IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Currently a Linux IPv6 TCP sender will change the flow label upon
timeouts to potentially steer away from a data path that has gone
bad. However this does not help if the problem is on the ACK path
and the data path is healthy. In this case the receiver is likely
to receive repeated spurious retransmission because the sender
couldn't get the ACKs in time and has recurring timeouts.
This patch adds another feature to mitigate this problem. It
leverages the DSACK states in the receiver to change the flow
label of the ACKs to speculatively re-route the ACK packets.
In order to allow triggering on the second consecutive spurious
RTO, the receiver changes the flow label upon sending a second
consecutive DSACK for a sequence number below RCV.NXT.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 5681 sec 4.2:
To provide feedback to senders recovering from losses, the receiver
SHOULD send an immediate ACK when it receives a data segment that
fills in all or part of a gap in the sequence space.
When a gap is partially filled, __tcp_ack_snd_check already checks
the out-of-order queue and correctly send an immediate ACK. However
when a gap is fully filled, the previous implementation only resets
pingpong mode which does not guarantee an immediate ACK because the
quick ACK counter may be zero. This patch addresses this issue by
marking the one-time immediate ACK flag instead.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new flag to indicate a one-time immediate ACK. This flag is
occasionaly set under specific TCP protocol states in addition to
the more common quickack mechanism for interactive application.
In several cases in the TCP code we want to force an immediate ACK
but do not want to call tcp_enter_quickack_mode() because we do
not want to forget the icsk_ack.pingpong or icsk_ack.ato state.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The BTF conflicts were simple overlapping changes.
The virtio_net conflict was an overlap of a fix of statistics counter,
happening alongisde a move over to a bonafide statistics structure
rather than counting value on the stack.
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a new TCP stats to record the number of reordering events seen
and expose it in both tcp_info (TCP_INFO) and opt_stats
(SOF_TIMESTAMPING_OPT_STATS).
Application can use this stats to track the frequency of the reordering
events in addition to the existing reordering stats which tracks the
magnitude of the latest reordering event.
Note: this new stats tracks reordering events triggered by ACKs, which
could often be fewer than the actual number of packets being delivered
out-of-order.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a new TCP stat to record the number of DSACK blocks received
(RFC4989 tcpEStatsStackDSACKDups) and expose it in both tcp_info
(TCP_INFO) and opt_stats (SOF_TIMESTAMPING_OPT_STATS).
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case skb in out_or_order_queue is the result of
multiple skbs coalescing, we would like to get a proper gso_segs
counter tracking, so that future tcp_drop() can report an accurate
number.
I chose to not implement this tracking for skbs in receive queue,
since they are not dropped, unless socket is disconnected.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to be able to give better diagnostics and detect
malicious traffic, we need to have better sk->sk_drops tracking.
Fixes: 9f5afeae5152 ("tcp: use an RB tree for ooo receive queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case an attacker feeds tiny packets completely out of order,
tcp_collapse_ofo_queue() might scan the whole rb-tree, performing
expensive copies, but not changing socket memory usage at all.
1) Do not attempt to collapse tiny skbs.
2) Add logic to exit early when too many tiny skbs are detected.
We prefer not doing aggressive collapsing (which copies packets)
for pathological flows, and revert to tcp_prune_ofo_queue() which
will be less expensive.
In the future, we might add the possibility of terminating flows
that are proven to be malicious.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right after a TCP flow is created, receiving tiny out of order
packets allways hit the condition :
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
tcp_clamp_window(sk);
tcp_clamp_window() increases sk_rcvbuf to match sk_rmem_alloc
(guarded by tcp_rmem[2])
Calling tcp_collapse_ofo_queue() in this case is not useful,
and offers a O(N^2) surface attack to malicious peers.
Better not attempt anything before full queue capacity is reached,
forcing attacker to spend lots of resource and allow us to more
easily detect the abuse.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Juha-Matti Tilli reported that malicious peers could inject tiny
packets in out_of_order_queue, forcing very expensive calls
to tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for
every incoming packet. out_of_order_queue rb-tree can contain
thousands of nodes, iterating over all of them is not nice.
