IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Stop depending on CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL and opt to
standardize on kvm_arch_flush_remote_tlbs() since it avoids
duplicating the generic TLB stats across architectures that implement
their own remote TLB flush.
This adds an extra function call to the ARM64 kvm_flush_remote_tlbs()
path, but that is a small cost in comparison to flushing remote TLBs.
In addition, instead of just incrementing remote_tlb_flush_requests
stat, the generic interface would also increment the
remote_tlb_flush stat.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-4-rananta@google.com
Userspace is allowed to select any PAGE_SIZE aligned hva to back guest
memory. This is even the case with hugepages, although it is a rather
suboptimal configuration as PTE level mappings are used at stage-2.
The arm64 page aging handlers have an assumption that the specified
range is exactly one page/block of memory, which in the aforementioned
case is not necessarily true. All together this leads to the WARN() in
kvm_age_gfn() firing.
However, the WARN is only part of the issue as the table walkers visit
at most a single leaf PTE. For hugepage-backed memory in a memslot that
isn't hugepage-aligned, page aging entirely misses accesses to the
hugepage beyond the first page in the memslot.
Add a new walker dedicated to handling page aging MMU notifiers capable
of walking a range of PTEs. Convert kvm(_test)_age_gfn() over to the new
walker and drop the WARN that caught the issue in the first place. The
implementation of this walker was inspired by the test_clear_young()
implementation by Yu Zhao [*], but repurposed to address a bug in the
existing aging implementation.
Cc: stable@vger.kernel.org # v5.15
Fixes: 056aad67f836 ("kvm: arm/arm64: Rework gpa callback handlers")
Link: https://lore.kernel.org/kvmarm/20230526234435.662652-6-yuzhao@google.com/
Co-developed-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Link: https://lore.kernel.org/r/20230627235405.4069823-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The newly added kvm_mmu_split_nr_page_tables() function uses DIV_ROUND_DOWN_ULL()
to divide 64-bit addresses, but this requires a 32-bit divisior, and PUD_SIZE
may exceed that when 64KB pages are used:
arch/arm64/kvm/mmu.c: In function 'kvm_mmu_split_nr_page_tables':
include/linux/math.h:42:64: error: conversion from 'long unsigned int' to 'u32' {aka 'unsigned int'} changes value from '68719476736' to '0' [-Werror=overflow]
42 | DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
| ^~~
include/linux/math.h:39:47: note: in definition of macro 'DIV_ROUND_DOWN_ULL'
39 | #define DIV_ROUND_DOWN_ULL(ll, d) div_u64(ll, d)
| ^
arch/arm64/kvm/mmu.c:95:22: note: in expansion of macro 'DIV_ROUND_UP_ULL'
95 | n += DIV_ROUND_UP_ULL(range, PUD_SIZE);
| ^~~~~~~~~~~~~~~~
Since this code is only used on 64-bit targets, DIV_ROUND_UP() can deal with this
more easily, as it already takes 64-bit arguments.
Fixes: e7bf7a490c68 ("KVM: arm64: Split huge pages when dirty logging is enabled")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230517202352.793673-1-arnd@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This is the arm64 counterpart of commit cb00a70bd4b7 ("KVM: x86/mmu:
Split huge pages mapped by the TDP MMU during KVM_CLEAR_DIRTY_LOG"),
which has the benefit of splitting the cost of splitting a memslot
across multiple ioctls.
Split huge pages on the range specified using KVM_CLEAR_DIRTY_LOG.
And do not split when enabling dirty logging if
KVM_DIRTY_LOG_INITIALLY_SET is set.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-12-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Move the functionality of kvm_mmu_write_protect_pt_masked() into its
caller, kvm_arch_mmu_enable_log_dirty_pt_masked(). This will be used
in a subsequent commit in order to share some of the code in
kvm_arch_mmu_enable_log_dirty_pt_masked().
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-11-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Split huge pages eagerly when enabling dirty logging. The goal is to
avoid doing it while faulting on write-protected pages, which
negatively impacts guest performance.
