IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
to use it in SEV and TDX guests
- An include fix and reorg to allow for removing set_fs in UML later
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcEl4ACgkQEsHwGGHe
VUqFTQ/+K9Kb6X0+r7wBSRTeAIWaYewmgOdf+7rpFVyFqQtNecKbuSAWGgFnEHc8
8HUB/krNa+odtx7mAy73wNALUaPmR0KUg6O+YKrvT6LHt8DLlGl5u0g/hihzFdAB
PW7auuxqt9TvK1i8PkYAI+W7t93o4mw4LzgDCVvoLPQUutRZEV1gHRht8Tn8SjaN
3EmEiazpFDrXNGWl/3rnS0qIyvtiZu7KNtibE6ljbUgse9cgxOt733mykH6eO9RJ
hXOfewKML72UxmgWig01pElgLaXeYI5rpSoG7usm4FwwYh+tmBIA8S/EoeE24gn0
e82lxwRCcHjqUDRp2//gz16sYhs//K6bcViT/4FtnL33e2CjK2/J4MwHPn9zgimO
VvxSdAes7UFiA/gDIomFt3gJij+hfy4TGKg5d3326Nm9rsQLpxg49WkozYJZ8m/f
75VVlC4BAj9SnYLQYhSm9buF7pIXmfwN3yWkYJsebl18C6/4FXLLomiqOgWpo3mG
D0e+CXhLZsEaU5NTiVuaPySzjtpRUzmfWf3S9GifJZex0rX+et7+mqIuC92aHbtD
Dc+nNFX/D77Fq8Uoe8bIEt8QsnjdACov1TI/S8h2rSjt5R/Lyg73qh0CpN0jtQ+S
9dUooJWwE4RXnuVMpFq/Xea/BYj1lQ72kMeyFiCNc0/hnzYhZNM=
=NBcE
-----END PGP SIGNATURE-----
Merge tag 'x86_misc_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 updates from Borislav Petkov:
"The pile which we cannot find the proper topic for so we stick it in
x86/misc:
- Add support for decoding instructions which do MMIO accesses in
order to use it in SEV and TDX guests
- An include fix and reorg to allow for removing set_fs in UML later"
* tag 'x86_misc_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mtrr: Remove the mtrr_bp_init() stub
x86/sev-es: Use insn_decode_mmio() for MMIO implementation
x86/insn-eval: Introduce insn_decode_mmio()
x86/insn-eval: Introduce insn_get_modrm_reg_ptr()
x86/insn-eval: Handle insn_get_opcode() failure
Both source and dest vms' kvm->locks are held in sev_lock_two_vms.
Mark one with a different subtype to avoid false positives from lockdep.
Fixes: c9d61dcb0bc26 (KVM: SEV: accept signals in sev_lock_two_vms)
Reported-by: Yiru Xu <xyru1999@gmail.com>
Tested-by: Jinrong Liang <cloudliang@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1641364863-26331-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an IS_ENABLED() check in setup_arch() and call pat_disable()
directly if MTRRs are not supported. This allows to remove the
<asm/memtype.h> include in <asm/mtrr.h>, which pull in lowlevel x86
headers that should not be included for UML builds and will cause build
warnings with a following patch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211215165612.554426-2-hch@lst.de
Drop a check that guards triggering a posted interrupt on the currently
running vCPU, and more importantly guards waking the target vCPU if
triggering a posted interrupt fails because the vCPU isn't IN_GUEST_MODE.
If a vIRQ is delivered from asynchronous context, the target vCPU can be
the currently running vCPU and can also be blocking, in which case
skipping kvm_vcpu_wake_up() is effectively dropping what is supposed to
be a wake event for the vCPU.
