IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
cpudl_find() users are only interested in knowing if suitable CPU(s)
were found or not (and then they look at later_mask to know which).
Change cpudl_find() return type accordingly. Aligns with rt code.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <juri.lelli@gmail.com>
Cc: <kernel-team@lge.com>
Cc: <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1495504859-10960-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When cpudl_find() returns any among free_cpus, the CPU might not be
closer than others, considering sched domain. For example:
this_cpu: 15
free_cpus: 0, 1,..., 14 (== later_mask)
best_cpu: 0
topology:
0 --+
+--+
1 --+ |
+-- ... --+
2 --+ | |
+--+ |
3 --+ |
... ...
12 --+ |
+--+ |
13 --+ | |
+-- ... -+
14 --+ |
+--+
15 --+
In this case, it would be best to select 14 since it's a free CPU and
closest to 15 (this_cpu). However, currently the code selects 0 (best_cpu)
even though that's just any among free_cpus. Fix it.
This (re)aligns the deadline behaviour with the rt behaviour.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <juri.lelli@gmail.com>
Cc: <kernel-team@lge.com>
Cc: <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1495504859-10960-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running 80 tasks in the same group, or as threads of the same process,
results in the memory getting scanned 80x as fast as it would be if a
single task was using the memory.
This really hurts some workloads.
Scale the scan period by the number of tasks in the numa group, and
the shared / private ratio, so the average rate at which memory in
the group is scanned corresponds roughly to the rate at which a single
task would scan its memory.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment above update_task_scan_period() says the scan period should
be increased (scanning slows down) if the majority of memory accesses
are on the local node, or if the majority of the page accesses are
shared with other tasks.
However, with the current code, all a high ratio of shared accesses
does is slow down the rate at which scanning is made faster.
This patch changes things so either lots of shared accesses or
lots of local accesses will slow down scanning, and numa scanning
is sped up only when there are lots of private faults on remote
memory pages.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The running state is a subset of runnable state which means that running
can't be set if runnable (weight) is cleared. There are corner cases
where the current sched_entity has been already dequeued but cfs_rq->curr
has not been updated yet and still points to the dequeued sched_entity.
If ___update_load_avg() is called at that time, weight will be 0 and running
will be set which is not possible.
This case happens during pick_next_task_fair() when a cfs_rq becomes idles.
The current sched_entity has been dequeued so se->on_rq is cleared and
cfs_rq->weight is null. But cfs_rq->curr still points to se (it will be
cleared when picking the idle thread). Because the cfs_rq becomes idle,
idle_balance() is called and ends up to call update_blocked_averages()
with these wrong running and runnable states.
Add a test in ___update_load_avg() to correct the running state in this case.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Link: http://lkml.kernel.org/r/1498885573-18984-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
pick_next_task_dl() and build_sched_domain() aren't used outside
deadline.c and topology.c.
Make them static.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/36e4cbb6210002cadae89920ae97e19e7e513008.1493281605.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'struct cpupri' passed to cpupri_init() is already initialized to
zero. Don't do that again.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/8a71d48c5a077500b6ddc1a41484c0ac8d3aad94.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'struct cpudl' passed to cpudl_init() is already initialized to zero.
Don't do that again.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/bd4c229806bc96694b15546207afcc221387d2f5.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two callers of init_rootdomain(). One of them passes a
global to it and another one sends dynamically allocated root-domain.
There is no need to memset the root-domain in the first case as the
structure is already reset.
Update alloc_rootdomain() to allocate the memory with kzalloc() and
remove the memset() call from init_rootdomain().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/fc2f6cc90b098040970c85a97046512572d765bc.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_freq is always true and there is no need to pass it to
update_cfs_rq_load_avg(). Remove it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/2d28d295f3f591ede7e931462bce1bda5aaa4896.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rearrange pick_next_task_fair() a bit to avoid checking
cfs_rq->nr_running twice for the case where FAIR_GROUP_SCHED is enabled
and the previous task doesn't belong to the fair class.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/000903ab3df3350943d3271c53615893a230dc95.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
weighted_cpuload() uses the cpu number passed to it get pointer to the
runqueue. Almost all callers of weighted_cpuload() already have the rq
pointer with them and can send that directly to weighted_cpuload(). In
some cases the callers actually get the CPU number by doing cpu_of(rq).