Before linux-4.9, we would have pruned all packets in ofo_queue
in one go, every XXXX packets. XXXX depends on sk_rcvbuf and skbs
truesize, but is about 7000 packets with tcp_rmem[2] default of 6 MB.
Since we plan to increase tcp_rmem[2] in the future to cope with
modern BDP, can not revert to the old behavior, without great pain.
Strategy taken in this patch is to purge ~12.5 % of the queue capacity.
Fixes: 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Per DCTCP RFC8257 (Section 3.2) the ACK reflecting the CE status change
has to be sent immediately so the sender can respond quickly:
""" When receiving packets, the CE codepoint MUST be processed as follows:
1. If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to
true and send an immediate ACK.
2. If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE
to false and send an immediate ACK.
"""
Previously DCTCP implementation may continue to delay the ACK. This
patch fixes that to implement the RFC by forcing an immediate ACK.
Tested with this packetdrill script provided by Larry Brakmo
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0
0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8>
0.110 < [ect0] . 1:1(0) ack 1 win 257
0.200 accept(3, ..., ...) = 4
+0 setsockopt(4, SOL_SOCKET, SO_DEBUG, [1], 4) = 0
0.200 < [ect0] . 1:1001(1000) ack 1 win 257
0.200 > [ect01] . 1:1(0) ack 1001
0.200 write(4, ..., 1) = 1
0.200 > [ect01] P. 1:2(1) ack 1001
0.200 < [ect0] . 1001:2001(1000) ack 2 win 257
+0.005 < [ce] . 2001:3001(1000) ack 2 win 257
+0.000 > [ect01] . 2:2(0) ack 2001
// Previously the ACK below would be delayed by 40ms
+0.000 > [ect01] E. 2:2(0) ack 3001
+0.500 < F. 9501:9501(0) ack 4 win 257
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Prevent coalescing of decrypted and encrypted SKBs in GRO
and TCP layer.
Signed-off-by: Boris Pismenny <borisp@mellanox.com>
Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_rcv_nxt_update() is already executed in tcp_data_queue().
This line is redundant.
See bellow,
tcp_queue_rcv
tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); <<<< redundant
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using get_seconds() for timestamps is deprecated since it can lead
to overflows on 32-bit systems. While the interface generally doesn't
overflow until year 2106, the specific implementation of the TCP PAWS
algorithm breaks in 2038 when the intermediate signed 32-bit timestamps
overflow.
A related problem is that the local timestamps in CLOCK_REALTIME form
lead to unexpected behavior when settimeofday is called to set the system
clock backwards or forwards by more than 24 days.
While the first problem could be solved by using an overflow-safe method
of comparing the timestamps, a nicer solution is to use a monotonic
clocksource with ktime_get_seconds() that simply doesn't overflow (at
least not until 136 years after boot) and that doesn't change during
settimeofday().
To make 32-bit and 64-bit architectures behave the same way here, and
also save a few bytes in the tcp_options_received structure, I'm changing
the type to a 32-bit integer, which is now safe on all architectures.
Finally, the ts_recent_stamp field also (confusingly) gets used to store
a jiffies value in tcp_synq_overflow()/tcp_synq_no_recent_overflow().
This is currently safe, but changing the type to 32-bit requires
some small changes there to keep it working.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Simple overlapping changes in stmmac driver.
Adjust skb_gro_flush_final_remcsum function signature to make GRO list
changes in net-next, as per Stephen Rothwell's example merge
resolution.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new field to sock_common 'skc_rx_queue_mapping'
which holds the receive queue number for the connection. The Rx queue
is marked in tcp_finish_connect() to allow a client app to do
SO_INCOMING_NAPI_ID after a connect() call to get the right queue
association for a socket. Rx queue is also marked in tcp_conn_request()
to allow syn-ack to go on the right tx-queue associated with
the queue on which syn is received.
Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com>
Signed-off-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If SACK is not enabled and the first cumulative ACK after the RTO
retransmission covers more than the retransmitted skb, a spurious
FRTO undo will trigger (assuming FRTO is enabled for that RTO).
The reason is that any non-retransmitted segment acknowledged will
set FLAG_ORIG_SACK_ACKED in tcp_clean_rtx_queue even if there is
no indication that it would have been delivered for real (the
scoreboard is not kept with TCPCB_SACKED_ACKED bits in the non-SACK
case so the check for that bit won't help like it does with SACK).