A memslot marked for dirty logging is split in 1GB pieces at a time.
This is in order to release the mmu_lock and give other kernel threads
the opportunity to run, and also in order to allocate enough pages to
split a 1GB range worth of huge pages (or a single 1GB huge page).
Note that these page allocations can fail, so eager page splitting is
best-effort. This is not a correctness issue though, as huge pages
can still be split on write-faults.
Eager page splitting only takes effect when the huge page mapping has
been existing in the stage-2 page table. Otherwise, the huge page will
be mapped to multiple non-huge pages on page fault.
The benefits of eager page splitting are the same as in x86, added
with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by
the TDP MMU when dirty logging is enabled"). For example, when running
dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU,
50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access
all of their memory after dirty logging is enabled decreased by 44%
from 2.58s to 1.42s.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-10-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add kvm_uninit_stage2_mmu() and move kvm_free_stage2_pgd() into it. A
future commit will add some more things to do inside of
kvm_uninit_stage2_mmu().
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-9-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Refactor kvm_arch_commit_memory_region() as a preparation for a future
commit to look cleaner and more understandable. Also, it looks more
like its x86 counterpart (in kvm_mmu_slot_apply_flags()).
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-8-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a capability for userspace to specify the eager split chunk size.
The chunk size specifies how many pages to break at a time, using a
single allocation. Bigger the chunk size, more pages need to be
allocated ahead of time.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-6-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Normalize on referring to tables outside of an active paging structure
as 'unlinked'.
A subsequent change to KVM will add support for building page tables
that are not part of an active paging structure. The existing
'removed_table' terminology is quite clunky when applied in this
context.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-2-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
On page fault, we find about the VMA that backs the page fault
early on, and quickly release the mmap_read_lock. However, using
the VMA pointer after the critical section is pretty dangerous,
as a teardown may happen in the meantime and the VMA be long gone.
Move the sampling of the MTE permission early, and NULL-ify the
VMA pointer after that, just to be on the safe side.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230316174546.3777507-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We walk the userspace PTs to discover what mapping size was
used there. However, this can race against the userspace tables
being freed, and we end-up in the weeds.
Thankfully, the mm code is being generous and will IPI us when
doing so. So let's implement our part of the bargain and disable
interrupts around the walk. This ensures that nothing terrible
happens during that time.
We still need to handle the removal of the page tables before
the walk. For that, allow get_user_mapping_size() to return an
error, and make sure this error can be propagated all the way
to the the exit handler.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230316174546.3777507-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Read mmu_invalidate_seq before dropping the mmap_lock so that KVM can
detect if the results of vma_lookup() (e.g. vma_shift) become stale
before it acquires kvm->mmu_lock. This fixes a theoretical bug where a
VMA could be changed by userspace after vma_lookup() and before KVM
reads the mmu_invalidate_seq, causing KVM to install page table entries
based on a (possibly) no-longer-valid vma_shift.
Re-order the MMU cache top-up to earlier in user_mem_abort() so that it
is not done after KVM has read mmu_invalidate_seq (i.e. so as to avoid
inducing spurious fault retries).
This bug has existed since KVM/ARM's inception. It's unlikely that any
sane userspace currently modifies VMAs in such a way as to trigger this
race. And even with directed testing I was unable to reproduce it. But a
sufficiently motivated host userspace might be able to exploit this
race.
Fixes: 94f8e6418d39 ("KVM: ARM: Handle guest faults in KVM")
Cc: stable@vger.kernel.org
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230313235454.2964067-1-dmatlack@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/nv-prefix:
: Preamble to NV support, courtesy of Marc Zyngier.
:
: This brings in a set of prerequisite patches for supporting nested
: virtualization in KVM/arm64. Of course, there is a long way to go until
: NV is actually enabled in KVM.
:
: - Introduce cpucap / vCPU feature flag to pivot the NV code on
:
: - Add support for EL2 vCPU register state
:
: - Basic nested exception handling
:
: - Hide unsupported features from the ID registers for NV-capable VMs
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/parallel-access-faults:
: Parallel stage-2 access fault handling
:
: The parallel faults changes that went in to 6.2 covered most stage-2
: aborts, with the exception of stage-2 access faults. Building on top of
: the new infrastructure, this series adds support for handling access
: faults (i.e. updating the access flag) in parallel.