It would be simpler to pass rq to weighted_cpuload().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/b7720627e0576dc29b4ba3f9b6edbc913bb4f684.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For SMP systems, update_load_avg() calls the cpufreq update util
handlers only for the top level cfs_rq (i.e. rq->cfs).
But that is not the case for UP systems. update_load_avg() calls util
handler for any cfs_rq for which it is called. This would result in way
too many calls from the scheduler to the cpufreq governors when
CONFIG_FAIR_GROUP_SCHED is enabled.
Reduce the frequency of these calls by copying the behavior from the SMP
case, i.e. Only call util handlers for the top level cfs_rq.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Fixes: 536bd00cdb ("sched/fair: Fix !CONFIG_SMP kernel cpufreq governor breakage")
Link: http://lkml.kernel.org/r/6abf69a2107525885b616a2c1ec03d9c0946171c.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kerneldoc comments for try_to_wake_up_local() were out of date, leading
to these documentation build warnings:
./kernel/sched/core.c:2080: warning: No description found for parameter 'rf'
./kernel/sched/core.c:2080: warning: Excess function parameter 'cookie' description in 'try_to_wake_up_local'
Update the comment to reflect current reality and give us some peace and
quiet.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/20170724135628.695cecfc@lwn.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A cputime fix and code comments/organization fix to the deadline
scheduler"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix confusing comments about selection of top pi-waiter
sched/cputime: Don't use smp_processor_id() in preemptible context
This comment in the code is incomplete, and I believe it begs a definition of
dl_boosted to make sense of the condition that follows. Rewrite the comment and
also rearrange the condition that follows to reflect the first condition "we
have a top pi-waiter which is a SCHED_DEADLINE task" in that order. Also fix a
typo that follows.
Signed-off-by: Joel Fernandes <joelaf@google.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170713022429.10307-1-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recent kernels trigger this warning:
BUG: using smp_processor_id() in preemptible [00000000] code: 99-trinity/181
caller is debug_smp_processor_id+0x17/0x19
CPU: 0 PID: 181 Comm: 99-trinity Not tainted 4.12.0-01059-g2a42eb9 #1
Call Trace:
dump_stack+0x82/0xb8
check_preemption_disabled()
debug_smp_processor_id()
vtime_delta()
task_cputime()
thread_group_cputime()
thread_group_cputime_adjusted()
wait_consider_task()
do_wait()
SYSC_wait4()
do_syscall_64()
entry_SYSCALL64_slow_path()
As Frederic pointed out:
| Although those sched_clock_cpu() things seem to only matter when the
| sched_clock() is unstable. And that stability is a condition for nohz_full
| to work anyway. So probably sched_clock() alone would be enough.
This patch fixes it by replacing sched_clock_cpu() with sched_clock() to
avoid calling smp_processor_id() in a preemptible context.
Reported-by: Xiaolong Ye <xiaolong.ye@intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1499586028-7402-1-git-send-email-wanpeng.li@hotmail.com
[ Prettified the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With a shared policy in place, when one of the CPUs in the policy is
hotplugged out and then brought back online, sugov_stop() and
sugov_start() are called in order.
sugov_stop() removes utilization hooks for each CPU in the policy and
does nothing else in the for_each_cpu() loop. sugov_start() on the
other hand iterates through the CPUs in the policy and re-initializes
the per-cpu structure _and_ adds the utilization hook. This implies
that the scheduler is allowed to invoke a CPU's utilization update
hook when the rest of the per-cpu structures have yet to be
re-inited.
Apart from some strange values in tracepoints this doesn't cause a
problem, but if we do end up accessing a pointer from the per-cpu
sugov_cpu structure somewhere in the sugov_update_shared() path,
we will likely see crashes since the memset for another CPU in the
policy is free to race with sugov_update_shared from the CPU that is
ready to go. So let's fix this now to first init all per-cpu
structures, and then add the per-cpu utilization update hooks all at
once.