Having FLAG_ORIG_SACK_ACKED set results in the spurious FRTO undo
in tcp_process_loss.
We need to use more strict condition for non-SACK case and check
that none of the cumulatively ACKed segments were retransmitted
to prove that progress is due to original transmissions. Only then
keep FLAG_ORIG_SACK_ACKED set, allowing FRTO undo to proceed in
non-SACK case.
(FLAG_ORIG_SACK_ACKED is planned to be renamed to FLAG_ORIG_PROGRESS
to better indicate its purpose but to keep this change minimal, it
will be done in another patch).
Besides burstiness and congestion control violations, this problem
can result in RTO loop: When the loss recovery is prematurely
undoed, only new data will be transmitted (if available) and
the next retransmission can occur only after a new RTO which in case
of multiple losses (that are not for consecutive packets) requires
one RTO per loss to recover.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When sk_rmem_alloc is larger than the receive buffer and we can't
schedule more memory for it, the skb will be dropped.
In above situation, if this skb is put into the ofo queue,
LINUX_MIB_TCPOFODROP is incremented to track it.
While if this skb is put into the receive queue, there's no record.
So a new SNMP counter is introduced to track this behavior.
LINUX_MIB_TCPRCVQDROP: Number of packets meant to be queued in rcv queue
but dropped because socket rcvbuf limit hit.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Larry Brakmo proposal ( https://patchwork.ozlabs.org/patch/935233/
tcp: force cwnd at least 2 in tcp_cwnd_reduction) made us rethink
about our recent patch removing ~16 quick acks after ECN events.
tcp_enter_quickack_mode(sk, 1) makes sure one immediate ack is sent,
but in the case the sender cwnd was lowered to 1, we do not want
to have a delayed ack for the next packet we will receive.
Fixes: 522040ea5fdd ("tcp: do not aggressively quick ack after ECN events")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Neal Cardwell <ncardwell@google.com>
Cc: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It will be helpful if we could display the drops due to zero window or no
enough window space.
So a new SNMP MIB entry is added to track this behavior.
This entry is named LINUX_MIB_TCPZEROWINDOWDROP and published in
/proc/net/netstat in TcpExt line as TCPZeroWindowDrop.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When receiving multiple packets with the same ts ecr value, only try
to compute rcv_rtt sample with the earliest received packet.
This is because the rcv_rtt calculated by later received packets
could possibly include long idle time or other types of delay.
For example:
(1) server sends last packet of reply with TS val V1
(2) client ACKs last packet of reply with TS ecr V1
(3) long idle time passes
(4) client sends next request data packet with TS ecr V1 (again!)
At this time, the rcv_rtt computed on server with TS ecr V1 will be
inflated with the idle time and should get ignored.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor tcp_ecn_check_ce and __tcp_ecn_check_ce to accept struct sock*
instead of tcp_sock* to clean up type casts. This is a pure refactor
patch.
Signed-off-by: Yousuk Seung <ysseung@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is additional to the
commit ea1627c20c34 ("tcp: minor optimizations around tcp_hdr() usage").
At this point, skb->data is same with tcp_hdr() as tcp header has not
been pulled yet. So use the less expensive one to get the tcp header.
Remove the third parameter of tcp_rcv_established() and put it into
the function body.
Furthermore, the local variables are listed as a reverse christmas tree :)
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ECN signals currently forces TCP to enter quickack mode for
up to 16 (TCP_MAX_QUICKACKS) following incoming packets.
We believe this is not needed, and only sending one immediate ack
for the current packet should be enough.
This should reduce the extra load noticed in DCTCP environments,
after congestion events.
This is part 2 of our effort to reduce pure ACK packets.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to add finer control of the number of ACK packets sent after
ECN events.
This patch is not changing current behavior, it only enables following
change.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This per netns sysctl allows for TCP SACK compression fine-tuning.
This limits number of SACK that can be compressed.
Using 0 disables SACK compression.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This per netns sysctl allows for TCP SACK compression fine-tuning.
