46103 Commits

Author SHA1 Message Date
Linus Torvalds
2edfd1046f - Rework different aspects of the resctrl code like adding arch-specific
accessors and splitting the locking, in order to accomodate ARM's MPAM
   implementation of hw resource control and be able to use the same
   filesystem control interface like on x86. Work by James Morse
 
 - Improve the memory bandwidth throttling heuristic to handle workloads
   with not too regular load levels which end up penalized unnecessarily
 
 - Use CPUID to detect the memory bandwidth enforcement limit on AMD
 
 - The usual set of fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvGP8ACgkQEsHwGGHe
 VUo7nw//e3qGYx09qA6UShcIjz4e9cVM3gUraBn82rd4T6oeIfU5ecJn6auJzlVO
 cvlRFumaLbrNZXHd+Ww5VG0g0LVEcLmqS2ER295Rbp5gTvbDTNrmIAgriUpxER42
 UkVtI4/y+P5980Y0Jl1j5xECACIdXFxJEGO3Eiok0rk3ZRhcFZgf1T2/35F2Jiif
 hXAtvmkeTBxldhcdgovdaoR7SIY4MBZjgB1zX5WqJGlFdxfc6RaYbpCnl8rVXF2J
 2DSUvHjtXco9MWNDm9c2bwNzXHV3EaAvUiCwmfoNeXCCJEqpyYFaPs3U61RnlwQe
 ucAtSXeRx8YmJAVNJTjSR4Cou0stQDJdLZx0yYgoAvhXqwcpePilMzfHwdHkZ/5V
 K7Kwl+VbJ1JxnTJgYmcgJ3juF7R7VW+stiKZOTkFYvBsWzXvCK5w+w1JScbdphqa
 P878tySa58ehIaEf9/472QpA+zbItENsf1OFytfbJPKAJhnKMG73X4lrt6swSZBW
 a1rmTGqG0ufuPiXT9XDajgeFR/15RQWcYtXPVXmWLaIJ+hHhRc57v11qy0uIMs9V
 o0uRtdJP2SL+7rEm26VPjBXyS3orf2tvigrXnYeyNpTR/RVhMHL4n+0kxs4p9ELf
 3oD4vd/KqyGHo7LO5QMm52eSxfHLpJzgFL02inBgFTFtmWMWpy8=
 =v7bo
 -----END PGP SIGNATURE-----

Merge tag 'x86_cache_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull resource control updates from Borislav Petkov:

 - Rework different aspects of the resctrl code like adding
   arch-specific accessors and splitting the locking, in order to
   accomodate ARM's MPAM implementation of hw resource control and be
   able to use the same filesystem control interface like on x86. Work
   by James Morse

 - Improve the memory bandwidth throttling heuristic to handle workloads
   with not too regular load levels which end up penalized unnecessarily

 - Use CPUID to detect the memory bandwidth enforcement limit on AMD

 - The usual set of fixes

* tag 'x86_cache_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
  x86/resctrl: Remove lockdep annotation that triggers false positive
  x86/resctrl: Separate arch and fs resctrl locks
  x86/resctrl: Move domain helper migration into resctrl_offline_cpu()
  x86/resctrl: Add CPU offline callback for resctrl work
  x86/resctrl: Allow overflow/limbo handlers to be scheduled on any-but CPU
  x86/resctrl: Add CPU online callback for resctrl work
  x86/resctrl: Add helpers for system wide mon/alloc capable
  x86/resctrl: Make rdt_enable_key the arch's decision to switch
  x86/resctrl: Move alloc/mon static keys into helpers
  x86/resctrl: Make resctrl_mounted checks explicit
  x86/resctrl: Allow arch to allocate memory needed in resctrl_arch_rmid_read()
  x86/resctrl: Allow resctrl_arch_rmid_read() to sleep
  x86/resctrl: Queue mon_event_read() instead of sending an IPI
  x86/resctrl: Add cpumask_any_housekeeping() for limbo/overflow
  x86/resctrl: Move CLOSID/RMID matching and setting to use helpers
  x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid
  x86/resctrl: Use __set_bit()/__clear_bit() instead of open coding
  x86/resctrl: Track the number of dirty RMID a CLOSID has
  x86/resctrl: Allow RMID allocation to be scoped by CLOSID
  x86/resctrl: Access per-rmid structures by index
  ...
2024-03-11 17:29:55 -07:00
Linus Torvalds
bfdb395a7c - Relax the PAT MSR programming which was unnecessarily using the MTRR
programming protocol of disabling the cache around the changes. The
    reason behind this is the current algorithm triggering a #VE
    exception for TDX guests and unnecessarily complicating things
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXux8sACgkQEsHwGGHe
 VUodOw//diEAM3//Ht733soDDMYuc3pnLBgpIvEYtU7nvo7rVuNJASUny+WmQNVl
 Szm1ATl88I0H1t54CAdvd398csKlZPmsO/puu/sLiJrvmjXtH4raE/u9lFjpdBwo
 yoSbgb8v15No0JlszeE782rJfAHQ01FK7LbEuV0EKF3dx+KDZQPY8E+/LGVNeyh4
 X7OWh2RJHUKENYxYgQBBuw2Hkm9HXIgyQiKe9eIrEwpHskCmZ/y8F8LazohVmw8L
 XqlUZFCmKPwHsLE44sWq5coXoN28RKZfQ2D7jvhts8AwwU1RRoFv5WgCXhFe0Rfe
 dPfLm93PvxxUYV0OHyCsKeJJkA8KH+vuXiaC1iw7Za6Ipkio1LzNAc/pxa/Q4x8Y
 dwOM+WI/OdXz8KHQAJlU37ZNGbnA/ETWumNN7SrqqxvKzUbjcjDwZqIqneFT0dg6
 c5quB/fgj+lL1xXk9EDE4HrOkzLv3/ax449oLFkJ3JKfRRMAzQalRaTwjTh/hufM
 7Eig3iNRN+G6bItXC6XoQjDBEEJP7LplXT8jNQkVbHyMg8WPPToxtJGXBnR73PQp
 q8+Iv3gLqM5EPqetdAtElVRhikmPHPqCdcBj47EHCoPFsQ1E9b72BUutDH0MVEG4
 BIFCWQ4DS+3OXX/BZf7P5UOcPDcGkP+2PqbUmiBRB5I3174XQDQ=
 =nNC0
 -----END PGP SIGNATURE-----

Merge tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 MTRR update from Borislav Petkov:

 - Relax the PAT MSR programming which was unnecessarily using the MTRR
   programming protocol of disabling the cache around the changes. The
   reason behind this is the current algorithm triggering a #VE
   exception for TDX guests and unnecessarily complicating things

* tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/pat: Simplify the PAT programming protocol
2024-03-11 17:27:12 -07:00
Linus Torvalds
742582acec - Have AMD Zen common init code run on all families from Zen1 onwards
in order to save some future enablement effort
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXuxn4ACgkQEsHwGGHe
 VUolmQ//djDJa11FTQ5Zfnu8RjH4LFe6ZanLMIP93urT8rRuOfhlOZLHqxFGvJHy
 1K1yT34NmHdXBsVWX7MxDmyhRJMOhgkkgGhYaBqZWrcV1RO26PKg8FS5B/a3BsVI
 Y7ryOOqWNg0Hf/++Qm0zSq21VEH3Ehq4gYitK0irX/gBbHQMdui63pbLqOHwdszG
 bhgMSI42EjZxpbR1ow5Bx7dia0ChBODbV4WeVB0eZo47mSJU4eu8yDPuy5+5ywwA
 fOOVWZ2e12HrisfJYxL01vivU/pK0WYB2gJlAKv0tp+Q2ReIvo/vh4w2MHC1c+YT
 X8e95rz1jzzlTkEKt4iWE/NZ1XS30z77jGbKVLxl8lsWswTtup48xLw0idLHc39L
 M0ayY3yXbWRVxSltucH2DVKMzG8IP5XNeG53qfiMqIHsoYbmnVgxWk/0HrtgcrSL
 jvcU4f2hwehO/ZvwlRyRlQACOlDSHGehNHmAVK3BqxYxM2+a9ArTA2KmnbC6+U9u
 LAKaXlf+lMo6lszHDqKb+GUePqZ4EX01X4EuSTRX/G6qD4RMZIu1+4sBwfr79miE
 uKJvRIT9DH74+OLPeSt/osdbGAK26BzJM9ZnqkdcggOMM/tHPNkQ5YTK/lStP3gl
 JAh8ih/Or9p3LQHNKIU1zoT0MOKv6Mbr8n+MPYAhaS/oNpST6Bs=
 =h7IU
 -----END PGP SIGNATURE-----

Merge tag 'x86_cpu_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cpu update from Borislav Petkov:

 - Have AMD Zen common init code run on all families from Zen1 onwards
   in order to save some future enablement effort

* tag 'x86_cpu_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/CPU/AMD: Do the common init on future Zens too
2024-03-11 17:25:45 -07:00
Linus Torvalds
d8941ce52b - Constify yet another static struct bus_type instance now that the
driver core can handle that
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXuxYIACgkQEsHwGGHe
 VUrVGBAAgOB8RglOqSCaF2m//92E2TyXKGSpXXuiizuHbV4G7v+yRgunbX99XOBa
 wGkeja0rqovmjaSNOK3B4Hp6/eSXycdKgL8KfMRqa7VzGcla4oN097d6Nvz1YPo3
 YL/8sJ04wy1CrF2Hgxj9bFF/ni0WFUgRr8GvlzKqeYGm7rRP2V8kNk64beAMa1GR
 XTwoqSVq9cA88/Xnw4/qnYG2HxIL+Eu1uJWtkb47EWGD6qzsgC7t+PE0aKrqcTC8
 jzcbiINHPK10FxoXGq3xa1yJQH02E83w0EmjhGmQ06/3gHQVoSUFrO0k4rOJJ7KI
 GvAOYMGjkG/vuX0a2+FcxYoU/ODUuA8tiHK9x1HBkqLPzkiz3FPwQQ0yjfqOyo95
 6dPd2EeUPjSK12xZ2LM22jyfhkIX6v02QjbmkwkP5pVcQ2WQOQVaOQzITZ/5vhLu
 /Eaw+wRj8PBf2Jxv8yX885+qT9owkZIH2jSsVajGpMdoOTkS4R0CmUtPq7D43pGb
 PEUabjcGBkSLGvHeKV0xmMeGAMDrsYNcqZ09RJdnIJ4LExI7tsR7lw5jwRSf0M/O
 3Vg8ZSW4WlWkTzK5ikFitB8p6fWCe2MhE22zdEJhOei4Wzfz1MmvfcgQW6k9i2KB
 AqZGlkg148ItHA56+NMUIgKUqPyblQixR97VkpZoHUAlMdaSdd4=
 =RL7O
 -----END PGP SIGNATURE-----

Merge tag 'ras_core_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull RAS fixlet from Borislav Petkov:

 - Constify yet another static struct bus_type instance now that the
   driver core can handle that

* tag 'ras_core_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce: Make mce_subsys const
2024-03-11 17:22:57 -07:00
Linus Torvalds
86833aec44 A single update for the x86 entry code:
The current CR3 handling for kernel page table isolation in the paranoid
   return paths which are relevant for #NMI, #MCE, #VC, #DB and #DF is
   unconditionally writing CR3 with the value retrieved on exception entry.
 