Signed-off-by: Vikram Mulukutla <markivx@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If load_balance() fails to migrate any tasks because all tasks were
affined, load_balance() removes the source CPU from consideration and
attempts to redo and balance among the new subset of CPUs.
There is a bug in this code path where the algorithm considers all active
CPUs in the system (minus the source that was just masked out). This is
not valid for two reasons: some active CPUs may not be in the current
scheduling domain and one of the active CPUs is dst_cpu. These CPUs should
not be considered, as we cannot pull load from them.
Instead of failing out of load_balance(), we may end up redoing the search
with no valid CPUs and incorrectly concluding the domain is balanced.
Additionally, if the group_imbalance flag was just set, it may also be
incorrectly unset, thus the flag will not be seen by other CPUs in future
load_balance() runs as that algorithm intends.
Fix the check by removing CPUs not in the current domain and the dst_cpu
from considertation, thus limiting the evaluation to valid remaining CPUs
from which load might be migrated.
Co-authored-by: Austin Christ <austinwc@codeaurora.org>
Co-authored-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Austin Christ <austinwc@codeaurora.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Timur Tabi <timur@codeaurora.org>
Link: http://lkml.kernel.org/r/1496863138-11322-2-git-send-email-jhugo@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the cputime source used by vtime is jiffies. When we cross
a context boundary and jiffies have changed since the last snapshot, the
pending cputime is accounted to the switching out context.
This system works ok if the ticks are not aligned across CPUs. If they
instead are aligned (ie: all fire at the same time) and the CPUs run in
userspace, the jiffies change is only observed on tick exit and therefore
the user cputime is accounted as system cputime. This is because the
CPU that maintains timekeeping fires its tick at the same time as the
others. It updates jiffies in the middle of the tick and the other CPUs
see that update on IRQ exit:
CPU 0 (timekeeper) CPU 1
------------------- -------------
jiffies = N
... run in userspace for a jiffy
tick entry tick entry (sees jiffies = N)
set jiffies = N + 1
tick exit tick exit (sees jiffies = N + 1)
account 1 jiffy as stime
Fix this with using a nanosec clock source instead of jiffies. The
cputime is then accumulated and flushed everytime the pending delta
reaches a jiffy in order to mitigate the accounting overhead.
[ fweisbec: changelog, rebase on struct vtime, field renames, add delta
on cputime readers, keep idle vtime as-is (low overhead accounting),
harmonize clock sources. ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Luiz Capitulino <lcapitulino@redhat.com>
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are about to add vtime accumulation fields to the task struct. Let's
avoid more bloatification and gather vtime information to their own
struct.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current "snapshot" based naming on vtime fields suggests we record
some past event but that's a low level picture of their actual purpose
which comes out blurry. The real point of these fields is to run a basic
state machine that tracks down cputime entry while switching between
contexts.
So lets reflect that with more meaningful names.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even though it doesn't have functional consequences, setting
the task's new context state after we actually accounted the pending
vtime from the old context state makes more sense from a review
perspective.
vtime_user_exit() is the only function that doesn't follow that rule
and that can bug the reviewer for a little while until he realizes there
is no reason for this special case.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 72298e5c92.
As Peter explains:
> Argh, no... That code was perfectly fine. The new code otoh is
> convoluted.
>
> The old code had the following form:
>
> if (exception1)
> deal with exception1
>
> if (execption2)
> deal with exception2
>
> do normal stuff
>
> Which is as simple and straight forward as it gets.
>
> The new code otoh reads like:
>
> if (!exception1) {
> if (exception2)
> deal with exception 2
> else
> do normal stuff
> }
So restore the old form.
Also fix the comment describing the logic, as it was confusing.
