush", but it should show "Vulnerable" when it is
disabled.
If you have "L1D private" feature enabled and not "RFI Flush" you are
vulnerable to meltdown attacks.
"RFI Flush" is the key feature to mitigate the meltdown whatever the
"L1D private" state.
SEC_FTR_L1D_THREAD_PRIV is a feature for Power9 only.
So the message should be as the truth table shows:
CPU | L1D private | RFI Flush | sysfs
----|-------------|-----------|-------------------------------------
P9 | False | False | Vulnerable
P9 | False | True | Mitigation: RFI Flush
P9 | True | False | Vulnerable: L1D private per thread
P9 | True | True | Mitigation: RFI Flush, L1D private per thread
P8 | False | False | Vulnerable
P8 | False | True | Mitigation: RFI Flush
Output before this fix:
# cat /sys/devices/system/cpu/vulnerabilities/meltdown
Mitigation: RFI Flush, L1D private per thread
# echo 0 > /sys/kernel/debug/powerpc/rfi_flush
# cat /sys/devices/system/cpu/vulnerabilities/meltdown
Mitigation: L1D private per thread
Output after fix:
# cat /sys/devices/system/cpu/vulnerabilities/meltdown
Mitigation: RFI Flush, L1D private per thread
# echo 0 > /sys/kernel/debug/powerpc/rfi_flush
# cat /sys/devices/system/cpu/vulnerabilities/meltdown
Vulnerable: L1D private per thread
Signed-off-by: Gustavo L. F. Walbon <gwalbon@linux.ibm.com>
Signed-off-by: Mauro S. M. Rodrigues <maurosr@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190502210907.42375-1-gwalbon@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7d82127474 ]
When unloading the module, one gets
------------[ cut here ]------------
Device 'cmm0' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.
WARNING: CPU: 0 PID: 19308 at drivers/base/core.c:1244 .device_release+0xcc/0xf0
...
We only have one static fake device. There is nothing to do when
releasing the device (via cmm_exit()).
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191031142933.10779-2-david@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8e6b6da91a ]
Some PowerPC CPUs are vulnerable to L1TF to the same extent as to
Meltdown. It is also mitigated by flushing the L1D on privilege
transition.
Currently the sysfs gives a false negative on L1TF on CPUs that I
verified to be vulnerable, a Power9 Talos II Boston 004e 1202, PowerNV
T2P9D01.
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Just have cpu_show_l1tf() call cpu_show_meltdown() directly]
Link: https://lore.kernel.org/r/20191029190759.84821-1-asteinhauser@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eb8e20f890 ]
accumulate_stolen_time() is called prior to interrupt state being
reconciled, which can trip the warning in arch_local_irq_restore():
WARNING: CPU: 5 PID: 1017 at arch/powerpc/kernel/irq.c:258 .arch_local_irq_restore+0x9c/0x130
...
NIP .arch_local_irq_restore+0x9c/0x130
LR .rb_start_commit+0x38/0x80
Call Trace:
.ring_buffer_lock_reserve+0xe4/0x620
.trace_function+0x44/0x210
.function_trace_call+0x148/0x170
.ftrace_ops_no_ops+0x180/0x1d0
ftrace_call+0x4/0x8
.accumulate_stolen_time+0x1c/0xb0
decrementer_common+0x124/0x160
For now just mark it as notrace. We may change the ordering to call it
after interrupt state has been reconciled, but that is a larger
change.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191024055932.27940-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 884caadad1 ]
The definitions for bit field [19:18] of the Peripheral Function Select
Register 3 were accidentally copied from bit field [20], leading to
duplicates for the TCLK1_B function, and missing TCLK0, CAN_CLK_B, and
ET0_ETXD4 functions.
Fix this by adding the missing GPIO_FN_CAN_CLK_B and GPIO_FN_ET0_ETXD4
enum values, and correcting the functions.
