IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Header of /proc/*/limits is a fixed string, so print it directly without
formatting specifiers.
Link: http://lkml.kernel.org/r/20181203164242.GB6904@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
name_to_int() is defined in fs/proc/util.c and declared in
fs/proc/internal.h, but the declaration isn't included at the point of
the definition. Include the header to enforce that the definition
matches the declaration.
This addresses a gcc warning when -Wmissing-prototypes is enabled.
Link: http://lkml.kernel.org/r/20181115001833.49371-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Access to timerslack_ns is controlled by a process having CAP_SYS_NICE
in its effective capability set, but the current check looks in the root
namespace instead of the process' user namespace. Since a process is
allowed to do other activities controlled by CAP_SYS_NICE inside a
namespace, it should also be able to adjust timerslack_ns.
Link: http://lkml.kernel.org/r/20181030180012.232896-1-bmgordon@google.com
Signed-off-by: Benjamin Gordon <bmgordon@google.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Oren Laadan <orenl@cellrox.com>
Cc: Ruchi Kandoi <kandoiruchi@google.com>
Cc: Rom Lemarchand <romlem@android.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Colin Cross <ccross@android.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Cc: Elliott Hughes <enh@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes has reported that commit 1860033237 ("mm: make
PR_SET_THP_DISABLE immediately active") has changed the way how we
report THPable VMAs to the userspace. Their monitoring tool is
triggering false alarms on PR_SET_THP_DISABLE tasks because it considers
an insufficient THP usage as a memory fragmentation resp. memory
pressure issue.
Before the said commit each newly created VMA inherited VM_NOHUGEPAGE
flag and that got exposed to the userspace via /proc/<pid>/smaps file.
This implementation had its downsides as explained in the commit message
but it is true that the userspace doesn't have any means to query for
the process wide THP enabled/disabled status.
PR_SET_THP_DISABLE is a process wide flag so it makes a lot of sense to
export in the process wide context rather than per-vma. Introduce a new
field to /proc/<pid>/status which export this status. If
PR_SET_THP_DISABLE is used then it reports false same as when the THP is
not compiled in. It doesn't consider the global THP status because we
already export that information via sysfs
Link: http://lkml.kernel.org/r/20181211143641.3503-4-mhocko@kernel.org
Fixes: 1860033237 ("mm: make PR_SET_THP_DISABLE immediately active")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Userspace falls short when trying to find out whether a specific memory
range is eligible for THP. There are usecases that would like to know
that
http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com
: This is used to identify heap mappings that should be able to fault thp
: but do not, and they normally point to a low-on-memory or fragmentation
: issue.
The only way to deduce this now is to query for hg resp. nh flags and
confronting the state with the global setting. Except that there is also
PR_SET_THP_DISABLE that might change the picture. So the final logic is
not trivial. Moreover the eligibility of the vma depends on the type of
VMA as well. In the past we have supported only anononymous memory VMAs
but things have changed and shmem based vmas are supported as well these
days and the query logic gets even more complicated because the
eligibility depends on the mount option and another global configuration
knob.
Simplify the current state and report the THP eligibility in
/proc/<pid>/smaps for each existing vma. Reuse
transparent_hugepage_enabled for this purpose. The original
implementation of this function assumes that the caller knows that the vma
itself is supported for THP so make the core checks into
__transparent_hugepage_enabled and use it for existing callers.
__show_smap just use the new transparent_hugepage_enabled which also
checks the vma support status (please note that this one has to be out of
line due to include dependency issues).
[mhocko@kernel.org: fix oops with NULL ->f_mapping]
Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks. No functional changes with this patch.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3
fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n
Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Certain pages that are never mapped to userspace have a type indicated in
the page_type field of their struct pages (e.g. PG_buddy). page_type
overlaps with _mapcount so set the count to 0 and avoid calling
page_mapcount() for these pages.
[anthony.yznaga@oracle.com: incorporate feedback from Matthew Wilcox]
Link: http://lkml.kernel.org/r/1544481313-27318-1-git-send-email-anthony.yznaga@oracle.com
Link: http://lkml.kernel.org/r/1543963526-27917-1-git-send-email-anthony.yznaga@oracle.com
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
totalram_pages and totalhigh_pages are made static inline function.