   In the vast majority of cases when returning to the kernel this is a
   pointless exercise because CR3 was not modified on exception entry. The
   only situation where this is necessary is when the exception interrupts a
   entry from user before switching to kernel CR3 or interrupts an exit to
   user after switching back to user CR3.
 
   As CR3 writes can be expensive on some systems this becomes measurable
   overhead with high frequency #NMIs such as perf.
 
   Avoid this overhead by checking the CR3 value, which was saved on entry,
   and write it back to CR3 only when it us a user CR3.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXvTXYTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoYMED/40YXFa0si5/9LRh/LSYglxVe/RaXCn
 3oU19oWFRxdHCCLYHeQdlQGrpugM773X+4EC1dE92QpYjFnuLhl5H10h3t2e+3Uw
 Q2VoWEo95FuJ2v7nqex7p2pglOvNjT2VBBlcFFdhqxiC1FCupXvU17nCcLeBsPkj
 wbY2Sq4DxPDoWhWMNK2jhCQNVyYYluJERylS5+j0CK8vhQghq1N1WjcB6tQiAYsa
 7nXz2ZJeGF0jnvLanyhAVSHDKU7QOMO3zkQpaaMlGQ9izawupe5/Gbi8ouFieCh+
 xoLnGo1sgtMOXInnYaJnCiwuc+WiVN3d83aO/s7NZi8ZF60ib72xhzsRip2Cu4aV
 kBtJaCVLFItQZ81HRSBABj6s9MLphHVm4AaOCvCIxK0ib5KDFaWy3tZpwTU4dvwX
 rcwKsQrSLlOOD5zqO5dZn+HX6hK2lsNeTPLfcKVqARGn5S9fITzYbUMlkhO/FGaj
 ZhIgadH8+rXwFDbgS6CGbVYKtM6Ncf/VBGFfE7tEOUQVUmLws3pdLiWo6I2QTGtw
 fCAeF9uYmvhtiKk0e2jotZdbAg6HP2XTQSZfBxQpRgY6AnYW+XyDezcN0X1eNMJC
 lmNC72WYxURHZUoOIxiiVzDS9kz7YTUo3pBHFrpQlNqGTqP8r+tAhUyou16yDK/0
 2G9Mms/85u89MQ==
 =UcMe
 -----END PGP SIGNATURE-----

Merge tag 'x86-entry-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 entry update from Thomas Gleixner:
 "A single update for the x86 entry code:

  The current CR3 handling for kernel page table isolation in the
  paranoid return paths which are relevant for #NMI, #MCE, #VC, #DB and
  #DF is unconditionally writing CR3 with the value retrieved on
  exception entry.

  In the vast majority of cases when returning to the kernel this is a
  pointless exercise because CR3 was not modified on exception entry.
  The only situation where this is necessary is when the exception
  interrupts a entry from user before switching to kernel CR3 or
  interrupts an exit to user after switching back to user CR3.

  As CR3 writes can be expensive on some systems this becomes measurable
  overhead with high frequency #NMIs such as perf.

  Avoid this overhead by checking the CR3 value, which was saved on
  entry, and write it back to CR3 only when it is a user CR3"

* tag 'x86-entry-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/entry: Avoid redundant CR3 write on paranoid returns
2024-03-11 16:15:43 -07:00
Linus Torvalds
720c857907 Support for x86 Fast Return and Event Delivery (FRED):
FRED is a replacement for IDT event delivery on x86 and addresses most of
 the technical nightmares which IDT exposes:
 
  1) Exception cause registers like CR2 need to be manually preserved in
     nested exception scenarios.
 
  2) Hardware interrupt stack switching is suboptimal for nested exceptions
     as the interrupt stack mechanism rewinds the stack on each entry which
     requires a massive effort in the low level entry of #NMI code to handle
     this.
 
  3) No hardware distinction between entry from kernel or from user which
     makes establishing kernel context more complex than it needs to be
     especially for unconditionally nestable exceptions like NMI.
 
  4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a
     problem when the perf NMI takes a fault when collecting a stack trace.
 
  5) Partial restore of ESP when returning to a 16-bit segment
 
  6) Limitation of the vector space which can cause vector exhaustion on
     large systems.
 
  7) Inability to differentiate NMI sources
 
 FRED addresses these shortcomings by:
 
  1) An extended exception stack frame which the CPU uses to save exception
     cause registers. This ensures that the meta information for each
     exception is preserved on stack and avoids the extra complexity of
     preserving it in software.
 
  2) Hardware interrupt stack switching is non-rewinding if a nested
     exception uses the currently interrupt stack.
 
  3) The entry points for kernel and user context are separate and GS BASE
     handling which is required to establish kernel context for per CPU
     variable access is done in hardware.
 
  4) NMIs are now nesting protected. They are only reenabled on the return
     from NMI.
 
  5) FRED guarantees full restore of ESP
 
  6) FRED does not put a limitation on the vector space by design because it
     uses a central entry points for kernel and user space and the CPUstores
     the entry type (exception, trap, interrupt, syscall) on the entry stack
     along with the vector number. The entry code has to demultiplex this
     information, but this removes the vector space restriction.
 
     The first hardware implementations will still have the current
     restricted vector space because lifting this limitation requires
     further changes to the local APIC.
 
  7) FRED stores the vector number and meta information on stack which
     allows having more than one NMI vector in future hardware when the
     required local APIC changes are in place.
 
 The series implements the initial FRED support by:
 
  - Reworking the existing entry and IDT handling infrastructure to
    accomodate for the alternative entry mechanism.
 
  - Expanding the stack frame to accomodate for the extra 16 bytes FRED
    requires to store context and meta information
 
  - Providing FRED specific C entry points for events which have information
    pushed to the extended stack frame, e.g. #PF and #DB.
 
  - Providing FRED specific C entry points for #NMI and #MCE
 
  - Implementing the FRED specific ASM entry points and the C code to
    demultiplex the events
 
  - Providing detection and initialization mechanisms and the necessary
    tweaks in context switching, GS BASE handling etc.
 
 The FRED integration aims for maximum code reuse vs. the existing IDT
 implementation to the extent possible and the deviation in hot paths like
 context switching are handled with alternatives to minimalize the
 impact. The low level entry and exit paths are seperate due to the extended
 stack frame and the hardware based GS BASE swichting and therefore have no
 impact on IDT based systems.
 
 It has been extensively tested on existing systems and on the FRED
 simulation and as of now there are know outstanding problems.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp
 bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y
 nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g
 KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3
 V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ
 sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s
 tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V
 TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL
 Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn
 wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ
 8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU
 6/O8nwZy49ckmQ==
 =Ib7w
 -----END PGP SIGNATURE-----

Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 FRED support from Thomas Gleixner:
 "Support for x86 Fast Return and Event Delivery (FRED).

  FRED is a replacement for IDT event delivery on x86 and addresses most
  of the technical nightmares which IDT exposes:

   1) Exception cause registers like CR2 need to be manually preserved
      in nested exception scenarios.

   2) Hardware interrupt stack switching is suboptimal for nested
      exceptions as the interrupt stack mechanism rewinds the stack on
      each entry which requires a massive effort in the low level entry
      of #NMI code to handle this.

   3) No hardware distinction between entry from kernel or from user
      which makes establishing kernel context more complex than it needs
      to be especially for unconditionally nestable exceptions like NMI.

   4) NMI nesting caused by IRET unconditionally reenabling NMIs, which
      is a problem when the perf NMI takes a fault when collecting a
      stack trace.

   5) Partial restore of ESP when returning to a 16-bit segment

   6) Limitation of the vector space which can cause vector exhaustion
      on large systems.

   7) Inability to differentiate NMI sources

  FRED addresses these shortcomings by:

   1) An extended exception stack frame which the CPU uses to save
      exception cause registers. This ensures that the meta information
      for each exception is preserved on stack and avoids the extra
      complexity of preserving it in software.

   2) Hardware interrupt stack switching is non-rewinding if a nested
      exception uses the currently interrupt stack.

   3) The entry points for kernel and user context are separate and GS
      BASE handling which is required to establish kernel context for
      per CPU variable access is done in hardware.

   4) NMIs are now nesting protected. They are only reenabled on the
      return from NMI.

   5) FRED guarantees full restore of ESP

   6) FRED does not put a limitation on the vector space by design
      because it uses a central entry points for kernel and user space
      and the CPUstores the entry type (exception, trap, interrupt,
      syscall) on the entry stack along with the vector number. The
      entry code has to demultiplex this information, but this removes
      the vector space restriction.

      The first hardware implementations will still have the current
      restricted vector space because lifting this limitation requires
      further changes to the local APIC.

   7) FRED stores the vector number and meta information on stack which
      allows having more than one NMI vector in future hardware when the
      required local APIC changes are in place.

  The series implements the initial FRED support by:

   - Reworking the existing entry and IDT handling infrastructure to
     accomodate for the alternative entry mechanism.

   - Expanding the stack frame to accomodate for the extra 16 bytes FRED
     requires to store context and meta information

   - Providing FRED specific C entry points for events which have
     information pushed to the extended stack frame, e.g. #PF and #DB.

   - Providing FRED specific C entry points for #NMI and #MCE

   - Implementing the FRED specific ASM entry points and the C code to
     demultiplex the events

   - Providing detection and initialization mechanisms and the necessary
     tweaks in context switching, GS BASE handling etc.

  The FRED integration aims for maximum code reuse vs the existing IDT
  implementation to the extent possible and the deviation in hot paths
  like context switching are handled with alternatives to minimalize the
  impact. The low level entry and exit paths are seperate due to the
  extended stack frame and the hardware based GS BASE swichting and
  therefore have no impact on IDT based systems.

  It has been extensively tested on existing systems and on the FRED
  simulation and as of now there are no outstanding problems"

* tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
  x86/fred: Fix init_task thread stack pointer initialization
  MAINTAINERS: Add a maintainer entry for FRED
  x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly
  x86/fred: Invoke FRED initialization code to enable FRED
  x86/fred: Add FRED initialization functions
  x86/syscall: Split IDT syscall setup code into idt_syscall_init()
  KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling
  x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI
  x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code
  x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
  x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled
  x86/traps: Add sysvec_install() to install a system interrupt handler
  x86/fred: FRED entry/exit and dispatch code
  x86/fred: Add a machine check entry stub for FRED
  x86/fred: Add a NMI entry stub for FRED
  x86/fred: Add a debug fault entry stub for FRED
  x86/idtentry: Incorporate definitions/declarations of the FRED entries
  x86/fred: Make exc_page_fault() work for FRED
  x86/fred: Allow single-step trap and NMI when starting a new task
  x86/fred: No ESPFIX needed when FRED is enabled
  ...
2024-03-11 16:00:17 -07:00
Linus Torvalds
ca7e917769 Rework of APIC enumeration and topology evaluation:
The current implementation has a couple of shortcomings:
 
   - It fails to handle hybrid systems correctly.
 