Reported-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20191024131308.16659-1-geert+renesas@glider.be
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bfcef4ab1d ]
In cases like suspend-to-disk and suspend-to-ram, a large number of CPU
cores need to be shut down. At present, the CPU hotplug operation is
serialised, and the CPU cores can only be shut down one by one. In this
process, if PSCI affinity_info() does not return LEVEL_OFF quickly,
cpu_psci_cpu_kill() needs to wait for 10ms. If hundreds of CPU cores
need to be shut down, it will take a long time.
Normally, there is no need to wait 10ms in cpu_psci_cpu_kill(). So
change the wait interval from 10 ms to max 1 ms and use usleep_range()
instead of msleep() for more accurate timer.
In addition, reducing the time interval will increase the messages
output, so remove the "Retry ..." message, instead, track time and
output to the the sucessful message.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df4393424a ]
There is an issue with threaded interrupts which are marked ONESHOT
and using the fasteoi handler:
if (IS_ONESHOT())
mask_irq();
....
cond_unmask_eoi_irq()
chip->irq_eoi();
if (setaffinity_pending) {
mask_ioapic();
...
move_affinity();
unmask_ioapic();
}
So if setaffinity is pending the interrupt will be moved and then
unconditionally unmasked at the ioapic level, which is wrong in two
aspects:
1) It should be kept masked up to the point where the threaded handler
finished.
2) The physical chip state and the software masked state are inconsistent
Guard both the mask and the unmask with a check for the software masked
state. If the line is marked masked then the ioapic line is also masked, so
both mask_ioapic() and unmask_ioapic() can be skipped safely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Fixes: 3aa551c9b4 ("genirq: add threaded interrupt handler support")
Link: https://lkml.kernel.org/r/20191017101938.321393687@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 36de10c478 upstream.
Virtual and translated addresses retrieved by the xtensa TLB sanity
checker must be consistent, i.e. correspond to the same state of the
checked TLB entry. KASAN shadow memory is mapped dynamically using
auto-refill TLB entries and thus may change TLB state between the
virtual and translated address retrieval, resulting in false TLB
insanity report.
Move read_xtlb_translation close to read_xtlb_virtual to make sure that
read values are consistent.
Cc: stable@vger.kernel.org
Fixes: a99e07ee5e ("xtensa: check TLB sanity on return to userspace")
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 287897f9aa ]
The MMC card detection GPIO polarity is active low on TAO3530, like in many
other similar boards. Now the card is not detected and it is unable to
mount rootfs from an SD card.
Fix this by using the correct polarity.
This incorrect polarity was defined already in the commit 30d95c6d70
("ARM: dts: omap3: Add Technexion TAO3530 SOM omap3-tao3530.dtsi") in v3.18
kernel and later changed to use defined GPIO constants in v4.4 kernel by
the commit 3a637e008e ("ARM: dts: Use defined GPIO constants in flags
cell for OMAP2+ boards").
While the latter commit did not introduce the issue I'm marking it with
Fixes tag due the v4.4 kernels still being maintained.
Fixes: 3a637e008e ("ARM: dts: Use defined GPIO constants in flags cell for OMAP2+ boards")
Cc: linux-stable <stable@vger.kernel.org> # 4.4+
Signed-off-by: Jarkko Nikula <jarkko.nikula@bitmer.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit cbbaa2727a upstream.
KVM does not implement MSR_IA32_TSX_CTRL, so it must not be presented
to the guests. It is also confusing to have !ARCH_CAP_TSX_CTRL_MSR &&
!RTM && ARCH_CAP_TAA_NO: lack of MSR_IA32_TSX_CTRL suggests TSX was not
hidden (it actually was), yet the value says that TSX is not vulnerable
to microarchitectural data sampling. Fix both.
Cc: stable@vger.kernel.org
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit de1fca5d6e upstream.
"Shared MSRs" are guest MSRs that are written to the host MSRs but
keep their value until the next return to userspace. They support
a mask, so that some bits keep the host value, but this mask is
only used to skip an unnecessary MSR write and the value written
to the MSR is always the guest MSR.