Requested-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gustavo A. R. Silva <garsilva@embeddedor.com>
Cc: Frans Klaver <fransklaver@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Add the SYSTEM_SCHEDULING bootup state to move various scheduler
debug checks earlier into the bootup. This turns silent and
sporadically deadly bugs into nice, deterministic splats. Fix some
of the splats that triggered. (Thomas Gleixner)
- A round of restructuring and refactoring of the load-balancing and
topology code (Peter Zijlstra)
- Another round of consolidating ~20 of incremental scheduler code
history: this time in terms of wait-queue nomenclature. (I didn't
get much feedback on these renaming patches, and we can still
easily change any names I might have misplaced, so if anyone hates
a new name, please holler and I'll fix it.) (Ingo Molnar)
- sched/numa improvements, fixes and updates (Rik van Riel)
- Another round of x86/tsc scheduler clock code improvements, in hope
of making it more robust (Peter Zijlstra)
- Improve NOHZ behavior (Frederic Weisbecker)
- Deadline scheduler improvements and fixes (Luca Abeni, Daniel
Bristot de Oliveira)
- Simplify and optimize the topology setup code (Lauro Ramos
Venancio)
- Debloat and decouple scheduler code some more (Nicolas Pitre)
- Simplify code by making better use of llist primitives (Byungchul
Park)
- ... plus other fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
sched/cputime: Refactor the cputime_adjust() code
sched/debug: Expose the number of RT/DL tasks that can migrate
sched/numa: Hide numa_wake_affine() from UP build
sched/fair: Remove effective_load()
sched/numa: Implement NUMA node level wake_affine()
sched/fair: Simplify wake_affine() for the single socket case
sched/numa: Override part of migrate_degrades_locality() when idle balancing
sched/rt: Move RT related code from sched/core.c to sched/rt.c
sched/deadline: Move DL related code from sched/core.c to sched/deadline.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
sched/fair: Spare idle load balancing on nohz_full CPUs
nohz: Move idle balancer registration to the idle path
sched/loadavg: Generalize "_idle" naming to "_nohz"
sched/core: Drop the unused try_get_task_struct() helper function
sched/fair: WARN() and refuse to set buddy when !se->on_rq
sched/debug: Fix SCHED_WARN_ON() to return a value on !CONFIG_SCHED_DEBUG as well
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
sched/wait: Move bit_wait_table[] and related functionality from sched/core.c to sched/wait_bit.c
sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
sched/wait: Re-adjust macro line continuation backslashes in <linux/wait.h>
...
Pull RCU updates from Ingo Molnar:
"The sole purpose of these changes is to shrink and simplify the RCU
code base, which has suffered from creeping bloat over the past couple
of years. The end result is a net removal of ~2700 lines of code:
79 files changed, 1496 insertions(+), 4211 deletions(-)
Plus there's a marked reduction in the Kconfig space complexity as
well, here's the number of matches on 'grep RCU' in the .config:
before after
x86-defconfig 17 15
x86-allmodconfig 33 20"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (86 commits)
rcu: Remove RCU CPU stall warnings from Tiny RCU
rcu: Remove event tracing from Tiny RCU
rcu: Move RCU debug Kconfig options to kernel/rcu
rcu: Move RCU non-debug Kconfig options to kernel/rcu
rcu: Eliminate NOCBs CPU-state Kconfig options
rcu: Remove debugfs tracing
srcu: Remove Classic SRCU
srcu: Fix rcutorture-statistics typo
rcu: Remove SPARSE_RCU_POINTER Kconfig option
rcu: Remove the now-obsolete PROVE_RCU_REPEATEDLY Kconfig option
rcu: Remove typecheck() from RCU locking wrapper functions
rcu: Remove #ifdef moving rcu_end_inkernel_boot from rcupdate.h
rcu: Remove nohz_full full-system-idle state machine
rcu: Remove the RCU_KTHREAD_PRIO Kconfig option
rcu: Remove *_SLOW_* Kconfig options
srcu: Use rnp->lock wrappers to replace explicit memory barriers
rcu: Move rnp->lock wrappers for SRCU use
rcu: Convert rnp->lock wrappers to macros for SRCU use
rcu: Refactor #includes from include/linux/rcupdate.h
bcm47xx: Fix build regression
...