The "do nothing" logic when "vcpu == running_vcpu" mostly works only
because the majority of calls to ->deliver_posted_interrupt(), especially
when using posted interrupts, come from synchronous KVM context. But if
a device is exposed to the guest using vfio-pci passthrough, the VFIO IRQ
and vCPU are bound to the same pCPU, and the IRQ is _not_ configured to
use posted interrupts, wake events from the device will be delivered to
KVM from IRQ context, e.g.
vfio_msihandler()
|
|-> eventfd_signal()
|
|-> ...
|
|-> irqfd_wakeup()
|
|->kvm_arch_set_irq_inatomic()
|
|-> kvm_irq_delivery_to_apic_fast()
|
|-> kvm_apic_set_irq()
This also aligns the non-nested and nested usage of triggering posted
interrupts, and will allow for additional cleanups.
Fixes: 379a3c8ee444 ("KVM: VMX: Optimize posted-interrupt delivery for timer fastpath")
Cc: stable@vger.kernel.org
Reported-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthesize a triple fault if L2 guest state is invalid at the time of
VM-Enter, which can happen if L1 modifies SMRAM or if userspace stuffs
guest state via ioctls(), e.g. KVM_SET_SREGS. KVM should never emulate
invalid guest state, since from L1's perspective, it's architecturally
impossible for L2 to have invalid state while L2 is running in hardware.
E.g. attempts to set CR0 or CR4 to unsupported values will either VM-Exit
or #GP.
Modifying vCPU state via RSM+SMRAM and ioctl() are the only paths that
can trigger this scenario, as nested VM-Enter correctly rejects any
attempt to enter L2 with invalid state.
RSM is a straightforward case as (a) KVM follows AMD's SMRAM layout and
behavior, and (b) Intel's SDM states that loading reserved CR0/CR4 bits
via RSM results in shutdown, i.e. there is precedent for KVM's behavior.
Following AMD's SMRAM layout is important as AMD's layout saves/restores
the descriptor cache information, including CS.RPL and SS.RPL, and also
defines all the fields relevant to invalid guest state as read-only, i.e.
so long as the vCPU had valid state before the SMI, which is guaranteed
for L2, RSM will generate valid state unless SMRAM was modified. Intel's
layout saves/restores only the selector, which means that scenarios where
the selector and cached RPL don't match, e.g. conforming code segments,
would yield invalid guest state. Intel CPUs fudge around this issued by
stuffing SS.RPL and CS.RPL on RSM. Per Intel's SDM on the "Default
Treatment of RSM", paraphrasing for brevity:
IF internal storage indicates that the [CPU was post-VMXON]
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must
be fixed in VMX operation [unless coming from an unrestricted guest];
IF RFLAGS.VM = 0 AND (in VMX root operation OR the
“unrestricted guest” VM-execution control is 0)
THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;
FI;
restore current VMCS pointer;
FI;
Note that Intel CPUs also overwrite the fixed CR0/CR4 bits, whereas KVM
will sythesize TRIPLE_FAULT in this scenario. KVM's behavior is allowed
as both Intel and AMD define CR0/CR4 SMRAM fields as read-only, i.e. the
only way for CR0 and/or CR4 to have illegal values is if they were
modified by the L1 SMM handler, and Intel's SDM "SMRAM State Save Map"
section states "modifying these registers will result in unpredictable
behavior".
KVM's ioctl() behavior is less straightforward. Because KVM allows
ioctls() to be executed in any order, rejecting an ioctl() if it would
result in invalid L2 guest state is not an option as KVM cannot know if
a future ioctl() would resolve the invalid state, e.g. KVM_SET_SREGS, or
drop the vCPU out of L2, e.g. KVM_SET_NESTED_STATE. Ideally, KVM would
reject KVM_RUN if L2 contained invalid guest state, but that carries the
risk of a false positive, e.g. if RSM loaded invalid guest state and KVM
exited to userspace. Setting a flag/request to detect such a scenario is
undesirable because (a) it's extremely unlikely to add value to KVM as a
whole, and (b) KVM would need to consider ioctl() interactions with such
a flag, e.g. if userspace migrated the vCPU while the flag were set.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-3-seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert a relatively recent change that set vmx->fail if the vCPU is in L2
and emulation_required is true, as that behavior is completely bogus.