   - The APIC registration code which handles CPU number assignents is in
     the middle of the APIC code and detached from the topology evaluation.
 
   - The various mechanisms which enumerate APICs, ACPI, MPPARSE and guest
     specific ones, tweak global variables as they see fit or in case of
     XENPV just hack around the generic mechanisms completely.
 
   - The CPUID topology evaluation code is sprinkled all over the vendor
     code and reevaluates global variables on every hotplug operation.
 
   - There is no way to analyze topology on the boot CPU before bringing up
     the APs. This causes problems for infrastructure like PERF which needs
     to size certain aspects upfront or could be simplified if that would be
     possible.
 
   - The APIC admission and CPU number association logic is incomprehensible
     and overly complex and needs to be kept around after boot instead of
     completing this right after the APIC enumeration.
 
 This update addresses these shortcomings with the following changes:
 
   - Rework the CPUID evaluation code so it is common for all vendors and
     provides information about the APIC ID segments in a uniform way
     independent of the number of segments (Thread, Core, Module, ..., Die,
     Package) so that this information can be computed instead of rewriting
     global variables of dubious value over and over.
 
   - A few cleanups and simplifcations of the APIC, IO/APIC and related
     interfaces to prepare for the topology evaluation changes.
 
   - Seperation of the parser stages so the early evaluation which tries to
     find the APIC address can be seperately overridden from the late
     evaluation which enumerates and registers the local APIC as further
     preparation for sanitizing the topology evaluation.
 
   - A new registration and admission logic which
 
      - encapsulates the inner workings so that parsers and guest logic
        cannot longer fiddle in it
 
      - uses the APIC ID segments to build topology bitmaps at registration
        time
 
      - provides a sane admission logic
 
      - allows to detect the crash kernel case, where CPU0 does not run on
        the real BSP, automatically. This is required to prevent sending
        INIT/SIPI sequences to the real BSP which would reset the whole
        machine. This was so far handled by a tedious command line
        parameter, which does not even work in nested crash scenarios.
 
      - Associates CPU number after the enumeration completed and prevents
        the late registration of APICs, which was somehow tolerated before.
 
   - Converting all parsers and guest enumeration mechanisms over to the
     new interfaces.
 
     This allows to get rid of all global variable tweaking from the parsers
     and enumeration mechanisms and sanitizes the XEN[PV] handling so it can
     use CPUID evaluation for the first time.
 
   - Mopping up existing sins by taking the information from the APIC ID
     segment bitmaps.
 
     This evaluates hybrid systems correctly on the boot CPU and allows for
     cleanups and fixes in the related drivers, e.g. PERF.
 
 The series has been extensively tested and the minimal late fallout due to
 a broken ACPI/MADT table has been addressed by tightening the admission
 logic further.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuDawTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYobE7EACngItF+UOTCoCV6och2lL6HVoIdZD1
 Y5oaAgD+WzQSz/lBkH6b9kZSyvjlMo6O9GlnGX+ii+VUnijDp4VrspnxbJDaKEq3
 gOfsSg2Tk+ps50HqMcZawjjBYJb/TmvKwEV2XuzIBPOONSWLNjvN7nBSzLl1eF9/
 8uCE39/8aB5K3GXryRyXdo2uLu6eHTVC0aYFu/kLX1/BbVqF5NMD3sz9E9w8+D/U
 MIIMEMXy4Fn+P2o0vVH+gjUlwI76mJbB1WqCX/sqbVacXrjl3KfNJRiisTFIOOYV
 8o+rIV0ef5X9xmZqtOXAdyZQzj++Gwmz9+4TU1M4YHtS7UkYn6AluOjvVekCc+gc
 qXE3WhqKfCK2/carRMLQxAMxNeRylkZG+Wuv1Qtyjpe9JX2dTqtems0f4DMp9DKf
 b7InO3z39kJanpqcUG2Sx+GWanetfnX+0Ho2Moqu6Xi+2ATr1PfMG/Wyr5/WWOfV
 qApaHSTwa+J43mSzP6BsXngEv085EHSGM5tPe7u46MCYFqB21+bMl+qH82KjMkOe
 c6uZovFQMmX2WBlqJSYGVCH+Jhgvqq8HFeRs19Hd4enOt3e6LE3E74RBVD1AyfLV
 1b/m8tYB/o871ZlEZwDCGVrV/LNnA7PxmFpq5ZHLpUt39g2/V0RH1puBVz1e97pU
 YsTT7hBCUYzgjQ==
 =/5oR
 -----END PGP SIGNATURE-----

Merge tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 APIC updates from Thomas Gleixner:
 "Rework of APIC enumeration and topology evaluation.

  The current implementation has a couple of shortcomings:

   - It fails to handle hybrid systems correctly.

   - The APIC registration code which handles CPU number assignents is
     in the middle of the APIC code and detached from the topology
     evaluation.

   - The various mechanisms which enumerate APICs, ACPI, MPPARSE and
     guest specific ones, tweak global variables as they see fit or in
     case of XENPV just hack around the generic mechanisms completely.

   - The CPUID topology evaluation code is sprinkled all over the vendor
     code and reevaluates global variables on every hotplug operation.

   - There is no way to analyze topology on the boot CPU before bringing
     up the APs. This causes problems for infrastructure like PERF which
     needs to size certain aspects upfront or could be simplified if
     that would be possible.

   - The APIC admission and CPU number association logic is
     incomprehensible and overly complex and needs to be kept around
     after boot instead of completing this right after the APIC
     enumeration.

  This update addresses these shortcomings with the following changes:

   - Rework the CPUID evaluation code so it is common for all vendors
     and provides information about the APIC ID segments in a uniform
     way independent of the number of segments (Thread, Core, Module,
     ..., Die, Package) so that this information can be computed instead
     of rewriting global variables of dubious value over and over.

   - A few cleanups and simplifcations of the APIC, IO/APIC and related
     interfaces to prepare for the topology evaluation changes.

   - Seperation of the parser stages so the early evaluation which tries
     to find the APIC address can be seperately overridden from the late
     evaluation which enumerates and registers the local APIC as further
     preparation for sanitizing the topology evaluation.

   - A new registration and admission logic which

       - encapsulates the inner workings so that parsers and guest logic
         cannot longer fiddle in it

       - uses the APIC ID segments to build topology bitmaps at
         registration time

       - provides a sane admission logic

       - allows to detect the crash kernel case, where CPU0 does not run
         on the real BSP, automatically. This is required to prevent
         sending INIT/SIPI sequences to the real BSP which would reset
         the whole machine. This was so far handled by a tedious command
         line parameter, which does not even work in nested crash
         scenarios.

       - Associates CPU number after the enumeration completed and
         prevents the late registration of APICs, which was somehow
         tolerated before.

   - Converting all parsers and guest enumeration mechanisms over to the
     new interfaces.

     This allows to get rid of all global variable tweaking from the
     parsers and enumeration mechanisms and sanitizes the XEN[PV]
     handling so it can use CPUID evaluation for the first time.

   - Mopping up existing sins by taking the information from the APIC ID
     segment bitmaps.

     This evaluates hybrid systems correctly on the boot CPU and allows
     for cleanups and fixes in the related drivers, e.g. PERF.

  The series has been extensively tested and the minimal late fallout
  due to a broken ACPI/MADT table has been addressed by tightening the
  admission logic further"

* tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
  x86/topology: Ignore non-present APIC IDs in a present package
  x86/apic: Build the x86 topology enumeration functions on UP APIC builds too
  smp: Provide 'setup_max_cpus' definition on UP too
  smp: Avoid 'setup_max_cpus' namespace collision/shadowing
  x86/bugs: Use fixed addressing for VERW operand
  x86/cpu/topology: Get rid of cpuinfo::x86_max_cores
  x86/cpu/topology: Provide __num_[cores|threads]_per_package
  x86/cpu/topology: Rename topology_max_die_per_package()
  x86/cpu/topology: Rename smp_num_siblings
  x86/cpu/topology: Retrieve cores per package from topology bitmaps
  x86/cpu/topology: Use topology logical mapping mechanism
  x86/cpu/topology: Provide logical pkg/die mapping
  x86/cpu/topology: Simplify cpu_mark_primary_thread()
  x86/cpu/topology: Mop up primary thread mask handling
  x86/cpu/topology: Use topology bitmaps for sizing
  x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT
  x86/xen/smp_pv: Count number of vCPUs early
  x86/cpu/topology: Assign hotpluggable CPUIDs during init
  x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug
  x86/topology: Add a mechanism to track topology via APIC IDs
  ...
2024-03-11 15:45:55 -07:00
Alexei Starovoitov
142fd4d2dc bpf: Add x86-64 JIT support for bpf_addr_space_cast instruction.
LLVM generates bpf_addr_space_cast instruction while translating
pointers between native (zero) address space and
__attribute__((address_space(N))).
The addr_space=1 is reserved as bpf_arena address space.

rY = addr_space_cast(rX, 0, 1) is processed by the verifier and
converted to normal 32-bit move: wX = wY

rY = addr_space_cast(rX, 1, 0) has to be converted by JIT:

aux_reg = upper_32_bits of arena->user_vm_start
aux_reg <<= 32
wX = wY // clear upper 32 bits of dst register
if (wX) // if not zero add upper bits of user_vm_start
  wX |= aux_reg

JIT can do it more efficiently:

mov dst_reg32, src_reg32  // 32-bit move
shl dst_reg, 32
or dst_reg, user_vm_start
rol dst_reg, 32
xor r11, r11
test dst_reg32, dst_reg32 // check if lower 32-bit are zero
cmove r11, dst_reg	  // if so, set dst_reg to zero
			  // Intel swapped src/dst register encoding in CMOVcc

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-5-alexei.starovoitov@gmail.com
2024-03-11 15:37:24 -07:00
Alexei Starovoitov
2fe99eb0cc bpf: Add x86-64 JIT support for PROBE_MEM32 pseudo instructions.
Add support for [LDX | STX | ST], PROBE_MEM32, [B | H | W | DW] instructions.
They are similar to PROBE_MEM instructions with the following differences:
- PROBE_MEM has to check that the address is in the kernel range with
  src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE check
- PROBE_MEM doesn't support store
- PROBE_MEM32 relies on the verifier to clear upper 32-bit in the register
- PROBE_MEM32 adds 64-bit kern_vm_start address (which is stored in %r12 in the prologue)
  Due to bpf_arena constructions such %r12 + %reg + off16 access is guaranteed
  to be within arena virtual range, so no address check at run-time.
- PROBE_MEM32 allows STX and ST. If they fault the store is a nop.
  When LDX faults the destination register is zeroed.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-4-alexei.starovoitov@gmail.com
2024-03-11 15:37:24 -07:00
Linus Torvalds
80a76c60e5 Updates for timekeeping and PTP core:
The cross-timestamp mechanism which allows to correlate hardware
   clocks uses clocksource pointers for describing the correlation.
 