Main motivation was that managed_page_count_lock handling was complicating
things. It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_sys_lookup can fail with ENOMEM instead of ENOENT when the
corresponding sysctl table is being unregistered. In our case we see
this upon opening /proc/sys/net/*/conf files while network interfaces
are being deleted, which confuses our configuration daemon.
The problem was successfully reproduced and this fix tested on v4.9.122
and v4.20-rc6.
v2: return ERR_PTRs in all cases when proc_sys_make_inode fails instead
of mixing them with NULL. Thanks Al Viro for the feedback.
Fixes: ace0c791e6 ("proc/sysctl: Don't grab i_lock under sysctl_lock.")
Cc: stable@vger.kernel.org
Signed-off-by: Ivan Delalande <colona@arista.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
The page cache and most shrinkable slab caches hold data that has been
read from disk, but there are some caches that only cache CPU work, such
as the dentry and inode caches of procfs and sysfs, as well as the subset
of radix tree nodes that track non-resident page cache.
Currently, all these are shrunk at the same rate: using DEFAULT_SEEKS for
the shrinker's seeks setting tells the reclaim algorithm that for every
two page cache pages scanned it should scan one slab object.
This is a bogus setting. A virtual inode that required no IO to create is
not twice as valuable as a page cache page; shadow cache entries with
eviction distances beyond the size of memory aren't either.
In most cases, the behavior in practice is still fine. Such virtual
caches don't tend to grow and assert themselves aggressively, and usually
get picked up before they cause problems. But there are scenarios where
that's not true.
Our database workloads suffer from two of those. For one, their file
workingset is several times bigger than available memory, which has the
kernel aggressively create shadow page cache entries for the non-resident
parts of it. The workingset code does tell the VM that most of these are
expendable, but the VM ends up balancing them 2:1 to cache pages as per
the seeks setting. This is a huge waste of memory.
These workloads also deal with tens of thousands of open files and use
/proc for introspection, which ends up growing the proc_inode_cache to
absurdly large sizes - again at the cost of valuable cache space, which
isn't a reasonable trade-off, given that proc inodes can be re-created
without involving the disk.
This patch implements a "zero-seek" setting for shrinkers that results in
a target ratio of 0:1 between their objects and IO-backed caches. This
allows such virtual caches to grow when memory is available (they do
cache/avoid CPU work after all), but effectively disables them as soon as
IO-backed objects are under pressure.
It then switches the shrinkers for procfs and sysfs metadata, as well as
excess page cache shadow nodes, to the new zero-seek setting.
Link: http://lkml.kernel.org/r/20181009184732.762-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Domas Mituzas <dmituzas@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several definitions of those functions/macros in places that
mess with fixed-point load averages. Provide an official version.
[akpm@linux-foundation.org: fix missed conversion in block/blk-iolatency.c]
Link: http://lkml.kernel.org/r/20180828172258.3185-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmstat NR_KERNEL_MISC_RECLAIMABLE counter is for kernel non-slab
allocations that can be reclaimed via shrinker. In /proc/meminfo, we can
show the sum of all reclaimable kernel allocations (including slab) as
"KReclaimable". Add the same counter also to per-node meminfo under /sys
With this counter, users will have more complete information about kernel
memory usage. Non-slab reclaimable pages (currently just the ION
allocator) will not be missing from /proc/meminfo, making users wonder
where part of their memory went. More precisely, they already appear in
MemAvailable, but without the new counter, it's not obvious why the value
in MemAvailable doesn't fully correspond with the sum of other counters
participating in it.
Link: http://lkml.kernel.org/r/20180731090649.16028-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"Lots of changes in this cycle:
- Lots of CPA (change page attribute) optimizations and related
cleanups (Thomas Gleixner, Peter Zijstra)
- Make lazy TLB mode even lazier (Rik van Riel)
- Fault handler cleanups and improvements (Dave Hansen)
- kdump, vmcore: Enable kdumping encrypted memory with AMD SME
enabled (Lianbo Jiang)
- Clean up VM layout documentation (Baoquan He, Ingo Molnar)
- ... plus misc other fixes and enhancements"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/stackprotector: Remove the call to boot_init_stack_canary() from cpu_startup_entry()
x86/mm: Kill stray kernel fault handling comment
x86/mm: Do not warn about PCI BIOS W+X mappings
resource: Clean it up a bit
resource: Fix find_next_iomem_res() iteration issue
resource: Include resource end in walk_*() interfaces
x86/kexec: Correct KEXEC_BACKUP_SRC_END off-by-one error
x86/mm: Remove spurious fault pkey check
x86/mm/vsyscall: Consider vsyscall page part of user address space
x86/mm: Add vsyscall address helper
x86/mm: Fix exception table comments
x86/mm: Add clarifying comments for user addr space
x86/mm: Break out user address space handling
x86/mm: Break out kernel address space handling
x86/mm: Clarify hardware vs. software "error_code"
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Add freed_tables element to flush_tlb_info
x86/mm/tlb: Add freed_tables argument to flush_tlb_mm_range
smp,cpumask: introduce on_each_cpu_cond_mask
smp: use __cpumask_set_cpu in on_each_cpu_cond
...