Setting vmx->fail and synthesizing a VM-Exit is contradictory and wrong:
(a) it's impossible to have both a VM-Fail and VM-Exit
(b) vmcs.EXIT_REASON is not modified on VM-Fail
(c) emulation_required refers to guest state and guest state checks are
always VM-Exits, not VM-Fails.
For KVM specifically, emulation_required is handled before nested exits
in __vmx_handle_exit(), thus setting vmx->fail has no immediate effect,
i.e. KVM calls into handle_invalid_guest_state() and vmx->fail is ignored.
Setting vmx->fail can ultimately result in a WARN in nested_vmx_vmexit()
firing when tearing down the VM as KVM never expects vmx->fail to be set
when L2 is active, KVM always reflects those errors into L1.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 21158 at arch/x86/kvm/vmx/nested.c:4548
nested_vmx_vmexit+0x16bd/0x17e0
arch/x86/kvm/vmx/nested.c:4547
Modules linked in:
CPU: 0 PID: 21158 Comm: syz-executor.1 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:nested_vmx_vmexit+0x16bd/0x17e0 arch/x86/kvm/vmx/nested.c:4547
Code: <0f> 0b e9 2e f8 ff ff e8 57 b3 5d 00 0f 0b e9 00 f1 ff ff 89 e9 80
Call Trace:
vmx_leave_nested arch/x86/kvm/vmx/nested.c:6220 [inline]
nested_vmx_free_vcpu+0x83/0xc0 arch/x86/kvm/vmx/nested.c:330
vmx_free_vcpu+0x11f/0x2a0 arch/x86/kvm/vmx/vmx.c:6799
kvm_arch_vcpu_destroy+0x6b/0x240 arch/x86/kvm/x86.c:10989
kvm_vcpu_destroy+0x29/0x90 arch/x86/kvm/../../../virt/kvm/kvm_main.c:441
kvm_free_vcpus arch/x86/kvm/x86.c:11426 [inline]
kvm_arch_destroy_vm+0x3ef/0x6b0 arch/x86/kvm/x86.c:11545
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1189 [inline]
kvm_put_kvm+0x751/0xe40 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1220
kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3489
__fput+0x3fc/0x870 fs/file_table.c:280
task_work_run+0x146/0x1c0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0x705/0x24f0 kernel/exit.c:832
do_group_exit+0x168/0x2d0 kernel/exit.c:929
get_signal+0x1740/0x2120 kernel/signal.c:2852
arch_do_signal_or_restart+0x9c/0x730 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x191/0x220 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x2e/0x70 kernel/entry/common.c:300
do_syscall_64+0x53/0xd0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: c8607e4a086f ("KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if !from_vmentry")
Reported-by: syzbot+f1d2136db9c80d4733e8@syzkaller.appspotmail.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).
Fixes: f1c6366e3043 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025b3 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00aec ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025b3 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fixed counter 3 is used for the Topdown metrics, which hasn't been
enabled for KVM guests. Userspace accessing to it will fail as it's not
included in get_fixed_pmc(). This breaks KVM selftests on ICX+ machines,
which have this counter.
To reproduce it on ICX+ machines, ./state_test reports:
==== Test Assertion Failure ====
lib/x86_64/processor.c:1078: r == nmsrs
pid=4564 tid=4564 - Argument list too long
1 0x000000000040b1b9: vcpu_save_state at processor.c:1077
2 0x0000000000402478: main at state_test.c:209 (discriminator 6)
3 0x00007fbe21ed5f92: ?? ??:0
4 0x000000000040264d: _start at ??:?
Unexpected result from KVM_GET_MSRS, r: 17 (failed MSR was 0x30c)
With this patch, it works well.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20211217124934.32893-1-wei.w.wang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Play nice with a NULL shadow page when checking for an obsolete root in
the page fault handler by flagging the page fault as stale if there's no
shadow page associated with the root and KVM_REQ_MMU_RELOAD is pending.