   That's suboptimal as drivers need to obtain the pointer, which requires
   needless exports and exposing internals.
 
   This can be completely avoided by assigning clocksource IDs and using
   them for describing the correlated clock source.
 
   This update adds clocksource IDs to all clocksources in the tree which
   can be exposed to this mechanism and removes the pointer and now needless
   exports.
 
   This is separate from the timer core changes as it was provided to the
   PTP folks to build further changes on top.
 
   A related improvement for the core and the correlation handling has not
   made it this time, but is expected to get ready for the next round.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAsoTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoQSFD/0Qvyrm/tKgJwdOZrXAmcPkCRu4amrv
 z5GiZtMt6/GHN6JA6ZkR9tjpYnh/NrhxaGxD2k9kcUsaj1tEZyGULNYtfPXsS/j0
 SVOVpuagqppPGryfqnxgnZk7M+zjGAxb58miGMEkk08Ex7ysAkujGnmfHzNBP1mz
 Ryeeime6aOVB8jhISS68GtAYZ5fD0fWjXfN7DN9G1faJwmF82nJLKkGFy7E1TV9Y
 IYaW4r/EZuRATXesnIg6YAjop3l3qK1J8hMAam7OqvOqVzGCs0QNg9usg9Pf6je4
 BaELA6GIwDw8ncR5865ONVC8Qpw8/AgChNf7WJrXsP1xBL56FFDmyTPGJMcUFXya
 G7s/YIQSj+yXg9+LPMAQqFTqLolnwspBw/fz2ctShpbnGbs8lmnAOTAjNz5lBddd
 vrQSn3Gtcj9vHP5OTKXSzHIYGmbvTZp0acsTtuSQGGzJySgVD43m1/xwY5eb11gp
 vS57GADgqTli8mrgipVPZCQ3o87RxNMqqda9lrEG/6lfuJ1rUGZWTkvqoasJI/jq
 mGiWidFhDOGHaJJUQajLIHPXLll+NN2LIa4wcZqPWE4qdtBAqtutkPfVAC5O0Qot
 dA1eWjW02i1Hy7SsUwlpivlDO+MoMn7hqmfXxA01u/x4y8UCnB+vSjWs0LdVlG3G
 xWIbTzzp7HKEwg==
 =xKya
 -----END PGP SIGNATURE-----

Merge tag 'timers-ptp-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull clocksource updates from Thomas Gleixner:
 "Updates for timekeeping and PTP core.

  The cross-timestamp mechanism which allows to correlate hardware
  clocks uses clocksource pointers for describing the correlation.

  That's suboptimal as drivers need to obtain the pointer, which
  requires needless exports and exposing internals. This can all be
  completely avoided by assigning clocksource IDs and using them for
  describing the correlated clock source.

  So this adds clocksource IDs to all clocksources in the tree which can
  be exposed to this mechanism and removes the pointer and now needless
  exports.

  A related improvement for the core and the correlation handling has
  not made it this time, but is expected to get ready for the next
  round"

* tag 'timers-ptp-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  kvmclock: Unexport kvmclock clocksource
  treewide: Remove system_counterval_t.cs, which is never read
  timekeeping: Evaluate system_counterval_t.cs_id instead of .cs
  ptp/kvm, arm_arch_timer: Set system_counterval_t.cs_id to constant
  x86/kvm, ptp/kvm: Add clocksource ID, set system_counterval_t.cs_id
  x86/tsc: Add clocksource ID, set system_counterval_t.cs_id
  timekeeping: Add clocksource ID to struct system_counterval_t
  x86/tsc: Correct kernel-doc notation
2024-03-11 14:25:18 -07:00
Linus Torvalds
4527e83780 Updates for the MSI interrupt subsystem and RISC-V initial MSI support:
- Core and platform-MSI
 
     The core changes have been adopted from previous work which converted
     ARM[64] to the new per device MSI domain model, which was merged to
     support multiple MSI domain per device. The ARM[64] changes are being
     worked on too, but have not been ready yet. The core and platform-MSI
     changes have been split out to not hold up RISC-V and to avoid that
     RISC-V builds on the scheduled for removal interfaces.
 
     The core support provides new interfaces to handle wire to MSI bridges
     in a straight forward way and introduces new platform-MSI interfaces
     which are built on top of the per device MSI domain model.
 
     Once ARM[64] is converted over the old platform-MSI interfaces and the
     related ugliness in the MSI core code will be removed.
 
   - Drivers:
 
     - Add a new driver for the Andes hart-level interrupt controller
 
     - Rework the SiFive PLIC driver to prepare for MSI suport
 
     - Expand the RISC-V INTC driver to support the new RISC-V AIA
       controller which provides the basis for MSI on RISC-V
 
     - A few fixup for the fallout of the core changes.
 
     The actual MSI parts for RISC-V were finalized late and have been
     post-poned for the next merge window.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXt7MsTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYofrMD/9Dag12ttmbE2uqzTzlTxc7RHC2MX5n
 VJLt84FNNwGPA4r7WLOOqHrfuvfoGjuWT9pYMrVaXCglRG1CMvL10kHMB2f28UWv
 Qpc5PzbJwpD6tqyfRSFHMoJp63DAI8IpS7J3I8bqnRD8+0PwYn3jMA1+iMZkH0B7
 8uO3mxlFhQ7BFvIAeMEAhR0szuAfvXqEtpi1iTgQTrQ4Je4Rf1pmLjEe2rkwDvF4
 p3SAmPIh4+F3IjO7vNsVkQ2yOarTP2cpSns6JmO8mrobLIVX7ZCQ6uVaVCfBhxfx
 WttuJO6Bmh/I15yDe/waH6q9ym+0VBwYRWi5lonMpViGdq4/D2WVnY1mNeLRIfjl
 X65aMWE1+bhiqyIIUfc24hacf0UgBIlMEW4kJ31VmQzb+OyLDXw+UvzWg1dO6XdA
 3L6j1nRgHk0ea5yFyH6SfH/mrfeyqHuwHqo17KFyHxD3jM2H1RRMplpbwXiOIepp
 KJJ/O06eMEzHqzn4B8GCT2EvX6L2ehgoWbLeEDNLQh/3LwA9OdcBzPr6gsweEl0U
 Q7szJgUWZHeMr39F2rnt0GmvkEuu6muEp/nQzfnohjoYZ0PhpMLSq++4Gi+Ko3fz
 2IyecJ+tlbSfyM5//8AdNnOSpsTG3f8u6B/WwhGp5lIDwMnMzCssgfQmRnc3Uyv5
 kU3pdMjURJaTUA==
 =7aXj
 -----END PGP SIGNATURE-----

Merge tag 'irq-msi-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull MSI updates from Thomas Gleixner:
 "Updates for the MSI interrupt subsystem and initial RISC-V MSI
  support.

  The core changes have been adopted from previous work which converted
  ARM[64] to the new per device MSI domain model, which was merged to
  support multiple MSI domain per device. The ARM[64] changes are being
  worked on too, but have not been ready yet. The core and platform-MSI
  changes have been split out to not hold up RISC-V and to avoid that
  RISC-V builds on the scheduled for removal interfaces.

  The core support provides new interfaces to handle wire to MSI bridges
  in a straight forward way and introduces new platform-MSI interfaces
  which are built on top of the per device MSI domain model.

  Once ARM[64] is converted over the old platform-MSI interfaces and the
  related ugliness in the MSI core code will be removed.

  The actual MSI parts for RISC-V were finalized late and have been
  post-poned for the next merge window.

  Drivers:

   - Add a new driver for the Andes hart-level interrupt controller

   - Rework the SiFive PLIC driver to prepare for MSI suport

   - Expand the RISC-V INTC driver to support the new RISC-V AIA
     controller which provides the basis for MSI on RISC-V

   - A few fixup for the fallout of the core changes"

* tag 'irq-msi-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
  irqchip/riscv-intc: Fix low-level interrupt handler setup for AIA
  x86/apic/msi: Use DOMAIN_BUS_GENERIC_MSI for HPET/IO-APIC domain search
  genirq/matrix: Dynamic bitmap allocation
  irqchip/riscv-intc: Add support for RISC-V AIA
  irqchip/sifive-plic: Improve locking safety by using irqsave/irqrestore
  irqchip/sifive-plic: Parse number of interrupts and contexts early in plic_probe()
  irqchip/sifive-plic: Cleanup PLIC contexts upon irqdomain creation failure
  irqchip/sifive-plic: Use riscv_get_intc_hwnode() to get parent fwnode
  irqchip/sifive-plic: Use devm_xyz() for managed allocation
  irqchip/sifive-plic: Use dev_xyz() in-place of pr_xyz()
  irqchip/sifive-plic: Convert PLIC driver into a platform driver
  irqchip/riscv-intc: Introduce Andes hart-level interrupt controller
  irqchip/riscv-intc: Allow large non-standard interrupt number
  genirq/irqdomain: Don't call ops->select for DOMAIN_BUS_ANY tokens
  irqchip/imx-intmux: Handle pure domain searches correctly
  genirq/msi: Provide MSI_FLAG_PARENT_PM_DEV
  genirq/irqdomain: Reroute device MSI create_mapping
  genirq/msi: Provide allocation/free functions for "wired" MSI interrupts
  genirq/msi: Optionally use dev->fwnode for device domain
  genirq/msi: Provide DOMAIN_BUS_WIRED_TO_MSI
  ...
2024-03-11 14:03:03 -07:00
Pawan Gupta
2a0180129d KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests
Mitigation for RFDS requires RFDS_CLEAR capability which is enumerated
by MSR_IA32_ARCH_CAPABILITIES bit 27. If the host has it set, export it
to guests so that they can deploy the mitigation.

RFDS_NO indicates that the system is not vulnerable to RFDS, export it
to guests so that they don't deploy the mitigation unnecessarily. When
the host is not affected by X86_BUG_RFDS, but has RFDS_NO=0, synthesize
RFDS_NO to the guest.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-03-11 13:13:50 -07:00
Pawan Gupta
8076fcde01 x86/rfds: Mitigate Register File Data Sampling (RFDS)
RFDS is a CPU vulnerability that may allow userspace to infer kernel
stale data previously used in floating point registers, vector registers
and integer registers. RFDS only affects certain Intel Atom processors.

Intel released a microcode update that uses VERW instruction to clear
the affected CPU buffers. Unlike MDS, none of the affected cores support
SMT.

Add RFDS bug infrastructure and enable the VERW based mitigation by
default, that clears the affected buffers just before exiting to
userspace. Also add sysfs reporting and cmdline parameter
"reg_file_data_sampling" to control the mitigation.

For details see:
Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-03-11 13:13:48 -07:00
Pawan Gupta
e95df4ec0c x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set
Currently MMIO Stale Data mitigation for CPUs not affected by MDS/TAA is
to only deploy VERW at VMentry by enabling mmio_stale_data_clear static
branch. No mitigation is needed for kernel->user transitions. If such
CPUs are also affected by RFDS, its mitigation may set
X86_FEATURE_CLEAR_CPU_BUF to deploy VERW at kernel->user and VMentry.
This could result in duplicate VERW at VMentry.