Lianbo reported a build error with a particular 32-bit config, see Link
below for details.
Provide a weak copy_oldmem_page_encrypted() function which architectures
can override, in the same manner other functionality in that file is
supplied.
Reported-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: x86@kernel.org
Link: http://lkml.kernel.org/r/710b9d95-2f70-eadf-c4a1-c3dc80ee4ebb@redhat.com
Currently, you can use /proc/self/task/*/stack to cause a stack walk on
a task you control while it is running on another CPU. That means that
the stack can change under the stack walker. The stack walker does
have guards against going completely off the rails and into random
kernel memory, but it can interpret random data from your kernel stack
as instruction pointers and stack pointers. This can cause exposure of
kernel stack contents to userspace.
Restrict the ability to inspect kernel stacks of arbitrary tasks to root
in order to prevent a local attacker from exploiting racy stack unwinding
to leak kernel task stack contents. See the added comment for a longer
rationale.
There don't seem to be any users of this userspace API that can't
gracefully bail out if reading from the file fails. Therefore, I believe
that this change is unlikely to break things. In the case that this patch
does end up needing a revert, the next-best solution might be to fake a
single-entry stack based on wchan.
Link: http://lkml.kernel.org/r/20180927153316.200286-1-jannh@google.com
Fixes: 2ec220e27f ("proc: add /proc/*/stack")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
The 'm' kcore_list item could point to kclist_head, and it is incorrect to
look at m->addr / m->size in this case.
There is no choice but to run through the list of entries for every
address if we did not find any entry in the previous iteration
Reset 'm' to NULL in that case at Omar Sandoval's suggestion.
[akpm@linux-foundation.org: add comment]
Link: http://lkml.kernel.org/r/1536100702-28706-1-git-send-email-asmadeus@codewreck.org
Fixes: bf991c2231 ("proc/kcore: optimize multiple page reads")
Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Omar Sandoval <osandov@osandov.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about
tasks via the /proc file system. In particular, /proc/<pid>/stack_depth
shows the maximum kernel stack consumption for the current and previous
syscalls. Although this information is not precise, it can be useful for
estimating the STACKLEAK performance impact for your workloads.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull perf updates from Thomas Gleixner:
"Kernel:
- Improve kallsyms coverage
- Add x86 entry trampolines to kcore
- Fix ARM SPE handling
- Correct PPC event post processing
Tools:
- Make the build system more robust
- Small fixes and enhancements all over the place
- Update kernel ABI header copies
- Preparatory work for converting libtraceevnt to a shared library
- License cleanups"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits)
tools arch: Update arch/x86/lib/memcpy_64.S copy used in 'perf bench mem memcpy'
tools arch x86: Update tools's copy of cpufeatures.h
perf python: Fix pyrf_evlist__read_on_cpu() interface
perf mmap: Store real cpu number in 'struct perf_mmap'
perf tools: Remove ext from struct kmod_path
perf tools: Add gzip_is_compressed function
perf tools: Add lzma_is_compressed function
perf tools: Add is_compressed callback to compressions array
perf tools: Move the temp file processing into decompress_kmodule
perf tools: Use compression id in decompress_kmodule()
perf tools: Store compression id into struct dso
perf tools: Add compression id into 'struct kmod_path'
perf tools: Make is_supported_compression() static
perf tools: Make decompress_to_file() function static
perf tools: Get rid of dso__needs_decompress() call in __open_dso()
perf tools: Get rid of dso__needs_decompress() call in symbol__disassemble()
perf tools: Get rid of dso__needs_decompress() call in read_object_code()
tools lib traceevent: Change to SPDX License format
perf llvm: Allow passing options to llc in addition to clang
perf parser: Improve error message for PMU address filters
...