Address a Coverity false positive, which is caused by overly
convoluted code:
Value assigned to variable 'utime' at line 619:utime = rtime;
is overwritten at line 642:utime = rtime - stime; before it
can be used. This makes such variable assignment useless.
Remove this variable assignment and refactor the code related.
Addresses-Coverity-ID: 1371643
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Cc: Frans Klaver <fransklaver@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/20170629184128.GA5271@embeddedgus
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the value of the rt_rq.rt_nr_migratory and dl_rq.dl_nr_migratory
to the sched_debug output, for instance:
rt_rq[0]:
.rt_nr_running : 2
.rt_nr_migratory : 1 <--- Like this
.rt_throttled : 0
.rt_time : 828.645877
.rt_runtime : 1000.000000
This is useful to debug problems related to the RT/DL schedulers.
This also fixes the format of some variables, that were unsigned, rather
than signed.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Link: http://lkml.kernel.org/r/7896f71cada54ee7dd8507bb666063a2e051c3d4.1498482127.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephen reported the following build warning in UP:
kernel/sched/fair.c:2657:9: warning: 'struct sched_domain' declared inside
parameter list
^
/home/sfr/next/next/kernel/sched/fair.c:2657:9: warning: its scope is only this
definition or declaration, which is probably not what you want
Hide the numa_wake_affine() inline stub on UP builds to get rid of it.
Fixes: 3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
The effective_load() function was only used by the NUMA balancing
code, and not by the regular load balancing code. Now that the
NUMA balancing code no longer uses it either, get rid of it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-5-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since select_idle_sibling() can place a task anywhere on a socket,
comparing loads between individual CPU cores makes no real sense
for deciding whether to do an affine wakeup across sockets, either.
Instead, compare the load between the sockets in a similar way the
load balancer and the numa balancing code do.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-4-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Then 'this_cpu' and 'prev_cpu' are in the same socket, select_idle_sibling()
will do its thing regardless of the return value of wake_affine().
Just return true and don't look at all the other things.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several tests in the NAS benchmark seem to run a lot slower with
NUMA balancing enabled, than with NUMA balancing disabled. The
slower run time corresponds with increased idle time.
Overriding the final test of migrate_degrades_locality (but still
doing the other NUMA tests first) seems to improve performance
of those benchmarks.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This helps making sched/core.c smaller and hopefully easier to understand and maintain.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170621182203.30626-3-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This helps making sched/core.c smaller and hopefully easier to understand and maintain.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170621182203.30626-2-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make CONFIG_CPUSETS=y depend on SMP as this feature makes no sense
on UP. This allows for configuring out cpuset_cpumask_can_shrink()
and task_can_attach() entirely, which shrinks the kernel a bit.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614171926.8345-2-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although idle load balancing obviously only concerns idle CPUs, it can
be a disturbance on a busy nohz_full CPU. Indeed a CPU can only get rid
of an idle load balancing duty once a tick fires while it runs a task
and this can take a while on a nohz_full CPU.
We could fix that and escape the idle load balancing duty from the very
idle exit path but that would bring unecessary overhead. Lets just not
bother and leave that job to housekeeping CPUs (those outside nohz_full
range). The nohz_full CPUs simply don't want any disturbance.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The loadavg naming code still assumes that nohz == idle whereas its code
is actually handling well both nohz idle and nohz full.
So lets fix the naming according to what the code actually does, to
unconfuse the reader.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
kernel/sched/Makefile
Pick up the waitqueue related renames - it didn't get much feedback,
so it appears to be uncontroversial. Famous last words? ;-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we set a next or last buddy for a se that is not on_rq, we will
end up taking a NULL pointer dereference in wakeup_preempt_entity
via pick_next_task_fair.
Detect when we would be about to do that, throw a warning and
then refuse to actually set it.