Fix this by disabling mmio_stale_data_clear static branch when
X86_FEATURE_CLEAR_CPU_BUF is enabled.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
2024-03-11 13:13:28 -07:00
Rafael J. Wysocki
7a8d578350 Merge branch 'pm-cpuidle'
Merge cpuidle updates for 6.9-rc1:

 - Prevent the haltpoll cpuidle governor from shrinking guest
   poll_limit_ns below grow_start (Parshuram Sangle).

 - Avoid potential overflow in integer multiplication when computing
   cpuidle state parameters (C Cheng).

 - Adjust MWAIT hint target C-state computation in the ACPI cpuidle
   driver and in intel_idle to return a correct value for C0 (He
   Rongguang).

* pm-cpuidle:
  cpuidle: ACPI/intel: fix MWAIT hint target C-state computation
  cpuidle: Avoid potential overflow in integer multiplication
  cpuidle: haltpoll: do not shrink guest poll_limit_ns below grow_start
2024-03-11 15:49:18 +01:00
Paolo Bonzini
e9a2bba476 KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
    that are "mapped" into guests via physical addresses.
 
  - Add support for using gfn_to_pfn caches with only a host virtual address,
    i.e. to bypass the "gfn" stage of the cache.  The primary use case is
    overlay pages, where the guest may change the gfn used to reference the
    overlay page, but the backing hva+pfn remains the same.
 
  - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
    of a gpa, so that userspace doesn't need to reconfigure and invalidate the
    cache/mapping if the guest changes the gpa (but userspace keeps the resolved
    hva the same).
 
  - When possible, use a single host TSC value when computing the deadline for
    Xen timers in order to improve the accuracy of the timer emulation.
 
  - Inject pending upcall events when the vCPU software-enables its APIC to fix
    a bug where an upcall can be lost (and to follow Xen's behavior).
 
  - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
    events fails, e.g. if the guest has aliased xAPIC IDs.
 
  - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
    refresh), and drop a now-redundant acquisition of xen_lock (that was
    protecting the shared_info cache) to fix a deadlock due to recursively
    acquiring xen_lock.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrblYACgkQOlYIJqCj
 N/3K4Q/+KZ8lrnNXvdHNCQdosA5DDXpqUcRzhlTUp82fncpdJ0LqrSMzMots2Eh9
 KC0jSPo8EkivF+Epug0+bpQBEaLXzTWhRcS1grePCDz2lBnxoHFSWjvaK2p14KlC
 LvxCJZjxyfLKHwKHpSndvO9hVFElCY3mvvE9KRcKeQAmrz1cz+DDMKelo1MuV8D+
 GfymhYc+UXpY41+6hQdznx+WoGoXKRameo3iGYuBoJjvKOyl4Wxkx9WSXIxxxuqG
 kHxjiWTR/jF1ITJl6PeMrFcGl3cuGKM/UfTOM6W2h6Wi3mhLpXveoVLnqR1kipIj
 btSzSVHL7C4WTPwOcyhwPzap+dJmm31c6N0uPScT7r9yhs+q5BDj26vcVcyPZUHo
 efIwmsnO2eQvuw+f8C6QqWCPaxvw46N0zxzwgc5uA3jvAC93y0l4v+xlAQsC0wzV
 0+BwU00cutH/3t3c/WPD5QcmRLH726VoFuTlaDufpoMU7gBVJ8rzjcusxR+5BKT+
 GJcAgZxZhEgvnzmTKd4Ec/mt+xZ2Erd+kV3MKCHvDPyj8jqy8FQ4DAWKGBR+h3WR
 rqAs2k8NPHyh3i1a3FL1opmxEGsRS+Cnc6Bi77cj9DxTr22JkgDJEuFR+Ues1z6/
 SpE889kt3w5zTo34+lNxNPlIKmO0ICwwhDL6pxJTWU7iWQnKypU=
 =GliW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-xen-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM Xen and pfncache changes for 6.9:

 - Rip out the half-baked support for using gfn_to_pfn caches to manage pages
   that are "mapped" into guests via physical addresses.

 - Add support for using gfn_to_pfn caches with only a host virtual address,
   i.e. to bypass the "gfn" stage of the cache.  The primary use case is
   overlay pages, where the guest may change the gfn used to reference the
   overlay page, but the backing hva+pfn remains the same.

 - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
   of a gpa, so that userspace doesn't need to reconfigure and invalidate the
   cache/mapping if the guest changes the gpa (but userspace keeps the resolved
   hva the same).

 - When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.

 - Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).

 - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.

 - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
   refresh), and drop a now-redundant acquisition of xen_lock (that was
   protecting the shared_info cache) to fix a deadlock due to recursively
   acquiring xen_lock.
2024-03-11 10:42:55 -04:00
Paolo Bonzini
e9025cdd8c KVM x86 PMU changes for 6.9:
- Fix several bugs where KVM speciously prevents the guest from utilizing
    fixed counters and architectural event encodings based on whether or not
    guest CPUID reports support for the _architectural_ encoding.
 
  - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
    priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
 
  - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
    and a variety of other PMC-related behaviors that depend on guest CPUID,
    i.e. are difficult to validate via KVM-Unit-Tests.
 
  - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
    cycles, e.g. when checking if a PMC event needs to be synthesized when
    skipping an instruction.
 
  - Optimize triggering of emulated events, e.g. for "count instructions" events
    when skipping an instruction, which yields a ~10% performance improvement in
    VM-Exit microbenchmarks when a vPMU is exposed to the guest.
 
  - Tighten the check for "PMI in guest" to reduce false positives if an NMI
    arrives in the host while KVM is handling an IRQ VM-Exit.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUFQACgkQOlYIJqCj
 N/11dhAAnr9e6mPmXvaH4YKcvOGgTmwIQdi5W4IBzGm27ErEb0Vyskx3UATRhRm+
 gZyp3wNgEA9LeifICDNu4ypn7HZcl2VtRql6FYcB8Bcu8OiHfU8PhWL0/qrpY20e
 zffUj2tDweq2ft9Iks1SQJD0sxFkcXIcSKOffP7pRZJHFTKLltGORXwxzd9HJHPY
 nc4nERKegK2yH4A4gY6nZ0oV5L3OMUNHx815db5Y+HxXOIjBCjTQiNNd6mUdyX1N
 C5sIiElXLdvRTSDvirHfA32LqNwnajDGox4QKZkB3wszCxJ3kRd4OCkTEKMYKHxd
 KoKCJQnAdJFFW9xqbT8nNKXZ+hg2+ZQuoSaBuwKryf7jWi0e6a7jcV0OH+cQSZw7
 UNudKhs3r4ambfvnFp2IVZlZREMDB+LAjo2So48Jn/JGCAzqte3XqwVKskn9pS9S
 qeauXCdOLioZALYtTBl8RM1rEY5mbwQrpPv9CzbeU09qQ/hpXV14W9GmbyeOZcI1
 T1cYgEqlLuifRluwT/hxrY321+4noF116gSK1yb07x/sJU8/lhRooEk9V562066E
 qo6nIvc7Bv9gTGLwo6VReKSPcTT/6t3HwgPsRjqe+evso3EFN9f9hG+uPxtO6TUj
 pdPm3mkj2KfxDdJLf+Ys16gyGdiwI0ZImIkA0uLdM0zftNsrb4Y=
 =vayI
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-pmu-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 PMU changes for 6.9:

 - Fix several bugs where KVM speciously prevents the guest from utilizing
   fixed counters and architectural event encodings based on whether or not
   guest CPUID reports support for the _architectural_ encoding.

 - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
   priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.

 - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
   and a variety of other PMC-related behaviors that depend on guest CPUID,
   i.e. are difficult to validate via KVM-Unit-Tests.

 - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
   cycles, e.g. when checking if a PMC event needs to be synthesized when
   skipping an instruction.

 - Optimize triggering of emulated events, e.g. for "count instructions" events
   when skipping an instruction, which yields a ~10% performance improvement in
   VM-Exit microbenchmarks when a vPMU is exposed to the guest.

 - Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
2024-03-11 10:41:09 -04:00
Paolo Bonzini
b00471a552 KVM VMX changes for 6.9:
- Fix a bug where KVM would report stale/bogus exit qualification information
    when exiting to userspace due to an unexpected VM-Exit while the CPU was
    vectoring an exception.
 
  - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
 
  - Clean up the logic for massaging the passthrough MSR bitmaps when userspace
    changes its MSR filter.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUh4ACgkQOlYIJqCj
 N/2CRA//VKa4KE8zgF3xM6Btyt2NegPgmGYVyhmMHTvARyHDIl5nURy++uXseb4f
 UXQLGcoGS+CIiaMohQFhCOjoNvv/2LR9P72qVV2WjQjFxVGBchybz8bjrqIDSSvY
 TuiPJApIfZtLryFFcowo8jLEBQv3JKgfgn9r2hBwVDcYP13wSz0Z4AWntHIqBxNa
 DW75wo7wnBFzy2RfUdtAgucpbmEihqSoKA+YjUT+0GRLBI7rWbFxdEKqe3BIM/7n
 4NoJXbOmw7mlhTNumZYsF5sKiyOihBOdtUL1TDgKWjJScgmwG+KCSvrp5Ko4PZpo
 uyWWcIbskQ+cTO6dHDoIJTVPsCDxo3PgVJKG1T60CV68NavwxXCUGri1n1ZNyYH/
 bXxEW7dTGHX0TDSt3dcyVOYdZFHbaIbqpu1EXlrzBm1hnruQ1C1uBQGHZ/X+Yo86
 0qdq9SgXJ48tykr8BDruIHMy0Q8jbXxl67oXR0CdRjJGM+H9f+7RefnRN9wPYFhy
 n6Hl3kbezwCZb+8RO34Hq2CpKzNlKRHlJDhUq1ypd2vXPw8FDq1aQYKih0jAzyJQ
 yCdUueBJgo8OJtSL4HGEHvgkLHR4/XERgbCOxpSYNbqIjahAwNtbfHryUnJRWRb5
 V3QczG/TtGfEpVblbRzn3Atbft4rM5a9Z3+s0siB6C2w8wyPmZg=
 =oJso
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-vmx-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM VMX changes for 6.9:

 - Fix a bug where KVM would report stale/bogus exit qualification information
   when exiting to userspace due to an unexpected VM-Exit while the CPU was
   vectoring an exception.

 - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.

 - Clean up the logic for massaging the passthrough MSR bitmaps when userspace
   changes its MSR filter.
2024-03-11 10:31:29 -04:00
Paolo Bonzini
41ebae2ecd KVM x86 MMU changes for 6.9:
- Clean up code related to unprotecting shadow pages when retrying a guest
    instruction after failed #PF-induced emulation.
 