:
: This is expected to provide a performance uplift for cores that do not
: implement FEAT_HAFDBS, such as those from the fruit company.
KVM: arm64: Condition HW AF updates on config option
KVM: arm64: Handle access faults behind the read lock
KVM: arm64: Don't serialize if the access flag isn't set
KVM: arm64: Return EAGAIN for invalid PTE in attr walker
KVM: arm64: Ignore EAGAIN for walks outside of a fault
KVM: arm64: Use KVM's pte type/helpers in handle_access_fault()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Most of our S2 helpers take a kvm_s2_mmu pointer, but quickly
revert back to using the kvm structure. By doing so, we lose
track of which S2 MMU context we were initially using, and fallback
to the "canonical" context.
If we were trying to unmap a S2 context managed by a guest hypervisor,
we end-up parsing the wrong set of page tables, and bad stuff happens
(as this is often happening on the back of a trapped TLBI from the
guest hypervisor).
Instead, make sure we always use the provided MMU context all the way.
This has no impact on non-NV, as we always pass the canonical MMU
context.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Link: https://lore.kernel.org/r/20230209175820.1939006-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
As the underlying software walkers are able to traverse and update
stage-2 in parallel there is no need to serialize access faults.
Only take the read lock when handling an access fault.
Link: https://lore.kernel.org/r/20221202185156.696189-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The page table walkers are invoked outside fault handling paths, such as
write protecting a range of memory. EAGAIN is generally used by the
walkers to retry execution due to races on a particular PTE, like taking
an access fault on a PTE being invalidated from another thread.
This early return behavior is undesirable for walkers that operate
outside a fault handler. Suppress EAGAIN and continue the walk if
operating outside a fault handler.
Link: https://lore.kernel.org/r/20221202185156.696189-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The former is an AArch32 legacy, so let's move over to the
verbose (and strictly identical) version.
This involves moving some of the #defines that were private
to KVM into the more generic esr.h.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz
rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i
KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX
wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM
AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk
pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d
1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc
4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT
H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR
qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF
K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC
aWa6oGVC
=iIPT
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
* kvm-arm64/mte-map-shared:
: .
: Update the MTE support to allow the VMM to use shared mappings
: to back the memslots exposed to MTE-enabled guests.
:
: Patches courtesy of Catalin Marinas and Peter Collingbourne.
: .
: Fix a number of issues with MTE, such as races on the tags
: being initialised vs the PG_mte_tagged flag as well as the
: lack of support for VM_SHARED when KVM is involved.
:
: Patches from Catalin Marinas and Peter Collingbourne.
: .
Documentation: document the ABI changes for KVM_CAP_ARM_MTE
KVM: arm64: permit all VM_MTE_ALLOWED mappings with MTE enabled
KVM: arm64: unify the tests for VMAs in memslots when MTE is enabled
arm64: mte: Lock a page for MTE tag initialisation
mm: Add PG_arch_3 page flag
KVM: arm64: Simplify the sanitise_mte_tags() logic
arm64: mte: Fix/clarify the PG_mte_tagged semantics
mm: Do not enable PG_arch_2 for all 64-bit architectures
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/pkvm-vcpu-state: (25 commits)
: .
: Large drop of pKVM patches from Will Deacon and co, adding
: a private vm/vcpu state at EL2, managed independently from
: the EL1 state. From the cover letter:
:
: "This is version six of the pKVM EL2 state series, extending the pKVM
: hypervisor code so that it can dynamically instantiate and manage VM
: data structures without the host being able to access them directly.
: These structures consist of a hyp VM, a set of hyp vCPUs and the stage-2
: page-table for the MMU. The pages used to hold the hypervisor structures
: are returned to the host when the VM is destroyed."
: .