This has been suggested at least twice:
https://marc.info/?l=linux-kernel&m=146651668921468&w=2https://lkml.org/lkml/2016/6/16/663
I recently had to debug a problem with these (we hadn't backported
Konstantin's patches in this area) and this would have saved a lot
of time/pain.
Just do it.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Cc: Ben Segall <bsegall@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170510201139.16236-1-dja@axtens.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This definition of SCHED_WARN_ON():
#define SCHED_WARN_ON(x) ((void)(x))
is not fully compatible with the 'real' WARN_ON_ONCE() primitive, as it
has no return value, so it cannot be used in conditionals.
Fix it.
Cc: Daniel Axtens <dja@axtens.net>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.
Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.
To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:
struct wait_queue_head::task_list => ::head
struct wait_queue_entry::task_list => ::entry
For example, this code:
rqw->wait.task_list.next != &wait->task_list
... is was pretty unclear (to me) what it's doing, while now it's written this way:
rqw->wait.head.next != &wait->entry
... which makes it pretty clear that we are iterating a list until we see the head.
Other examples are:
list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
list_for_each_entry(wq, &fence->wait.task_list, task_list) {
... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:
list_for_each_entry_safe(pos, next, &x->head, entry) {
list_for_each_entry(wq, &fence->wait.head, entry) {
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The key hashed waitqueue data structures and their initialization
was done in the main scheduler file for no good reason, move them
to sched/wait_bit.c instead.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.
Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.
So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:
include/linux/wait_bit.h for types and APIs
kernel/sched/wait_bit.c for the implementation
Update all header dependencies.
This reduces the size of wait.h rather significantly, by about 30%.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So wait-bit-queue head variables are often named:
struct wait_bit_queue *q
... which is a bit ambiguous and super confusing, because
they clearly suggest wait-queue head semantics and behavior
(they rhyme with the old wait_queue_t *q naming), while they
are extended wait-queue _entries_, not heads!
They are misnomers in two ways:
- the 'wait_bit_queue' leaves open the question of whether
it's an entry or a head
- the 'q' parameter and local variable naming falsely implies
that it's a 'queue' - while it's an entry.
This resulted in sometimes confusing cases such as:
finish_wait(wq, &q->wait);
where the 'q' is not a wait-queue head, but a wait-bit-queue entry.
So improve this all by standardizing wait-bit-queue nomenclature
similar to wait-queue head naming:
struct wait_bit_queue => struct wait_bit_queue_entry
q => wbq_entry
Which makes it all a much clearer:
struct wait_bit_queue_entry *wbq_entry
... and turns the former confusing piece of code into:
finish_wait(wq_head, &wbq_entry->wq_entry;
which IMHO makes it apparently clear what we are doing,
without having to analyze the context of the code: we are
adding a wait-queue entry to a regular wait-queue head,
which entry is embedded in a wait-bit-queue entry.
I'm not a big fan of acronyms, but repeating wait_bit_queue_entry
in field and local variable names is too long, so Hopefully it's
clear enough that 'wq_' prefixes stand for wait-queues, while
'wbq_' prefixes stand for wait-bit-queues.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename 'struct wait_bit_queue::wait' to ::wq_entry, to more clearly
name it as a wait-queue entry.
Propagate it to a couple of usage sites where the wait-bit-queue internals
are exposed.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait-queue head parameters and variables are named in a
couple of ways, we have the following variants currently:
wait_queue_head_t *q
wait_queue_head_t *wq
wait_queue_head_t *head
In particular the 'wq' naming is ambiguous in the sense whether it's
a wait-queue head or entry name - as entries were often named 'wait'.
( Not to mention the confusion of any readers coming over from
workqueue-land. )
Standardize all this around a single, unambiguous parameter and
variable name:
struct wait_queue_head *wq_head
which is easy to grep for and also rhymes nicely with the wait-queue
entry naming:
struct wait_queue_entry *wq_entry
Also rename:
struct __wait_queue_head => struct wait_queue_head
... and use this struct type to migrate from typedefs usage to 'struct'
usage, which is more in line with existing kernel practices.
Don't touch any external users and preserve the main wait_queue_head_t
typedef.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>