Invalidating memslots, which is the only case where _all_ roots need to
be reloaded, requests all vCPUs to reload their MMUs while holding
mmu_lock for lock.
The "special" roots, e.g. pae_root when KVM uses PAE paging, are not
backed by a shadow page. Running with TDP disabled or with nested NPT
explodes spectaculary due to dereferencing a NULL shadow page pointer.
Skip the KVM_REQ_MMU_RELOAD check if there is a valid shadow page for the
root. Zapping shadow pages in response to guest activity, e.g. when the
guest frees a PGD, can trigger KVM_REQ_MMU_RELOAD even if the current
vCPU isn't using the affected root. I.e. KVM_REQ_MMU_RELOAD can be seen
with a completely valid root shadow page. This is a bit of a moot point
as KVM currently unloads all roots on KVM_REQ_MMU_RELOAD, but that will
be cleaned up in the future.
Fixes: a955cad84cda ("KVM: x86/mmu: Retry page fault if root is invalidated by memslot update")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211209060552.2956723-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ability to write to MSR_IA32_PERF_CAPABILITIES from the host should
not depend on guest visible CPUID entries, even if just to allow
creating/restoring guest MSRs and CPUIDs in any sequence.
Fixes: 27461da31089 ("KVM: x86/pmu: Support full width counting")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211216165213.338923-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a WARN with a comment to call out that userspace can modify RCX
during an exit to userspace to handle string I/O. KVM doesn't actually
support changing the rep count during an exit, i.e. the scenario can be
ignored, but the WARN needs to go as it's trivial to trigger from
userspace.
Cc: stable@vger.kernel.org
Fixes: 3b27de271839 ("KVM: x86: split the two parts of emulator_pio_in")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211025201311.1881846-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the SDM:
If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an
attempt to clear CR0.PG causes a general-protection exception (#GP).
Software should transition to compatibility mode and clear CR4.PCIDE
before attempting to disable paging.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211207095230.53437-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not bail early if there are no bits set in the sparse banks for a
non-sparse, a.k.a. "all CPUs", IPI request. Per the Hyper-V spec, it is
legal to have a variable length of '0', e.g. VP_SET's BankContents in
this case, if the request can be serviced without the extra info.
It is possible that for a given invocation of a hypercall that does
accept variable sized input headers that all the header input fits
entirely within the fixed size header. In such cases the variable sized
input header is zero-sized and the corresponding bits in the hypercall
input should be set to zero.
Bailing early results in KVM failing to send IPIs to all CPUs as expected
by the guest.
Fixes: 214ff83d4473 ("KVM: x86: hyperv: implement PV IPI send hypercalls")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211207220926.718794-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM runs as a nested hypervisor on top of Hyper-V it uses Enlightened
VMCS and enables Enlightened MSR Bitmap feature for its L1s and L2s (which
are actually L2s and L3s from Hyper-V's perspective). When MSR bitmap is
updated, KVM has to reset HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP from
clean fields to make Hyper-V aware of the change. For KVM's L1s, this is
done in vmx_disable_intercept_for_msr()/vmx_enable_intercept_for_msr().
MSR bitmap for L2 is build in nested_vmx_prepare_msr_bitmap() by blending
MSR bitmap for L1 and L1's idea of MSR bitmap for L2. KVM, however, doesn't
check if the resulting bitmap is different and never cleans
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP in eVMCS02. This is incorrect and
may result in Hyper-V missing the update.
The issue could've been solved by calling evmcs_touch_msr_bitmap() for
eVMCS02 from nested_vmx_prepare_msr_bitmap() unconditionally but doing so
would not give any performance benefits (compared to not using Enlightened
MSR Bitmap at all). 3-level nesting is also not a very common setup
nowadays.
Don't enable 'Enlightened MSR Bitmap' feature for KVM's L2s (real L3s) for
now.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, an SEV-ES guest is terminated if the validation of the VMGEXIT
exit code or exit parameters fails.