  - Zap TDP MMU roots at 4KiB granularity to minimize the delay in yielding if
    a reschedule is needed, e.g. if a high priority task needs to run.  Because
    KVM doesn't support yielding in the middle of processing a zapped non-leaf
    SPTE, zapping at 1GiB granularity can result in multi-millisecond lag when
    attempting to schedule in a high priority.
 
  - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
    read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
  - Allocate write-tracking metadata on-demand to avoid the memory overhead when
    running kernels built with KVMGT support (external write-tracking enabled),
    but for workloads that don't use nested virtualization (shadow paging) or
    KVMGT.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrTH4ACgkQOlYIJqCj
 N/1q3xAAh3wpUDzRfkNkgGUbulhuJmQ72PiaW3NRoMo/3Rowegsdgt1N3/ec+fcJ
 Awx0KUM8Cju8O2Zqp6NzKwUkddCni8dHmOa55NJQuK2M1OpnE0RjBB94n+AFJZki
 mm8wKSKNgjlVeJDG87+RLPnbaeEvqYPp22oNKJyAPsimTbxvmhIqtg8qdyujGPXA
 Jke7LXgtVGav+nEzXiLh86VU/agoBJc/zt+hiuLvamU5Y8so+zReqFbrDtvsgtpV
 ryvMbDZxcPXKrsBP+B7syqUAbODcmh/wkzOCZ4Tby5yurEaw1rwpZIH0BRKRgGx2
 F2JqWayYsCOsrJ4DwQre8RfLMtbEKB2BBWkZlYyblAy0++1LcTP9pSk5YC5lSL71
 5Oszql9DKi10Vq5IfR/ehsr6mHXFr3AB7C7QefiXpytGbObQs8/f/OxinxaEajcs
 ERBgh+rcQ5p3kfdiHzuQjn7y45J7z21CKVhka4iKJtTxypBK4ZvkDOVqHuHppb5O
 aw6rC5HR1EKhSW4jz7QWrDExtDZ2X5HeYl8TgfHncSSJRc7urKYcSCHhXJsB6BPs
 iQf0xbHaIOyH9jmoqLZjz0QZmXB9fydQ/zAlFVXZsrNHvomayVjqrpl8UFTMdhuI
 zll9ynfRRHMUkIi1YubUlmFMgBeqOXGkfBFh8QUH3+YiI7Cwzh4=
 =SgFo
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-mmu-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 MMU changes for 6.9:

 - Clean up code related to unprotecting shadow pages when retrying a guest
   instruction after failed #PF-induced emulation.

 - Zap TDP MMU roots at 4KiB granularity to minimize the delay in yielding if
   a reschedule is needed, e.g. if a high priority task needs to run.  Because
   KVM doesn't support yielding in the middle of processing a zapped non-leaf
   SPTE, zapping at 1GiB granularity can result in multi-millisecond lag when
   attempting to schedule in a high priority.

 - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.

 - Allocate write-tracking metadata on-demand to avoid the memory overhead when
   running kernels built with KVMGT support (external write-tracking enabled),
   but for workloads that don't use nested virtualization (shadow paging) or
   KVMGT.
2024-03-11 10:29:22 -04:00
Paolo Bonzini
c9cd0beae9 KVM x86 misc changes for 6.9:
- Explicitly initialize a variety of on-stack variables in the emulator that
    triggered KMSAN false positives (though in fairness in KMSAN, it's comically
    difficult to see that the uninitialized memory is never truly consumed).
 
  - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
    DR6 and DR7.
 
  - Rework the "force immediate exit" code so that vendor code ultimately
    decides how and when to force the exit.  This allows VMX to further optimize
    handling preemption timer exits, and allows SVM to avoid sending a duplicate
    IPI (SVM also has a need to force an exit).
 
  - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
    vCPU creation ultimately failed, and add WARN to guard against similar bugs.
 
  - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
    (for directed yield), and simplify the logic for checking if the currently
    loaded vCPU is in-kernel.
 
  - Misc cleanups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrRjQACgkQOlYIJqCj
 N/2Dzw//b+ptSBAl1kGBRmk/DqsX7J9ZkQYCQOTeh1vXiUM+XRTSQoArN0Oo1roy
 3wcEnQ0beVw7jMuzZ8UUuTfU8WUMja/kwltnqXYNHwLnb6yH0I/BIengXWdUdAMc
 FmgPZ4qJR2IzKYzvDsc3eEQ515O8UHWakyVDnmLBtiakAeBcUTYceHpEEPpzE5y5
 ODASTQKM9o/h8R8JwKFTJ8/mrOLNcsu5SycwFdnmubLJCrNWtJWTijA6y1lh6shn
 hbEJex+ESoC2v8p7IP53u1SGJubVlPajt+RkYJtlEI3WVsevp024eYcF4nb1OjXi
 qS2Y3W7DQGWvyCBoSzoMY+9nRMgyOOpHYetdiz+9oZOmnjiYWY0ku59U7Gv+Aotj
 AUbCn4Ry/OpqsuZ7Oo7i3IT8R7uzsTeNNdxhYBn1OQquBEZ0KBYXlZkGfTk9K0t0
 Fhka/5Zu6fBlg5J+zCyaXUGmsGWBo/9HxsC5z1JuKo8fatro5qyqYE5KiM01dkqc
 6FET6gL+fFprC5c67JGRPdEtk6F9Emb+6oiTTA8/8q8JQQAKiJKk95Nlq7KzPfVS
 A5RQPTuTJ7acE/5CY4zB1DdxCjqgnonBEA2ULnA/J10Rk8orHJRnGJcEwKEyDrZh
 HpsxIIqt++i8KffORpCym6zSAVYuQjn1mu7MGth+zuCqhcEpBfc=
 =GX0O
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.9:

 - Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives (though in fairness in KMSAN, it's comically
   difficult to see that the uninitialized memory is never truly consumed).

 - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
   DR6 and DR7.

 - Rework the "force immediate exit" code so that vendor code ultimately
   decides how and when to force the exit.  This allows VMX to further optimize
   handling preemption timer exits, and allows SVM to avoid sending a duplicate
   IPI (SVM also has a need to force an exit).

 - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, and add WARN to guard against similar bugs.

 - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
   (for directed yield), and simplify the logic for checking if the currently
   loaded vCPU is in-kernel.

 - Misc cleanups and fixes.
2024-03-11 10:24:56 -04:00
Rafael J. Wysocki
e4d0d7f194 Merge back cpufreq material for 6.9-rc1. 2024-03-11 15:08:45 +01:00
Paolo Bonzini
961e2bfcf3 KVM/arm64 updates for 6.9
- Infrastructure for building KVM's trap configuration based on the
    architectural features (or lack thereof) advertised in the VM's ID
    registers
 
  - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
    x86's WC) at stage-2, improving the performance of interacting with
    assigned devices that can tolerate it
 
  - Conversion of KVM's representation of LPIs to an xarray, utilized to
    address serialization some of the serialization on the LPI injection
    path
 
  - Support for _architectural_ VHE-only systems, advertised through the
    absence of FEAT_E2H0 in the CPU's ID register
 
  - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
    selftests
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZepBjgAKCRCivnWIJHzd
 FnngAP93VxjCkJ+5qSmYpFNG6r0ECVIbLHFQ59nKn0+GgvbPEgEAwt8svdLdW06h
 njFTpdzvl4Po+aD/V9xHgqVz3kVvZwE=
 =1FbW
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-6.9' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 6.9

 - Infrastructure for building KVM's trap configuration based on the
   architectural features (or lack thereof) advertised in the VM's ID
   registers

 - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
   x86's WC) at stage-2, improving the performance of interacting with
   assigned devices that can tolerate it

 - Conversion of KVM's representation of LPIs to an xarray, utilized to
   address serialization some of the serialization on the LPI injection
   path

 - Support for _architectural_ VHE-only systems, advertised through the
   absence of FEAT_E2H0 in the CPU's ID register

 - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
   selftests
2024-03-11 10:02:32 -04:00
Paolo Bonzini
233d0bc4d8 LoongArch KVM changes for v6.9
1. Set reserved bits as zero in CPUCFG.
 2. Start SW timer only when vcpu is blocking.
 3. Do not restart SW timer when it is expired.
 4. Remove unnecessary CSR register saving during enter guest.
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmXoeWIWHGNoZW5odWFj
 YWlAa2VybmVsLm9yZwAKCRAChivD8uImehb3D/9C5IrdyU/2f3fEUuuXO0a2ZS1p
 l2OT+yr7C6/jATokGcd+53CF8MzYawzuAT3tSXYyoqAxRu0HUkvuS1oA/eFM4EwV
 iIoUC3jnqcsQ5LCPt6yt+Tzgug64Xm5F4btYWIpmXgCJWx/VVG6+z3JarXAfA2it
 vgVMGgrrfHt68sEsenNFNgiJ5tCCubjR7XFwjM8rsL7AzUDdmXpF7gFyH2Ufgosi
 a5CxcPPauO1y5ZCGU4JU9QvxnVqW1kt/TRZIGqqGfULtlBSoZbD9zP3OcCQkL+ai
 SPNxvU5I+BeX6honpmO6aR/F1EphQhRji3ZKxI8UBo4aJD5+FtMG/YOEPI+ZAS0/
 JPuWpDqJH46SN3jfKTQay8jXc+mcnOYXJ9Yrixd4UCf66WJit/+BOma/wP638u2j
 RUzm1kqhNGad6QiDDtSjISM6sg6FozAGc/KhCkWAhV+lHLnfkXtaf3S+GIu5OiWz
 ETCKlmIGiy0y774+iftlD7RDRGmtrC4cx5ibl7cKKi62Y5vgujCdDofAyYC+D5cW
 puaIuHOx1hWtPRT9p1WfUL310ED+Qj3N2pDDcJcqdCIiRRZ5l/hxGS7V687a30WV
 GcegEqh19CjI9KDat4E1ld4jUHJxaFrw3pr2z3SP7cW3IgdngPJL57M0M2jSazaQ
 479xZPJ/i4xhJaKACg==
 =8HOW
 -----END PGP SIGNATURE-----

Merge tag 'loongarch-kvm-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD

LoongArch KVM changes for v6.9

* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
2024-03-11 09:56:54 -04:00
Linus Torvalds
137e0ec05a KVM GUEST_MEMFD fixes for 6.8:
- Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to
   avoid creating an inconsistent ABI (KVM_MEM_GUEST_MEMFD is not writable
   from userspace, so there would be no way to write to a read-only
   guest_memfd).
 
 - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
   clear that such VMs are purely for development and testing.
 
 - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan
   is to support confidential VMs with deterministic private memory (SNP
   and TDX) only in the TDP MMU.
 
 - Fix a bug in a GUEST_MEMFD dirty logging test that caused false passes.
 
 x86 fixes:
 
 - Fix missing marking of a guest page as dirty when emulating an atomic access.
 
 - Check for mmu_notifier invalidation events before faulting in the pfn,
   and before acquiring mmu_lock, to avoid unnecessary work and lock
   contention with preemptible kernels (including CONFIG_PREEMPT_DYNAMIC
   in non-preemptible mode).
 