KVM: arm64: Use the pKVM hyp vCPU structure in handle___kvm_vcpu_run()
KVM: arm64: Don't unnecessarily map host kernel sections at EL2
KVM: arm64: Explicitly map 'kvm_vgic_global_state' at EL2
KVM: arm64: Maintain a copy of 'kvm_arm_vmid_bits' at EL2
KVM: arm64: Unmap 'kvm_arm_hyp_percpu_base' from the host
KVM: arm64: Return guest memory from EL2 via dedicated teardown memcache
KVM: arm64: Instantiate guest stage-2 page-tables at EL2
KVM: arm64: Consolidate stage-2 initialisation into a single function
KVM: arm64: Add generic hyp_memcache helpers
KVM: arm64: Provide I-cache invalidation by virtual address at EL2
KVM: arm64: Initialise hypervisor copies of host symbols unconditionally
KVM: arm64: Add per-cpu fixmap infrastructure at EL2
KVM: arm64: Instantiate pKVM hypervisor VM and vCPU structures from EL1
KVM: arm64: Add infrastructure to create and track pKVM instances at EL2
KVM: arm64: Rename 'host_kvm' to 'host_mmu'
KVM: arm64: Add hyp_spinlock_t static initializer
KVM: arm64: Include asm/kvm_mmu.h in nvhe/mem_protect.h
KVM: arm64: Add helpers to pin memory shared with the hypervisor at EL2
KVM: arm64: Prevent the donation of no-map pages
KVM: arm64: Implement do_donate() helper for donating memory
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/parallel-faults:
: .
: Parallel stage-2 fault handling, courtesy of Oliver Upton.
: From the cover letter:
:
: "Presently KVM only takes a read lock for stage 2 faults if it believes
: the fault can be fixed by relaxing permissions on a PTE (write unprotect
: for dirty logging). Otherwise, stage 2 faults grab the write lock, which
: predictably can pile up all the vCPUs in a sufficiently large VM.
:
: Like the TDP MMU for x86, this series loosens the locking around
: manipulations of the stage 2 page tables to allow parallel faults. RCU
: and atomics are exploited to safely build/destroy the stage 2 page
: tables in light of multiple software observers."
: .
KVM: arm64: Reject shared table walks in the hyp code
KVM: arm64: Don't acquire RCU read lock for exclusive table walks
KVM: arm64: Take a pointer to walker data in kvm_dereference_pteref()
KVM: arm64: Handle stage-2 faults in parallel
KVM: arm64: Make table->block changes parallel-aware
KVM: arm64: Make leaf->leaf PTE changes parallel-aware
KVM: arm64: Make block->table PTE changes parallel-aware
KVM: arm64: Split init and set for table PTE
KVM: arm64: Atomically update stage 2 leaf attributes in parallel walks
KVM: arm64: Protect stage-2 traversal with RCU
KVM: arm64: Tear down unlinked stage-2 subtree after break-before-make
KVM: arm64: Use an opaque type for pteps
KVM: arm64: Add a helper to tear down unlinked stage-2 subtrees
KVM: arm64: Don't pass kvm_pgtable through kvm_pgtable_walk_data
KVM: arm64: Pass mm_ops through the visitor context
KVM: arm64: Stash observed pte value in visitor context
KVM: arm64: Combine visitor arguments into a context structure
Signed-off-by: Marc Zyngier <maz@kernel.org>
get_user_mapping_size() uses kvm's pgtable library to walk a user space
page table created by the kernel, and in doing so, passes metadata
that the library needs, including ia_bits, which defines the size of the
input address.
For the case where the kernel is compiled for 52 VA bits but runs on HW
that does not support LVA, it will fall back to 48 VA bits at runtime.
Therefore we must use vabits_actual rather than VA_BITS to get the true
address size.
This is benign in the current code base because the pgtable library only
uses it for error checking.
Fixes: 6011cf68c885 ("KVM: arm64: Walk userspace page tables to compute the THP mapping size")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221205114031.3972780-1-ryan.roberts@arm.com
Certain VMMs such as crosvm have features (e.g. sandboxing) that depend
on being able to map guest memory as MAP_SHARED. The current restriction
on sharing MAP_SHARED pages with the guest is preventing the use of
those features with MTE. Now that the races between tasks concurrently
clearing tags on the same page have been fixed, remove this restriction.