Its default value is 1,000,000, or 1 ms to meet TSO autosizing period.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When TCP receives an out-of-order packet, it immediately sends
a SACK packet, generating network load but also forcing the
receiver to send 1-MSS pathological packets, increasing its
RTX queue length/depth, and thus processing time.
Wifi networks suffer from this aggressive behavior, but generally
speaking, all these SACK packets add fuel to the fire when networks
are under congestion.
This patch adds a high resolution timer and tp->compressed_ack counter.
Instead of sending a SACK, we program this timer with a small delay,
based on RTT and capped to 1 ms :
delay = min ( 5 % of RTT, 1 ms)
If subsequent SACKs need to be sent while the timer has not yet
expired, we simply increment tp->compressed_ack.
When timer expires, a SACK is sent with the latest information.
Whenever an ACK is sent (if data is sent, or if in-order
data is received) timer is canceled.
Note that tcp_sack_new_ofo_skb() is able to force a SACK to be sent
if the sack blocks need to be shuffled, even if the timer has not
expired.
A new SNMP counter is added in the following patch.
Two other patches add sysctls to allow changing the 1,000,000 and 44
values that this commit hard-coded.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
As explained in commit 9f9843a751d0 ("tcp: properly handle stretch
acks in slow start"), TCP stacks have to consider how many packets
are acknowledged in one single ACK, because of GRO, but also
because of ACK compression or losses.
We plan to add SACK compression in the following patch, we
must therefore not call tcp_enter_quickack_mode()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
An RTO event indicates the head has not been acked for a long time
after its last (re)transmission. But the other packets are not
necessarily lost if they have been only sent recently (for example
due to application limit). This patch would prohibit marking packets
sent within an RTT to be lost on RTO event, using similar logic in
TCP RACK detection.
Normally the head (SND.UNA) would be marked lost since RTO should
fire strictly after the head was sent. An exception is when the
most recent RACK RTT measurement is larger than the (previous)
RTO. To address this exception the head is always marked lost.
Congestion control interaction: since we may not mark every packet
lost, the congestion window may be more than 1 (inflight plus 1).
But only one packet will be retransmitted after RTO, since
tcp_retransmit_timer() calls tcp_retransmit_skb(...,segs=1). The
connection still performs slow start from one packet (with Cubic
congestion control).
This commit was tested in an A/B test with Google web servers,
and showed a reduction of 2% in (spurious) retransmits post
timeout (SlowStartRetrans), and correspondingly reduced DSACKs
(DSACKIgnoredOld) by 7%.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create and export a new helper tcp_rack_skb_timeout and move tcp_is_rack
to prepare the final RTO change.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously when TCP times out, it first updates cwnd and ssthresh,
marks packets lost, and then updates congestion state again. This
was fine because everything not yet delivered is marked lost,
so the inflight is always 0 and cwnd can be safely set to 1 to
retransmit one packet on timeout.
But the inflight may not always be 0 on timeout if TCP changes to
mark packets lost based on packet sent time. Therefore we must
first mark the packet lost, then set the cwnd based on the
(updated) inflight.
This is not a pure refactor. Congestion control may potentially
break if it uses (not yet updated) inflight to compute ssthresh.
Fortunately all existing congestion control modules does not do that.
Also it changes the inflight when CA_LOSS_EVENT is called, and only
westwood processes such an event but does not use inflight.
This change has two other minor side benefits:
1) consistent with Fast Recovery s.t. the inflight is updated
first before tcp_enter_recovery flips state to CA_Recovery.
2) avoid intertwining loss marking with state update, making the
code more readable.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor using a new helper, tcp_timeout_mark_loss(), that marks packets
lost upon RTO.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The previous approach for the lost and retransmit bits was to
wipe the slate clean: zero all the lost and retransmit bits,
correspondingly zero the lost_out and retrans_out counters, and
then add back the lost bits (and correspondingly increment lost_out).
The new approach is to treat this very much like marking packets
lost in fast recovery. We don’t wipe the slate clean. We just say
that for all packets that were not yet marked sacked or lost, we now
mark them as lost in exactly the same way we do for fast recovery.