The VMGEXIT instruction can be issued from userspace, even though
userspace (likely) can't update the GHCB. To prevent userspace from being
able to kill the guest, return an error through the GHCB when validation
fails rather than terminating the guest. For cases where the GHCB can't be
updated (e.g. the GHCB can't be mapped, etc.), just return back to the
guest.
The new error codes are documented in the lasest update to the GHCB
specification.
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b57280b5562893e2616257ac9c2d4525a9aeeb42.1638471124.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvzalloc() to allocate KVM's buffer for SEV-ES's GHCB scratch area so
that KVM falls back to __vmalloc() if physically contiguous memory isn't
available. The buffer is purely a KVM software construct, i.e. there's
no need for it to be physically contiguous.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109222350.2266045-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return appropriate error codes if setting up the GHCB scratch area for an
SEV-ES guest fails. In particular, returning -EINVAL instead of -ENOMEM
when allocating the kernel buffer could be confusing as userspace would
likely suspect a guest issue.
Fixes: 8f423a80d299 ("KVM: SVM: Support MMIO for an SEV-ES guest")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109222350.2266045-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bail from the page fault handler if the root shadow page was obsoleted by
a memslot update. Do the check _after_ acuiring mmu_lock, as the TDP MMU
doesn't rely on the memslot/MMU generation, and instead relies on the
root being explicit marked invalid by kvm_mmu_zap_all_fast(), which takes
mmu_lock for write.
For the TDP MMU, inserting a SPTE into an obsolete root can leak a SP if
kvm_tdp_mmu_zap_invalidated_roots() has already zapped the SP, i.e. has
moved past the gfn associated with the SP.
For other MMUs, the resulting behavior is far more convoluted, though
unlikely to be truly problematic. Installing SPs/SPTEs into the obsolete
root isn't directly problematic, as the obsolete root will be unloaded
and dropped before the vCPU re-enters the guest. But because the legacy
MMU tracks shadow pages by their role, any SP created by the fault can
can be reused in the new post-reload root. Again, that _shouldn't_ be
problematic as any leaf child SPTEs will be created for the current/valid
memslot generation, and kvm_mmu_get_page() will not reuse child SPs from
the old generation as they will be flagged as obsolete. But, given that
continuing with the fault is pointess (the root will be unloaded), apply
the check to all MMUs.
Fixes: b7cccd397f31 ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The error paths in the prepare_vmcs02() function are supposed to set
*entry_failure_code but this path does not. It leads to using an
uninitialized variable in the caller.
Fixes: 71f7347025bf ("KVM: nVMX: Load GUEST_IA32_PERF_GLOBAL_CTRL MSR on VM-Entry")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20211130125337.GB24578@kili>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_apicv_active() returns false if a virtual machine has no in-kernel
local APIC, however kvm_apicv_activated might still be true if there are
no reasons to disable APICv; in fact it is quite likely that there is none
because APICv is inhibited by specific configurations of the local APIC
and those configurations cannot be programmed. This triggers a WARN:
WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
To avoid this, introduce another cause for APICv inhibition, namely the
absence of an in-kernel local APIC. This cause is enabled by default,
and is dropped by either KVM_CREATE_IRQCHIP or the enabling of
KVM_CAP_IRQCHIP_SPLIT.
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Fixes: ee49a8932971 ("KVM: x86: Move SVM's APICv sanity check to common x86", 2021-10-22)
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com>
Message-Id: <20211130123746.293379-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If we run the following perf command in an AMD Milan guest:
perf stat \
-e cpu/event=0x1d0/ \
-e cpu/event=0x1c7/ \
-e cpu/umask=0x1f,event=0x18e/ \
-e cpu/umask=0x7,event=0x18e/ \
-e cpu/umask=0x18,event=0x18e/ \
./workload
dmesg will report a #GP warning from an unchecked MSR access
error on MSR_F15H_PERF_CTLx.
This is because according to APM (Revision: 4.03) Figure 13-7,
the bits [35:32] of AMD PerfEvtSeln register is a part of the
event select encoding, which extends the EVENT_SELECT field
from 8 bits to 12 bits.