Fix this and, while at it, do not update smsr->values[slot].curr if
for whatever reason the wrmsr fails. This should only happen due to
reserved bits, so the value written to smsr->values[slot].curr
will not match when the user-return notifier and the host value will
always be restored. However, it is untidy and in rare cases this
can actually avoid spurious WRMSRs on return to userspace.
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1c6121c396 ]
cn58xx is compatible with cn50xx, so use the latter.
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
[paul.burton@mips.com: s/cn52xx/cn50xx/ in commit message.]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b682c86924 ]
The add_ssaaaa, sub_ddmmss, umul_ppmm and udiv_qrnnd macros originate
from GCC's longlong.h which in turn was copied from GMP's longlong.h a
few decades ago.
This was found when compiling with clang:
arch/powerpc/math-emu/fnmsub.c:46:2: error: invalid use of a cast in a
inline asm context requiring an l-value: remove the cast or build with
-fheinous-gnu-extensions
FP_ADD_D(R, T, B);
^~~~~~~~~~~~~~~~~
...
./arch/powerpc/include/asm/sfp-machine.h:283:27: note: expanded from
macro 'sub_ddmmss'
: "=r" ((USItype)(sh)), \
~~~~~~~~~~^~~
Segher points out: this was fixed in GCC over 16 years ago
( https://gcc.gnu.org/r56600 ), and in GMP (where it comes from)
presumably before that.
Update the add_ssaaaa, sub_ddmmss, umul_ppmm and udiv_qrnnd macros to
the latest GCC version in order to git rid of the invalid casts. These
were taken as-is from GCC's longlong in order to make future syncs
obvious. Other parts of sfp-machine.h were left as-is as the file
contains more features than present in longlong.h.
Link: https://github.com/ClangBuiltLinux/linux/issues/260
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c40ad24254 ]
PXA25xx SoCs don't have a USB controller, so drop the node from the
common pxa2xx.dtsi base file. Both pxa27x and pxa3xx have a dedicated
node already anyway.
While at it, unify the names for the nodes across all pxa platforms.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Reported-by: Sergey Yanovich <ynvich@gmail.com>
Link: https://patchwork.kernel.org/patch/8375421/
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 400583983f ]
gpio-pxa uses two cell to encode the interrupt source: the pin number
and the trigger type. Adjust the device node accordingly.
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04a92358b3 ]
Currently we get extra newlines on OMAP1/2 when the SoC name is printed:
[ 0.000000] OMAP1510
[ 0.000000] revision 2 handled as 15xx id: bc058c9b93111a16
[ 0.000000] OMAP2420
[ 0.000000]
Fix by using pr_cont.
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6035cbcceb ]
DWC2 hardware module integrated in Samsung SoCs requires some quirks to
operate properly, so use Samsung SoC specific compatible to notify driver
to apply respective fixes.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 756d6d836d ]
The LittleSur board is marked for high memory support and therefore
clearly must provide a way to have enough memory installed for some to
be present outside the low 4GiB physical address range. With the memory
map of the BCM1250 SOC it has been built around it means over 1GiB of
actual DRAM, as only the first 1GiB is mapped in the low 4GiB physical
address range[1].
Complement commit cce335ae47 ("[MIPS] 64-bit Sibyte kernels need
DMA32.") then and also enable ZONE_DMA32 for LittleSur.
References:
[1] "BCM1250/BCM1125/BCM1125H User Manual", Revision 1250_1125-UM100-R,
Broadcom Corporation, 21 Oct 2002, Section 3: "System Overview",
"Memory Map", pp. 34-38
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Patchwork: https://patchwork.linux-mips.org/patch/21107/
Fixes: cce335ae47 ("[MIPS] 64-bit Sibyte kernels need DMA32.")
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 344eb5539a ]
getuser() and putuser() (and there underscored variants) use two
strb[t]/ldrb[t] instructions when they are asked to get/put 16-bits.
This means that the read/write is not atomic even when performed to a
16-bit-aligned address.