This fixes the lost retransmit accounting at RTO time and greatly
simplifies the RTO code by sharing much of the logic with Fast
Recovery.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a rewrite of NewReno loss recovery implementation that is
simpler and standalone for readability and better performance by
using less states.
Note that NewReno refers to RFC6582 as a modification to the fast
recovery algorithm. It is used only if the connection does not
support SACK in Linux. It should not to be confused with the Reno
(AIMD) congestion control.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch disables RFC6675 loss detection and make sysctl
net.ipv4.tcp_recovery = 1 controls a binary choice between RACK
(1) or RFC6675 (0).
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Priyaranjan Jha <priyarjha@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Called when a TCP segment is acknowledged.
Could be used by application protocols who hold additional
metadata associated with the stream data.
This is required by TLS device offload to release
metadata associated with acknowledged TLS records.
Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com>
Signed-off-by: Boris Pismenny <borisp@mellanox.com>
Signed-off-by: Aviad Yehezkel <aviadye@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit <c6849a3ac17e> ("net: init sk_cookie for inet socket")
Per discussion with Eric, when update sock_net(sk)->cookie_gen, the
whole cache cache line will be invalidated, as this cache line is shared
with all cpus, that may cause great performace hit.
Bellow is the data form Eric.
"Performance is reduced from ~5 Mpps to ~3.8 Mpps with 16 RX queues on
my host" when running synflood test.
Have to revert it to prevent from cache line false sharing.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With sk_cookie we can identify a socket, that is very helpful for
traceing and statistic, i.e. tcp tracepiont and ebpf.
So we'd better init it by default for inet socket.
When using it, we just need call atomic64_read(&sk->sk_cookie).
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_rcv_space_adjust is called every time data is copied to user space,
introducing a tcp tracepoint for which could show us when the packet is
copied to user.
When a tcp packet arrives, tcp_rcv_established() will be called and with
the existed tracepoint tcp_probe we could get the time when this packet
arrives.
Then this packet will be copied to user, and tcp_rcv_space_adjust will
be called and with this new introduced tracepoint we could get the time
when this packet is copied to user.
With these two tracepoints, we could figure out whether the user program
processes this packet immediately or there's latency.
Hence in the printk message, sk_cookie is printed as a key to relate
tcp_rcv_space_adjust with tcp_probe.
Maybe we could export sockfd in this new tracepoint as well, then we
could relate this new tracepoint with epoll/read/recv* tracepoints, and
finally that could show us the whole lifespan of this packet. But we
could also implement that with pid as these functions are executed in
process context.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export data delivered and delivered with CE marks to
1) SNMP TCPDelivered and TCPDeliveredCE
2) getsockopt(TCP_INFO)
3) Timestamping API SOF_TIMESTAMPING_OPT_STATS
Note that for SCM_TSTAMP_ACK, the delivery info in
SOF_TIMESTAMPING_OPT_STATS is reported before the info
was fully updated on the ACK.
These stats help application monitor TCP delivery and ECN status
on per host, per connection, even per message level.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a new delivered_ce stat in tcp socket to estimate
number of packets being marked with CE bits. The estimation is
done via ACKs with ECE bit. Depending on the actual receiver
behavior, the estimation could have biases.
Since the TCP sender can't really see the CE bit in the data path,
so the sender is technically counting packets marked delivered with
the "ECE / ECN-Echo" flag set.
With RFC3168 ECN, because the ECE bit is sticky, this count can
drastically overestimate the nummber of CE-marked data packets
With DCTCP-style ECN this should be reasonably precise unless there
is loss in the ACK path, in which case it's not precise.
With AccECN proposal this can be made still more precise, even in
the case some degree of ACK loss.
However this is sender's best estimate of CE information.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add new helper tcp_newly_delivered() to prepare the ECN accounting change.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
the tcp_sock:delivered has inconsistent accounting for SYN and FIN.
1. it counts pure FIN
2. it counts pure SYN
3. it counts SYN-data twice
4. it does not count SYN-ACK
For congestion control perspective it does not matter much as C.C. only
cares about the difference not the aboslute value. But the next patch
would export this field to user-space so it's better to report the absolute
value w/o these caveats.
This patch counts SYN, SYN-ACK, or SYN-data delivery once always in
the "delivered" field.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>