Opportunistically update pmu->reserved_bits for reserved bit 19.
Reported-by: Jim Mattson <jmattson@google.com>
Fixes: ca724305a2b0 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211118130320.95997-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
avic_set_running() passes the current CPU to avic_vcpu_load(), albeit
via vcpu->cpu rather than smp_processor_id(). If the thread is migrated
while avic_set_running runs, the call to avic_vcpu_load() can use a stale
value for the processor id. Avoid this by blocking preemption over the
entire execution of avic_set_running().
Reported-by: Sean Christopherson <seanjc@google.com>
Fixes: 8221c1370056 ("svm: Manage vcpu load/unload when enable AVIC")
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is nothing to synchronize if APICv is disabled, since neither
other vCPUs nor assigned devices can set PIR.ON.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Generally, kvm->lock is not taken for a long time, but
sev_lock_two_vms is different: it takes vCPU locks
inside, so userspace can hold it back just by calling
a vCPU ioctl. Play it safe and use mutex_lock_killable.
Message-Id: <20211123005036.2954379-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Taking the lock is useless since there are no other references,
and there are already accesses (e.g. to sev->enc_context_owner)
that do not take it. So get rid of it.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-12-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMs that mirror an encryption context rely on the owner to keep the
ASID allocated. Performing a KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
would cause a dangling ASID:
1. copy context from A to B (gets ref to A)
2. move context from A to L (moves ASID from A to L)
3. close L (releases ASID from L, B still references it)
The right way to do the handoff instead is to create a fresh mirror VM
on the destination first:
1. copy context from A to B (gets ref to A)
[later] 2. close B (releases ref to A)
3. move context from A to L (moves ASID from A to L)
4. copy context from L to M
So, catch the situation by adding a count of how many VMs are
mirroring this one's encryption context.
Fixes: 0b020f5af092 ("KVM: SEV: Add support for SEV-ES intra host migration")
Message-Id: <20211123005036.2954379-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that we have a facility to lock two VMs with deadlock
protection, use it for the creation of mirror VMs as well. One of
COPY_ENC_CONTEXT_FROM(dst, src) and COPY_ENC_CONTEXT_FROM(src, dst)
would always fail, so the combination is nonsensical and it is okay to
return -EBUSY if it is attempted.
This sidesteps the question of what happens if a VM is
MOVE_ENC_CONTEXT_FROM'd at the same time as it is
COPY_ENC_CONTEXT_FROM'd: the locking prevents that from
happening.
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-10-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow intra-host migration of a mirror VM; the destination VM will be
a mirror of the same ASID as the source.
Fixes: b56639318bb2 ("KVM: SEV: Add support for SEV intra host migration")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-8-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This was broken before the introduction of KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM,
but technically harmless because the region list was unused for a mirror
VM. However, it is untidy and it now causes a NULL pointer access when
attempting to move the encryption context of a mirror VM.
Fixes: 54526d1fd593 ("KVM: x86: Support KVM VMs sharing SEV context")
Message-Id: <20211123005036.2954379-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Encapsulate the handling of the migration_in_progress flag for both VMs in
two functions sev_lock_two_vms and sev_unlock_two_vms. It does not matter
if KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM locks the destination struct kvm a bit
later, and this change 1) keeps the cleanup chain of labels smaller 2)
makes it possible for KVM_CAP_VM_COPY_ENC_CONTEXT_FROM to reuse the logic.
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
list_replace_init cannot be used if the source is an empty list,
because "new->next->prev = new" will overwrite "old->next":
new old
prev = new, next = new prev = old, next = old
new->next = old->next prev = new, next = old prev = old, next = old
new->next->prev = new prev = new, next = old prev = old, next = new
new->prev = old->prev prev = old, next = old prev = old, next = old
new->next->prev = new prev = old, next = old prev = new, next = new
The desired outcome instead would be to leave both old and new the same
as they were (two empty circular lists). Use list_cut_before, which
already has the necessary check and is documented to discard the
previous contents of the list that will hold the result.