Note that this is a relaxation of the ABI.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-8-pcc@google.com
Previously we allowed creating a memslot containing a private mapping that
was not VM_MTE_ALLOWED, but would later reject KVM_RUN with -EFAULT. Now
we reject the memory region at memslot creation time.
Since this is a minor tweak to the ABI (a VMM that created one of
these memslots would fail later anyway), no VMM to my knowledge has
MTE support yet, and the hardware with the necessary features is not
generally available, we can probably make this ABI change at this point.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-7-pcc@google.com
Initialising the tags and setting PG_mte_tagged flag for a page can race
between multiple set_pte_at() on shared pages or setting the stage 2 pte
via user_mem_abort(). Introduce a new PG_mte_lock flag as PG_arch_3 and
set it before attempting page initialisation. Given that PG_mte_tagged
is never cleared for a page, consider setting this flag to mean page
unlocked and wait on this bit with acquire semantics if the page is
locked:
- try_page_mte_tagging() - lock the page for tagging, return true if it
can be tagged, false if already tagged. No acquire semantics if it
returns true (PG_mte_tagged not set) as there is no serialisation with
a previous set_page_mte_tagged().
- set_page_mte_tagged() - set PG_mte_tagged with release semantics.
The two-bit locking is based on Peter Collingbourne's idea.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-6-pcc@google.com
Currently sanitise_mte_tags() checks if it's an online page before
attempting to sanitise the tags. Such detection should be done in the
caller via the VM_MTE_ALLOWED vma flag. Since kvm_set_spte_gfn() does
not have the vma, leave the page unmapped if not already tagged. Tag
initialisation will be done on a subsequent access fault in
user_mem_abort().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[pcc@google.com: fix the page initializer]
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-4-pcc@google.com
Currently the PG_mte_tagged page flag mostly means the page contains
valid tags and it should be set after the tags have been cleared or
restored. However, in mte_sync_tags() it is set before setting the tags
to avoid, in theory, a race with concurrent mprotect(PROT_MTE) for
shared pages. However, a concurrent mprotect(PROT_MTE) with a copy on
write in another thread can cause the new page to have stale tags.
Similarly, tag reading via ptrace() can read stale tags if the
PG_mte_tagged flag is set before actually clearing/restoring the tags.
Fix the PG_mte_tagged semantics so that it is only set after the tags
have been cleared or restored. This is safe for swap restoring into a
MAP_SHARED or CoW page since the core code takes the page lock. Add two
functions to test and set the PG_mte_tagged flag with acquire and
release semantics. The downside is that concurrent mprotect(PROT_MTE) on
a MAP_SHARED page may cause tag loss. This is already the case for KVM
guests if a VMM changes the page protection while the guest triggers a
user_mem_abort().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[pcc@google.com: fix build with CONFIG_ARM64_MTE disabled]
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-3-pcc@google.com
Extend the initialisation of guest data structures within the pKVM
hypervisor at EL2 so that we instantiate a memory pool and a full
'struct kvm_s2_mmu' structure for each VM, with a stage-2 page-table
entirely independent from the one managed by the host at EL1.
The 'struct kvm_pgtable_mm_ops' used by the page-table code is populated
with a set of callbacks that can manage guest pages in the hypervisor
without any direct intervention from the host, allocating page-table
pages from the provided pool and returning these to the host on VM
teardown. To keep things simple, the stage-2 MMU for the guest is
configured identically to the host stage-2 in the VTCR register and so
the IPA size of the guest must match the PA size of the host.
For now, the new page-table is unused as there is no way for the host
to map anything into it. Yet.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-20-will@kernel.org
The initialisation of guest stage-2 page-tables is currently split
across two functions: kvm_init_stage2_mmu() and kvm_arm_setup_stage2().