 - Disable AMD DebugSwap by default, it breaks VMSA signing and will be
   re-enabled with a better VM creation API in 6.10.
 
 - Do the cache flush of converted pages in svm_register_enc_region() before
   dropping kvm->lock, to avoid a race with unregistering of the same region
   and the consequent use-after-free issue.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmXskdYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroN1TAf/SUGf4QuYG7nnfgWDR+goFO6Gx7NE
 pJr3kAwv6d2f+qTlURfGjnX929pgZDLgoTkXTNeZquN6LjgownxMjBIpymVobvAD
 AKvqJS/ECpryuehXbeqlxJxJn+TrxJ5r4QeNILMHc3AOZoiUqM6xl3zFfXWDNWVo
 IazwT8P3d8wxiHAxv1eG6OVWHxbcg31068FVKRX3f/bWPbVwROJrPkCopmz2BJvU
 6KYdYcn2rkpDTEM3ouDC/6gxJ9vpSY3+nW7Q7dNtGtOH2+BddfSA6I0rphCQWCNs
 uXOxd5bDrC+KmkiULTPostuvwBgIm1k9wC2kW9A4P2VEf6Ay+ZHEdAOBJQ==
 =+MT/
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "KVM GUEST_MEMFD fixes for 6.8:

   - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY
     to avoid creating an inconsistent ABI (KVM_MEM_GUEST_MEMFD is not
     writable from userspace, so there would be no way to write to a
     read-only guest_memfd).

   - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
     clear that such VMs are purely for development and testing.

   - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term
     plan is to support confidential VMs with deterministic private
     memory (SNP and TDX) only in the TDP MMU.

   - Fix a bug in a GUEST_MEMFD dirty logging test that caused false
     passes.

  x86 fixes:

   - Fix missing marking of a guest page as dirty when emulating an
     atomic access.

   - Check for mmu_notifier invalidation events before faulting in the
     pfn, and before acquiring mmu_lock, to avoid unnecessary work and
     lock contention with preemptible kernels (including
     CONFIG_PREEMPT_DYNAMIC in non-preemptible mode).

   - Disable AMD DebugSwap by default, it breaks VMSA signing and will
     be re-enabled with a better VM creation API in 6.10.

   - Do the cache flush of converted pages in svm_register_enc_region()
     before dropping kvm->lock, to avoid a race with unregistering of
     the same region and the consequent use-after-free issue"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  SEV: disable SEV-ES DebugSwap by default
  KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changing
  KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()
  KVM: selftests: Add a testcase to verify GUEST_MEMFD and READONLY are exclusive
  KVM: selftests: Create GUEST_MEMFD for relevant invalid flags testcases
  KVM: x86/mmu: Restrict KVM_SW_PROTECTED_VM to the TDP MMU
  KVM: x86: Update KVM_SW_PROTECTED_VM docs to make it clear they're a WIP
  KVM: Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY
  KVM: x86: Mark target gfn of emulated atomic instruction as dirty
2024-03-10 09:27:39 -07:00
Paolo Bonzini
7d8942d8e7 KVM GUEST_MEMFD fixes for 6.8:
- Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to
    avoid creating ABI that KVM can't sanely support.
 
  - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
    clear that such VMs are purely a development and testing vehicle, and
    come with zero guarantees.
 
  - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan
    is to support confidential VMs with deterministic private memory (SNP
    and TDX) only in the TDP MMU.
 
  - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes
    when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXZB/8ACgkQOlYIJqCj
 N/3XlQ//RIsvqr38k7kELSKhCMyWgF4J57itABrHpMqAZu3gaAo5sETX8AGcHEe5
 mxmquxyNQSf4cthhWy1kzxjGCy6+fk+Z0Z7wzfz0Yd5D+FI6vpo3HhkjovLb2gpt
 kSrHuhJyuj2vkftNvdaz0nHX1QalVyIEnXnR3oqTmxUUsg6lp1x/zr5SP0KBXjo8
 ZzJtyFd0fkRXWpA792T7XPRBWrzPV31HYZBLX8sPlYmJATcbIx9rYSThgCN6XuVN
 bfE6wATsC+mwv5BpCoDFpCKmFcqSqamag9NGe5qE5mOby5DQGYTCRMCQB8YXXBR0
 97ppaY9ZJV4nOVjrYJn6IMOSMVNfoG7nTRFfcd0eFP4tlPEgHwGr5BGDaBtQPkrd
 KcgWJw8nS02eCA2iOE+FtCXvGJwKhTTjQ45w7rU4EcfUk603L5J4GO1ddmjMhPcP
 upGGcWDK9vCGrSUFTm8pyWp/NKRJPvAQEiQd/BweSk9+isQHTX2RYCQgPAQnwlTS
 wTg7ZPNSLoUkRYmd6r+TUT32ELJGNc8GLftMnxIwweq6V7AgNMi0HE60eMovuBNO
 7DAWWzfBEZmJv+0mNNZPGXczHVv4YvMWysRdKkhztBc3+sO7P3AL1zWIDlm5qwoG
 LpFeeI3qo3o5ZNaqGzkSop2pUUGNGpWCH46WmP0AG7RpzW/Natw=
 =M0td
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of https://github.com/kvm-x86/linux into HEAD

KVM GUEST_MEMFD fixes for 6.8:

 - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to
   avoid creating ABI that KVM can't sanely support.

 - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
   clear that such VMs are purely a development and testing vehicle, and
   come with zero guarantees.

 - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan
   is to support confidential VMs with deterministic private memory (SNP
   and TDX) only in the TDP MMU.

 - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes
   when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-09 11:48:35 -05:00
Paolo Bonzini
5abf6dceb0 SEV: disable SEV-ES DebugSwap by default
The DebugSwap feature of SEV-ES provides a way for confidential guests to use
data breakpoints.  However, because the status of the DebugSwap feature is
recorded in the VMSA, enabling it by default invalidates the attestation
signatures.  In 6.10 we will introduce a new API to create SEV VMs that
will allow enabling DebugSwap based on what the user tells KVM to do.
Contextually, we will change the legacy KVM_SEV_ES_INIT API to never
enable DebugSwap.

For compatibility with kernels that pre-date the introduction of DebugSwap,
as well as with those where KVM_SEV_ES_INIT will never enable it, do not enable
the feature by default.  If anybody wants to use it, for now they can enable
the sev_es_debug_swap_enabled module parameter, but this will result in a
warning.

Fixes: d1f85fbe836e ("KVM: SEV: Enable data breakpoints in SEV-ES")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-03-09 11:42:25 -05:00
Paolo Bonzini
39fee313fd Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM GUEST_MEMFD fixes for 6.8:

 - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to
   avoid creating ABI that KVM can't sanely support.

 - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
   clear that such VMs are purely a development and testing vehicle, and
   come with zero guarantees.

 - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan
   is to support confidential VMs with deterministic private memory (SNP
   and TDX) only in the TDP MMU.

 - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes
   when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-09 11:42:17 -05:00
Paolo Bonzini
1b6c146df5 Merge tag 'kvm-x86-fixes-6.8-2' of https://github.com/kvm-x86/linux into HEAD
KVM x86 fixes for 6.8, round 2:

 - When emulating an atomic access, mark the gfn as dirty in the memslot
   to fix a bug where KVM could fail to mark the slot as dirty during live
   migration, ultimately resulting in guest data corruption due to a dirty
   page not being re-copied from the source to the target.

 - Check for mmu_notifier invalidation events before faulting in the pfn,
   and before acquiring mmu_lock, to avoid unnecessary work and lock
   contention.  Contending mmu_lock is especially problematic on preemptible
   kernels, as KVM may yield mmu_lock in response to the contention, which
   severely degrades overall performance due to vCPUs making it difficult
   for the task that triggered invalidation to make forward progress.

   Note, due to another kernel bug, this fix isn't limited to preemtible
   kernels, as any kernel built with CONFIG_PREEMPT_DYNAMIC=y will yield
   contended rwlocks and spinlocks.

   https://lore.kernel.org/all/20240110214723.695930-1-seanjc@google.com
2024-03-09 11:42:06 -05:00
Ard Biesheuvel
9c55461040 x86/efistub: Remap kernel text read-only before dropping NX attribute
Currently, the EFI stub invokes the EFI memory attributes protocol to
strip any NX restrictions from the entire loaded kernel, resulting in
all code and data being mapped read-write-execute.

The point of the EFI memory attributes protocol is to remove the need
for all memory allocations to be mapped with both write and execute
permissions by default, and make it the OS loader's responsibility to
transition data mappings to code mappings where appropriate.

Even though the UEFI specification does not appear to leave room for
denying memory attribute changes based on security policy, let's be
cautious and avoid relying on the ability to create read-write-execute
mappings. This is trivially achievable, given that the amount of kernel
code executing via the firmware's 1:1 mapping is rather small and
limited to the .head.text region. So let's drop the NX restrictions only
on that subregion, but not before remapping it as read-only first.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-03-09 11:37:18 +01:00
Saurabh Sengar
2b4b90e053 x86/hyperv: Use per cpu initial stack for vtl context
Currently, the secondary CPUs in Hyper-V VTL context lack support for
parallel startup. Therefore, relying on the single initial_stack fetched
from the current task structure suffices for all vCPUs.

However, common initial_stack risks stack corruption when parallel startup
is enabled. In order to facilitate parallel startup, use the initial_stack
from the per CPU idle thread instead of the current task.

Fixes: 3be1bc2fe9d2 ("x86/hyperv: VTL support for Hyper-V")
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/1709452896-13342-1-git-send-email-ssengar@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1709452896-13342-1-git-send-email-ssengar@linux.microsoft.com>
2024-03-08 23:40:09 +00:00
Stephen Boyd
40f18dbbb4 x86/of: Unconditionally call unflatten_and_copy_device_tree()
Call this function unconditionally so that we can populate an empty DTB
on platforms that don't boot with a firmware provided or builtin DTB.
There's no harm in calling unflatten_device_tree() unconditionally here.
If there isn't a non-NULL 'initial_boot_params' pointer then
unflatten_device_tree() returns early.

Cc: Rob Herring <robh+dt@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: H. Peter Anvin <hpa@zytor.com>
Tested-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
Link: https://lore.kernel.org/r/20240217010557.2381548-5-sboyd@kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
2024-03-08 12:50:39 -06:00
Changbin Du
c0935fca6b x86/sev: Disable KMSAN for memory encryption TUs
Instrumenting sev.c and mem_encrypt_identity.c with KMSAN will result in
a triple-faulting kernel. Some of the code is invoked too early during
boot, before KMSAN is ready.

Disable KMSAN instrumentation for the two translation units.

  [ bp: Massage commit message. ]

Signed-off-by: Changbin Du <changbin.du@huawei.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240308044401.1120395-1-changbin.du@huawei.com
2024-03-08 08:59:22 +01:00
Masahiro Yamada
8af2d2025d platform: goldfish: move the separate 'default' propery for CONFIG_GOLDFISH
Currently, there are two entries for CONFIG_GOLDFISH.