Fixes: b56639318bb2 ("KVM: SEV: Add support for SEV intra host migration")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, checks for whether VT-d PI can be used refer to the current
status of the feature in the current vCPU; or they more or less pick
vCPU 0 in case a specific vCPU is not available.
However, these checks do not attempt to synchronize with changes to
the IRTE. In particular, there is no path that updates the IRTE when
APICv is re-activated on vCPU 0; and there is no path to wakeup a CPU
that has APICv disabled, if the wakeup occurs because of an IRTE
that points to a posted interrupt.
To fix this, always go through the VT-d PI path as long as there are
assigned devices and APICv is available on both the host and the VM side.
Since the relevant condition was copied over three times, take the hint
and factor it into a separate function.
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The IRTE for an assigned device can trigger a POSTED_INTR_VECTOR even
if APICv is disabled on the vCPU that receives it. In that case, the
interrupt will just cause a vmexit and leave the ON bit set together
with the PIR bit corresponding to the interrupt.
Right now, the interrupt would not be delivered until APICv is re-enabled.
However, fixing this is just a matter of always doing the PIR->IRR
synchronization, even if the vCPU has temporarily disabled APICv.
This is not a problem for performance, or if anything it is an
improvement. First, in the common case where vcpu->arch.apicv_active is
true, one fewer check has to be performed. Second, static_call_cond will
elide the function call if APICv is not present or disabled. Finally,
in the case for AMD hardware we can remove the sync_pir_to_irr callback:
it is only needed for apic_has_interrupt_for_ppr, and that function
already has a fallback for !APICv.
Cc: stable@vger.kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If APICv is disabled for this vCPU, assigned devices may still attempt to
post interrupts. In that case, we need to cancel the vmentry and deliver
the interrupt with KVM_REQ_EVENT. Extend the existing code that handles
injection of L1 interrupts into L2 to cover this case as well.
vmx_hwapic_irr_update is only called when APICv is active so it would be
confusing to add a check for vcpu->arch.apicv_active in there. Instead,
just use vmx_set_rvi directly in vmx_sync_pir_to_irr.
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123004311.2954158-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Account for the '0' being a default, "let KVM choose" period, when
determining whether or not the recovery worker needs to be awakened in
response to userspace reducing the period. Failure to do so results in
the worker not being awakened properly, e.g. when changing the period
from '0' to any small-ish value.
Fixes: 4dfe4f40d845 ("kvm: x86: mmu: Make NX huge page recovery period configurable")
Cc: stable@vger.kernel.org
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015706.3830341-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize the mask for PKU permissions as if CR4.PKE=0, avoiding
incorrect interpretations of the nested hypervisor's page tables.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the "flush" param and return values to/from the TDP MMU's helper for
zapping collapsible SPTEs. Because the helper runs with mmu_lock held
for read, not write, it uses tdp_mmu_zap_spte_atomic(), and the atomic
zap handles the necessary remote TLB flush.
Similarly, because mmu_lock is dropped and re-acquired between zapping
legacy MMUs and zapping TDP MMUs, kvm_mmu_zap_collapsible_sptes() must
handle remote TLB flushes from the legacy MMU before calling into the TDP
MMU.
Fixes: e2209710ccc5d ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the yield-safe variant of the TDP MMU iterator when handling an
unmapping event from the MMU notifier, as most occurences of the event
allow yielding.
Fixes: e1eed5847b09 ("KVM: x86/mmu: Allow yielding during MMU notifier unmap/zap, if possible")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015008.3780032-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
INVLPG operates on guest virtual address, which are represented by
vcpu->arch.walk_mmu. In nested virtualization scenarios,
kvm_mmu_invlpg() was using the wrong MMU structure; if L2's invlpg were
emulated by L0 (in practice, it hardly happen) when nested two-dimensional
paging is enabled, the call to ->tlb_flush_gva() would be skipped and
the hardware TLB entry would not be invalidated.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-5-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the is an L1 with nNPT in 32bit, the shadow walk starts with
pae_root.