That is presumably for historical reasons as kvm_arm_setup_stage2()
originates from the (now defunct) KVM port for 32-bit Arm.
Simplify this code path by merging both functions into one, taking care
to map the 'struct kvm' into the hypervisor stage-1 early on in order to
simplify the failure path.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-19-will@kernel.org
The host at EL1 and the pKVM hypervisor at EL2 will soon need to
exchange memory pages dynamically for creating and destroying VM state.
Indeed, the hypervisor will rely on the host to donate memory pages it
can use to create guest stage-2 page-tables and to store VM and vCPU
metadata. In order to ease this process, introduce a
'struct hyp_memcache' which is essentially a linked list of available
pages, indexed by physical addresses so that it can be passed
meaningfully between the different virtual address spaces configured at
EL1 and EL2.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-18-will@kernel.org
For nvhe and protected modes, the hyp stage 1 page-tables were previously
configured to have the same number of VA bits as the kernel's idmap.
However, for kernel configs with VA_BITS=52 and where the kernel is
loaded in physical memory below 48 bits, the idmap VA bits is actually
smaller than the kernel's normal stage 1 VA bits. This can lead to
kernel addresses that can't be mapped into the hypervisor, leading to
kvm initialization failure during boot:
kvm [1]: IPA Size Limit: 48 bits
kvm [1]: Cannot map world-switch code
kvm [1]: error initializing Hyp mode: -34
Fix this by ensuring that the hyp stage 1 VA size is the maximum of
what's used for the idmap and the regular kernel stage 1. At the same
time, refactor the code so that the hyp VA bits is only calculated in
one place.
Prior to 7ba8f2b2d652, the idmap was always 52 bits for a 52 VA bits
kernel and therefore the hyp stage1 was also always 52 bits.
Fixes: 7ba8f2b2d652 ("arm64: mm: use a 48-bit ID map when possible on 52-bit VA builds")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
[maz: commit message fixes]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221103150507.32948-2-ryan.roberts@arm.com
The stage-2 map walker has been made parallel-aware, and as such can be
called while only holding the read side of the MMU lock. Rip out the
conditional locking in user_mem_abort() and instead grab the read lock.
Continue to take the write lock from other callsites to
kvm_pgtable_stage2_map().
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107220033.1895655-1-oliver.upton@linux.dev
Use RCU to safely walk the stage-2 page tables in parallel. Acquire and
release the RCU read lock when traversing the page tables. Defer the
freeing of table memory to an RCU callback. Indirect the calls into RCU
and provide stubs for hypervisor code, as RCU is not available in such a
context.
The RCU protection doesn't amount to much at the moment, as readers are
already protected by the read-write lock (all walkers that free table
memory take the write lock). Nonetheless, a subsequent change will
futher relax the locking requirements around the stage-2 MMU, thereby
depending on RCU.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-9-oliver.upton@linux.dev
The break-before-make sequence is a bit annoying as it opens a window
wherein memory is unmapped from the guest. KVM should replace the PTE
as quickly as possible and avoid unnecessary work in between.
Presently, the stage-2 map walker tears down a removed table before
installing a block mapping when coalescing a table into a block. As the
removed table is no longer visible to hardware walkers after the
DSB+TLBI, it is possible to move the remaining cleanup to happen after
installing the new PTE.
Reshuffle the stage-2 map walker to install the new block entry in
the pre-order callback. Unwire all of the teardown logic and replace
it with a call to kvm_pgtable_stage2_free_removed() after fixing
the PTE. The post-order visitor is now completely unnecessary, so drop
it. Finally, touch up the comments to better represent the now
simplified map walker.
Note that the call to tear down the unlinked stage-2 is indirected
as a subsequent change will use an RCU callback to trigger tear down.
RCU is not available to pKVM, so there is a need to use different
implementations on pKVM and non-pKVM VMs.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-8-oliver.upton@linux.dev
Use an opaque type for pteps and require visitors explicitly dereference
the pointer before using. Protecting page table memory with RCU requires
that KVM dereferences RCU-annotated pointers before using. However, RCU
is not available for use in the nVHE hypervisor and the opaque type can
be conditionally annotated with RCU for the stage-2 MMU.