In arch/x86/Kconfig:

  config GOLDFISH
          def_bool y
          depends on X86_GOLDFISH

In drivers/platform/goldfish/Kconfig:

  menuconfig GOLDFISH
          bool "Platform support for Goldfish virtual devices"
          depends on HAS_IOMEM && HAS_DMA

While Kconfig allows multiple entries, it generally leads to tricky
code.

Prior to commit bd2f348db503 ("goldfish: refactor goldfish platform
configs"), CONFIG_GOLDFISH was an alias of CONFIG_X86_GOLDFISH.

After the mentioned commit added the second entry with a user prompt,
the former provides the 'default' property that is effective only when
X86_GOLDFISH=y.

Merge them tegether to clarify how it has worked in the past 8 years.

Cc: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/r/20240204081004.33871-1-masahiroy@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-07 21:47:48 +00:00
Jakub Kicinski
e3afe5dd3a Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

No conflicts.

Adjacent changes:

net/core/page_pool_user.c
  0b11b1c5c320 ("netdev: let netlink core handle -EMSGSIZE errors")
  429679dcf7d9 ("page_pool: fix netlink dump stop/resume")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-03-07 10:29:36 -08:00
Xin Li (Intel)
c416b5bac6 x86/fred: Fix init_task thread stack pointer initialization
As TOP_OF_KERNEL_STACK_PADDING was defined as 0 on x86_64, it went
unnoticed that the initialization of the .sp field in INIT_THREAD and some
calculations in the low level startup code do not take the padding into
account.

FRED enabled kernels require a 16 byte padding, which means that the init
task initialization and the low level startup code use the wrong stack
offset.

Subtract TOP_OF_KERNEL_STACK_PADDING in all affected places to adjust for
this.

Fixes: 65c9cc9e2c14 ("x86/fred: Reserve space for the FRED stack frame")
Fixes: 3adee777ad0d ("x86/smpboot: Remove initial_stack on 64-bit")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Closes: https://lore.kernel.org/oe-lkp/202402262159.183c2a37-lkp@intel.com
Link: https://lore.kernel.org/r/20240304083333.449322-1-xin@zytor.com
2024-03-07 11:55:36 +01:00
Peter Xu
c05995b7ec mm/treewide: align up pXd_leaf() retval across archs
Even if pXd_leaf() API is defined globally, it's not clear on the retval,
and there are three types used (bool, int, unsigned log).

Always return a boolean for pXd_leaf() APIs.

Link: https://lkml.kernel.org/r/20240305043750.93762-11-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
e72c7c2b88 mm/treewide: drop pXd_large()
They're not used anymore, drop all of them.

Link: https://lkml.kernel.org/r/20240305043750.93762-10-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
0a845e0f63 mm/treewide: replace pud_large() with pud_leaf()
pud_large() is always defined as pud_leaf().  Merge their usages.  Chose
pud_leaf() because pud_leaf() is a global API, while pud_large() is not.

Link: https://lkml.kernel.org/r/20240305043750.93762-9-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
2f709f7bfd mm/treewide: replace pmd_large() with pmd_leaf()
pmd_large() is always defined as pmd_leaf().  Merge their usages.  Chose
pmd_leaf() because pmd_leaf() is a global API, while pmd_large() is not.

Link: https://lkml.kernel.org/r/20240305043750.93762-8-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
924bd6a8c9 mm/x86: drop two unnecessary pud_leaf() definitions
pud_leaf() has a fallback macro defined in include/linux/pgtable.h
already.  Drop the extra two for x86.

Link: https://lkml.kernel.org/r/20240305043750.93762-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
83ea65da32 mm/x86: replace pgd_large() with pgd_leaf()
pgd_leaf() is a global API while pgd_large() is not.  Always use the
global pgd_leaf(), then drop pgd_large().

Link: https://lkml.kernel.org/r/20240305043750.93762-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Peter Xu
dba8e6f34f mm/x86: replace p4d_large() with p4d_leaf()
p4d_large() is always defined as p4d_leaf().  Merge their usages.  Chose
p4d_leaf() because p4d_leaf() is a global API, while p4d_large() is not.

Only x86 has p4d_leaf() defined as of now.  So it also means after this
patch we removed all p4d_large() usages.

Link: https://lkml.kernel.org/r/20240305043750.93762-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Arnd Bergmann
5394f1e9b6 arch: define CONFIG_PAGE_SIZE_*KB on all architectures
Most architectures only support a single hardcoded page size. In order
to ensure that each one of these sets the corresponding Kconfig symbols,
change over the PAGE_SHIFT definition to the common one and allow
only the hardware page size to be selected.

Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-03-06 19:29:09 +01:00
Vitaly Kuznetsov
4736d85f0d KVM: x86: Use actual kvm_cpuid.base for clearing KVM_FEATURE_PV_UNHALT
Commit ee3a5f9e3d9b ("KVM: x86: Do runtime CPUID update before updating
vcpu->arch.cpuid_entries") moved tweaking of the supplied CPUID
data earlier in kvm_set_cpuid() but __kvm_update_cpuid_runtime() actually
uses 'vcpu->arch.kvm_cpuid' (though __kvm_find_kvm_cpuid_features()) which
gets set later in kvm_set_cpuid(). In some cases, e.g. when kvm_set_cpuid()
is called for the first time and 'vcpu->arch.kvm_cpuid' is clear,
__kvm_find_kvm_cpuid_features() fails to find KVM PV feature entry and the
logic which clears KVM_FEATURE_PV_UNHALT after enabling
KVM_X86_DISABLE_EXITS_HLT does not work.

The logic, introduced by the commit ee3a5f9e3d9b ("KVM: x86: Do runtime
CPUID update before updating vcpu->arch.cpuid_entries") must stay: the
supplied CPUID data is tweaked by KVM first (__kvm_update_cpuid_runtime())
and checked later (kvm_check_cpuid()) and the actual data
(vcpu->arch.cpuid_*, vcpu->arch.kvm_cpuid, vcpu->arch.xen.cpuid,..) is only
updated on success.

Switch to searching for KVM_SIGNATURE in the supplied CPUID data to
discover KVM PV feature entry instead of using stale 'vcpu->arch.kvm_cpuid'.

While on it, drop pointless "&& (best->eax & (1 << KVM_FEATURE_PV_UNHALT)"
check when clearing KVM_FEATURE_PV_UNHALT bit.

Fixes: ee3a5f9e3d9b ("KVM: x86: Do runtime CPUID update before updating vcpu->arch.cpuid_entries")
Reported-and-tested-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20240228101837.93642-3-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-03-06 09:50:15 -08:00
Vitaly Kuznetsov
92e82cf632 KVM: x86: Introduce __kvm_get_hypervisor_cpuid() helper
Similar to kvm_find_kvm_cpuid_features()/__kvm_find_kvm_cpuid_features(),
introduce a helper to search for the specific hypervisor signature in any
struct kvm_cpuid_entry2 array, not only in vcpu->arch.cpuid_entries.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20240228101837.93642-2-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-03-06 09:50:15 -08:00
Jinghao Jia
290eb13f1a x86/kprobes: Boost more instructions from grp2/3/4/5
With the instruction decoder, we are now able to decode and recognize
instructions with opcode extensions. There are more instructions in
these groups that can be boosted:

Group 2: ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR
Group 3: TEST, NOT, NEG, MUL, IMUL, DIV, IDIV
Group 4: INC, DEC (byte operation)
Group 5: INC, DEC (word/doubleword/quadword operation)

These instructions are not boosted previously because there are reserved
opcodes within the groups, e.g., group 2 with ModR/M.nnn == 110 is
unmapped. As a result, kprobes attached to them requires two int3 traps
as being non-boostable also prevents jump-optimization.

Some simple tests on QEMU show that after boosting and jump-optimization
a single kprobe on these instructions with an empty pre-handler runs 10x
faster (~1000 cycles vs. ~100 cycles).

Since these instructions are mostly ALU operations and do not touch
special registers like RIP, let's boost them so that we get the
performance benefit.

Link: https://lore.kernel.org/all/20240204031300.830475-4-jinghao7@illinois.edu/

Signed-off-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:26:01 +09:00
Jinghao Jia
e884edbb84 x86/kprobes: Prohibit kprobing on INT and UD
Both INT (INT n, INT1, INT3, INTO) and UD (UD0, UD1, UD2) serve special
purposes in the kernel, e.g., INT3 is used by KGDB and UD2 is involved
in LLVM-KCFI instrumentation. At the same time, attaching kprobes on
these instructions (particularly UD) will pollute the stack trace dumped
in the kernel ring buffer, since the exception is triggered in the copy
buffer rather than the original location.

Check for INT and UD in can_probe and reject any kprobes trying to
attach to these instructions.

Link: https://lore.kernel.org/all/20240204031300.830475-3-jinghao7@illinois.edu/

Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:26:01 +09:00
Jinghao Jia
e4778a0ef3 x86/kprobes: Refactor can_{probe,boost} return type to bool
Both can_probe and can_boost have int return type but are using int as
boolean in their context.

Refactor both functions to make them actually return boolean.

Link: https://lore.kernel.org/all/20240204031300.830475-2-jinghao7@illinois.edu/

Signed-off-by: Jinghao Jia <jinghao7@illinois.edu>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:26:01 +09:00
Thomas Gleixner
f0551af021 x86/topology: Ignore non-present APIC IDs in a present package
Borislav reported that one of his systems has a broken MADT table which
advertises eight present APICs and 24 non-present APICs in the same
package.

The non-present ones are considered hot-pluggable by the topology
evaluation code, which is obviously bogus as there is no way to hot-plug
within the same package.

As the topology evaluation code accounts for hot-pluggable CPUs in a
package, the maximum number of cores per package is computed wrong, which
in turn causes the uncore performance counter driver to access non-existing
MSRs. It will probably confuse other entities which rely on the maximum
number of cores and threads per package too.

Cure this by ignoring hot-pluggable APIC IDs within a present package.

In theory it would be reasonable to just do this unconditionally, but then
there is this thing called reality^Wvirtualization which ruins
everything. Virtualization is the only existing user of "physical" hotplug
and the virtualization tools allow the above scenario. Whether that is
actually in use or not is unknown.

As it can be argued that the virtualization case is not affected by the
issues which exposed the reported problem, allow the bogosity if the kernel
determined that it is running in a VM for now.

Fixes: 89b0f15f408f ("x86/cpu/topology: Get rid of cpuinfo::x86_max_cores")
Reported-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/87a5nbvccx.ffs@tglx
2024-03-06 14:35:30 +01:00
Thomas Weißschuh
774a86f1c8 x86/nmi: Drop unused declaration of proc_nmi_enabled()
The declaration is unused as the definition got deleted.

Fixes: 5f2b0ba4d94b ("x86, nmi_watchdog: Remove the old nmi_watchdog").
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240306-const-sysctl-prep-x86-v1-1-f9d1fa38dd2b@weissschuh.net
2024-03-06 10:13:33 +01:00