Fixes: a717a780fc4e ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 63f5a1909f9e ("KVM: x86: Alert userspace that KVM_SET_CPUID{,2}
after KVM_RUN is broken") officially deprecated KVM_SET_CPUID{,2} ioctls
after first successful KVM_RUN and promissed to make this sequence forbiden
in 5.16. It's time to fulfil the promise.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211122175818.608220-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fully emulate a guest TLB flush on nested VM-Enter which changes vpid12,
i.e. L2's VPID, instead of simply doing INVVPID to flush real hardware's
TLB entries for vpid02. From L1's perspective, changing L2's VPID is
effectively a TLB flush unless "hardware" has previously cached entries
for the new vpid12. Because KVM tracks only a single vpid12, KVM doesn't
know if the new vpid12 has been used in the past and so must treat it as
a brand new, never been used VPID, i.e. must assume that the new vpid12
represents a TLB flush from L1's perspective.
For example, if L1 and L2 share a CR3, the first VM-Enter to L2 (with a
VPID) is effectively a TLB flush as hardware/KVM has never seen vpid12
and thus can't have cached entries in the TLB for vpid12.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 5c614b3583e7 ("KVM: nVMX: nested VPID emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Like KVM_REQ_TLB_FLUSH_CURRENT, the GUEST variant needs to be serviced at
nested transitions, as KVM doesn't track requests for L1 vs L2. E.g. if
there's a pending flush when a nested VM-Exit occurs, then the flush was
requested in the context of L2 and needs to be handled before switching
to L1, otherwise the flush for L2 would effectiely be lost.
Opportunistically add a helper to handle CURRENT and GUEST as a pair, the
logic for when they need to be serviced is identical as both requests are
tied to L1 vs. L2, the only difference is the scope of the flush.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e34 ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the current VPID when handling KVM_REQ_TLB_FLUSH_GUEST instead of
always flushing vpid01. Any TLB flush that is triggered when L2 is
active is scoped to L2's VPID (if it has one), e.g. if L2 toggles CR4.PGE
and L1 doesn't intercept PGE writes, then KVM's emulation of the TLB
flush needs to be applied to L2's VPID.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e34 ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The capability, albeit present, was never exposed via KVM_CHECK_EXTENSION.
Fixes: b56639318bb2 ("KVM: SEV: Add support for SEV intra host migration")
Cc: Peter Gonda <pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synchronize the two calls to kvm_x86_sync_pir_to_irr. The one
in the reenter-guest fast path invoked the callback unconditionally
even if LAPIC is present but disabled. In this case, there are
no interrupts to deliver, and therefore posted interrupts can
be ignored.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An uninitialized gfn_to_hva_cache has ghc->len == 0, which causes
the accessors to croak very loudly. While a BUG_ON is definitely
_too_ loud and a bug on its own, there is indeed an issue of using
the caches in such a way that they could not have been initialized,
because ghc->gpa == 0 might match and thus kvm_gfn_to_hva_cache_init
would not be called.
For the vmcs12_cache, the solution is simply to invoke
kvm_gfn_to_hva_cache_init unconditionally: we already know
that the cache does not match the current VMCS pointer.
For the shadow_vmcs12_cache, there is no similar condition
that checks the VMCS link pointer, so invalidate the cache
on VMXON.
Fixes: cee66664dcd6 ("KVM: nVMX: Use a gfn_to_hva_cache for vmptrld")
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reported-by: syzbot+7b7db8bb4db6fd5e157b@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since tlb flush has been done for legacy MMU before
kvm_tdp_mmu_zap_collapsible_sptes(), so the parameter flush
should be false for kvm_tdp_mmu_zap_collapsible_sptes().
Fixes: e2209710ccc5d ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <21453a1d2533afb6e59fb6c729af89e771ff2e76.1637140154.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>