Call the type a 'pteref' to avoid a naming collision with raw pteps. No
functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-7-oliver.upton@linux.dev
Add a new "interruptible" flag showing that the caller is willing to be
interrupted by signals during the __gfn_to_pfn_memslot() request. Wire it
up with a FOLL_INTERRUPTIBLE flag that we've just introduced.
This prepares KVM to be able to respond to SIGUSR1 (for QEMU that's the
SIGIPI) even during e.g. handling an userfaultfd page fault.
No functional change intended.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221011195809.557016-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmNIEAUPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDIXcP/AyWlCEJlmc1Jcd9rlaW1Wenr82U+StLVeMy
qP5P02gMWdbGExWIWEi4zkt+pAm7K2WRgXid9z5Vjw7kZY/+WwswTzKHWcQhVuZv
cBHfeOqgtoHVGR8NcwX6xcp406y3WRqYIsyAmbc5qmo75L8Ew1o3m+3eDfFtAq7l
3XuTCv+lQGNSGMhXHN2SVewZ+pCAo3XJmuHfCBXTqRjwqH4Tzh+54IKzo+9mqBWW
7yeIm5qcbIKGuXLuLL7XCf99gWy/3kQ0xQ1yJeXLAyiHswHqEISZXGHnKeATvD+6
RdbmQ9oRmIYfZfoDKZRUJg8TyTvW1rIKokFbe0q2iyuDnI5D/fAJ48epZaLw+kEf
PUzdB3UgPk19SLwgZKQddqY4wOD420ZD5x1TUFUQuLL7sjVv1vUILDvuCLWpq7F7
GyfSB+LEMgexHGsZ1wjslN/ivTbG+dQgaSS9mlV8/WDOLPtD2uOf65vYR3P28hAX
zOHrwm3e2+UV83BsEFEY2FQiiIBD24JmSecMbmAIHY09MCSZ+vJ/WbF4J1PcPP8C
3vjueIYTcjhzLtQrfIkGZcS7+wC9ji/RRmpJjbg79EpwrjhEs9G8h1+HyL9+zBZ4
Xn6X+ZG/cv0/ZYdin0ZRzJMvM0RutbsR77blVCLY97PBuLtBlqJDcxr+lmmjyIZ2
Db8Qd6uW
=IOxM
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #1
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
Presently stage2_apply_range() works on a batch of memory addressed by a
stage 2 root table entry for the VM. Depending on the IPA limit of the
VM and PAGE_SIZE of the host, this could address a massive range of
memory. Some examples:
4 level, 4K paging -> 512 GB batch size
3 level, 64K paging -> 4TB batch size
Unsurprisingly, working on such a large range of memory can lead to soft
lockups. When running dirty_log_perf_test:
./dirty_log_perf_test -m -2 -s anonymous_thp -b 4G -v 48
watchdog: BUG: soft lockup - CPU#0 stuck for 45s! [dirty_log_perf_:16703]
Modules linked in: vfat fat cdc_ether usbnet mii xhci_pci xhci_hcd sha3_generic gq(O)
CPU: 0 PID: 16703 Comm: dirty_log_perf_ Tainted: G O 6.0.0-smp-DEV #1
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : dcache_clean_inval_poc+0x24/0x38
lr : clean_dcache_guest_page+0x28/0x4c
sp : ffff800021763990
pmr_save: 000000e0
x29: ffff800021763990 x28: 0000000000000005 x27: 0000000000000de0
x26: 0000000000000001 x25: 00400830b13bc77f x24: ffffad4f91ead9c0
x23: 0000000000000000 x22: ffff8000082ad9c8 x21: 0000fffafa7bc000
x20: ffffad4f9066ce50 x19: 0000000000000003 x18: ffffad4f92402000
x17: 000000000000011b x16: 000000000000011b x15: 0000000000000124
x14: ffff07ff8301d280 x13: 0000000000000000 x12: 00000000ffffffff
x11: 0000000000010001 x10: fffffc0000000000 x9 : ffffad4f9069e580
x8 : 000000000000000c x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff07ffa2076980 x4 : 0000000000000001 x3 : 000000000000003f
x2 : 0000000000000040 x1 : ffff0830313bd000 x0 : ffff0830313bcc40
Call trace:
dcache_clean_inval_poc+0x24/0x38
stage2_unmap_walker+0x138/0x1ec
__kvm_pgtable_walk+0x130/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
kvm_pgtable_stage2_unmap+0xc4/0xf8
kvm_arch_flush_shadow_memslot+0xa4/0x10c
kvm_set_memslot+0xb8/0x454
__kvm_set_memory_region+0x194/0x244
kvm_vm_ioctl_set_memory_region+0x58/0x7c
kvm_vm_ioctl+0x49c/0x560
__arm64_sys_ioctl+0x9c/0xd4
invoke_syscall+0x4c/0x124
el0_svc_common+0xc8/0x194
do_el0_svc+0x38/0xc0
el0_svc+0x2c/0xa4