This leads to problems with vhost: vhost uses __getuser() to read the
vring's 16-bit avail.index field, and if it happens to observe a partial
update of the index, wrong descriptors will be used which will lead to a
breakdown of the virtio communication. A similar problem exists for
__putuser() which is used to write to the vring's used.index field.
The reason these functions use strb[t]/ldrb[t] is because strht/ldrht
instructions did not exist until ARMv6T2/ARMv7. So we should be easily
able to fix this on ARMv7. Also, since all ARMv6 processors also don't
actually use the unprivileged instructions anymore for uaccess (since
CONFIG_CPU_USE_DOMAINS is not used) we can easily fix them too.
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7e8ce0e2b0 upstream.
The AMD FCH USB XHCI Controller advertises support for generating PME#
while in D0. When in D0, it does signal PME# for USB 3.0 connect events,
but not for USB 2.0 or USB 1.1 connect events, which means the controller
doesn't wake correctly for those events.
00:10.0 USB controller [0c03]: Advanced Micro Devices, Inc. [AMD] FCH USB XHCI Controller [1022:7914] (rev 20) (prog-if 30 [XHCI])
Subsystem: Dell FCH USB XHCI Controller [1028:087e]
Capabilities: [50] Power Management version 3
Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0+,D1-,D2-,D3hot+,D3cold+)
Clear PCI_PM_CAP_PME_D0 in dev->pme_support to indicate the device will not
assert PME# from D0 so we don't rely on it.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203673
Link: https://lore.kernel.org/r/20190902145252.32111-1-kai.heng.feng@canonical.com
Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe6f85ca12 upstream.
The removal of the LDR initialization in the bigsmp_32 APIC code unearthed
a problem in setup_local_APIC().
The code checks unconditionally for a mismatch of the logical APIC id by
comparing the early APIC id which was initialized in get_smp_config() with
the actual LDR value in the APIC.
Due to the removal of the bogus LDR initialization the check now can
trigger on bigsmp_32 APIC systems emitting a warning for every booting
CPU. This is of course a false positive because the APIC is not using
logical destination mode.
Restrict the check and the possibly resulting fixup to systems which are
actually using the APIC in logical destination mode.
[ tglx: Massaged changelog and added Cc stable ]
Fixes: bae3a8d330 ("x86/apic: Do not initialize LDR and DFR for bigsmp")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/666d8f91-b5a8-1afd-7add-821e72a35f03@suse.com
[ comet.berkeley: Backported to 4.4: adjust context ]
Signed-off-by: Richard Narron <comet.berkeley@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit efa9ace68e ]
In dlpar_parse_cc_property(), 'prop->name' is allocated by kstrdup().
kstrdup() may return NULL, so it should be checked and handle error.
And prop should be freed if 'prop->name' is NULL.
Signed-off-by: Gen Zhang <blackgod016574@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 550ed0e203 ]
Both do more or less the same thing and are mutually exclusive.
If both are enabled the build will fail.
Sooner or later we can kill UML's GCOV.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3cfb9ebe90 ]
The bamboo dts has a bug: it uses a non-naturally aligned range
for PCI memory space. This isnt' supported by the code, thus
causing PCI to break on this system.
This is due to the fact that while the chip memory map has 1G
reserved for PCI memory, it's only 512M aligned. The code doesn't
know how to split that into 2 different PMMs and fails, so limit
the region to 512M.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 49a502ea23 ]
As several other arches including x86, this patch makes it explicit
that a bad page fault is a NULL pointer dereference when the fault
address is lower than PAGE_SIZE
In the mean time, this page makes all bad_page_fault() messages
shorter so that they remain on one single line. And it prefixes them
by "BUG: " so that they get easily grepped.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Avoid pr_cont()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b18f0ae92b ]
This patch fixes early DEBUG messages in prom.c:
- Use %px instead of %p to see the addresses
- Cast memblock_phys_mem_size() with (unsigned long long) to
avoid build failure when phys_addr_t is not 64 bits.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e93ba1b7eb ]
This patch fixes the loop in p_block_mapped() and v_block_mapped()
to scan the entire bat_addrs[] array.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>