el0t_64_sync_handler+0x84/0xf0
el0t_64_sync+0x1a0/0x1a4
Use the largest supported block mapping for the configured page size as
the batch granularity. In so doing the walker is guaranteed to visit a
leaf only once.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221007234151.461779-3-oliver.upton@linux.dev
Count the pages used by KVM in arm64 for stage2 mmu in memory stats
under secondary pagetable stats (e.g. "SecPageTables" in /proc/meminfo)
to give better visibility into the memory consumption of KVM mmu in a
similar way to how normal user page tables are accounted.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-5-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.
- mmu_notifier_seq/range_start/range_end are renamed to
mmu_invalidate_seq/range_start/range_end.
- mmu_notifier_retry{_hva} helper functions are renamed to
mmu_invalidate_retry{_hva}.
- mmu_notifier_count is renamed to mmu_invalidate_in_progress to
avoid confusion with mn_active_invalidate_count.
- While here, also update kvm_inc/dec_notifier_count() to
kvm_mmu_invalidate_begin/end() to match the change for
mmu_notifier_count.
No functional change intended.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow the capacity of the kvm_mmu_memory_cache struct to be chosen at
declaration time rather than being fixed for all declarations. This will
be used in a follow-up commit to declare an cache in x86 with a capacity
of 512+ objects without having to increase the capacity of all caches in
KVM.
This change requires each cache now specify its capacity at runtime,
since the cache struct itself no longer has a fixed capacity known at
compile time. To protect against someone accidentally defining a
kvm_mmu_memory_cache struct directly (without the extra storage), this
commit includes a WARN_ON() in kvm_mmu_topup_memory_cache().
In order to support different capacities, this commit changes the
objects pointer array to be dynamically allocated the first time the
cache is topped-up.
While here, opportunistically clean up the stack-allocated
kvm_mmu_memory_cache structs in riscv and arm64 to use designated
initializers.
No functional change intended.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-22-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Map the stack pages in the flexible private VA range and allocate
guard pages below the stack as unbacked VA space. The stack is aligned
so that any valid stack address has PAGE_SHIFT bit as 1 - this is used
for overflow detection (implemented in a subsequent patch in the series).
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-4-kaleshsingh@google.com
hyp_alloc_private_va_range() can be used to reserve private VA ranges
in the nVHE hypervisor. Allocations are aligned based on the order of
the requested size.
This will be used to implement stack guard pages for KVM nVHE hypervisor
(nVHE Hyp mode / not pKVM), in a subsequent patch in the series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-2-kaleshsingh@google.com
When taking a translation fault for an IPA that is outside of
the range defined by the hypervisor (between the HW PARange and
the IPA range), we stupidly treat it as an IO and forward the access
to userspace. Of course, userspace can't do much with it, and things
end badly.
Arguably, the guest is braindead, but we should at least catch the
case and inject an exception.
Check the faulting IPA against:
- the sanitised PARange: inject an address size fault
- the IPA size: inject an abort
Reported-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>