Without CONFIG_MMU, we get a build warning:
fs/proc/vmcore.c:228:12: error: 'vmcoredd_mmap_dumps' defined but not used [-Werror=unused-function]
static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst,
The function is only referenced from an #ifdef'ed caller, so
this uses the same #ifdef around it.
Link: http://lkml.kernel.org/r/20180525213526.2117790-1-arnd@arndb.de
Fixes: 7efe48df8a ("vmcore: append device dumps to vmcore as elf notes")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ganesh Goudar <ganeshgr@chelsio.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmcoreinfo information is useful for runtime debugging tools, not just
for crash dumps. A lot of this information can be determined by other
means, but this is much more convenient, and it only adds a page at most
to the file.
Link: http://lkml.kernel.org/r/fddbcd08eed76344863303878b12de1c1e2a04b6.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code does a full search of the segment list every time for
every page. This is wasteful, since it's almost certain that the next
page will be in the same segment. Instead, check if the previous segment
covers the current page before doing the list search.
Link: http://lkml.kernel.org/r/fd346c11090cf93d867e01b8d73a6567c5ac6361.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the ELF file header, program headers, and note segment are
allocated all at once, in some icky code dating back to 2.3. Programs
tend to read the file header, then the program headers, then the note
segment, all separately, so this is a waste of effort. It's cleaner and
more efficient to handle the three separately.
Link: http://lkml.kernel.org/r/19c92cbad0e11f6103ff3274b2e7a7e51a1eb74b.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we're using an rwsem, we can hold it during the entirety of
read_kcore() and have a common return path. This is preparation for the
next change.
[akpm@linux-foundation.org: fix locking bug reported by Tetsuo Handa]
Link: http://lkml.kernel.org/r/d7cfbc1e8a76616f3b699eaff9df0a2730380534.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a theoretical race condition that will cause /proc/kcore to miss
a memory hotplug event:
CPU0 CPU1
// hotplug event 1
kcore_need_update = 1
open_kcore() open_kcore()
kcore_update_ram() kcore_update_ram()
// Walk RAM // Walk RAM
__kcore_update_ram() __kcore_update_ram()
kcore_need_update = 0
// hotplug event 2
kcore_need_update = 1
kcore_need_update = 0
Note that CPU1 set up the RAM kcore entries with the state after hotplug
event 1 but cleared the flag for hotplug event 2. The RAM entries will
therefore be stale until there is another hotplug event.
This is an extremely unlikely sequence of events, but the fix makes the
synchronization saner, anyways: we serialize the entire update sequence,
which means that whoever clears the flag will always succeed in replacing
the kcore list.
Link: http://lkml.kernel.org/r/6106c509998779730c12400c1b996425df7d7089.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we only need kclist_lock from user context and at fs init time, and
the following changes need to sleep while holding the kclist_lock.
Link: http://lkml.kernel.org/r/521ba449ebe921d905177410fee9222d07882f0d.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory hotplug notifier kcore_callback() only needs kclist_lock to
prevent races with __kcore_update_ram(), but we can easily eliminate that
race by using an atomic xchg() in __kcore_update_ram(). This is
preparation for converting kclist_lock to an rwsem.
Link: http://lkml.kernel.org/r/0a4bc89f4dbde8b5b2ea309f7b4fb6a85fe29df2.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "/proc/kcore improvements", v4.
This series makes a few improvements to /proc/kcore. It fixes a couple of
small issues in v3 but is otherwise the same. Patches 1, 2, and 3 are
prep patches. Patch 4 is a fix/cleanup. Patch 5 is another prep patch.
Patches 6 and 7 are optimizations to ->read(). Patch 8 makes it possible
to enable CRASH_CORE on any architecture, which is needed for patch 9.
Patch 9 adds vmcoreinfo to /proc/kcore.
This patch (of 9):
kclist_add() is only called at init time, so there's no point in grabbing
any locks. We're also going to replace the rwlock with a rwsem, which we
don't want to try grabbing during early boot.
While we're here, mark kclist_add() with __init so that we'll get a
warning if it's called from non-init code.
Link: http://lkml.kernel.org/r/98208db1faf167aa8b08eebfa968d95c70527739.1531953780.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
elf_kcore_store_hdr() uses __pa() to find the physical address of
KCORE_RAM or KCORE_TEXT entries exported as program headers.
This trips CONFIG_DEBUG_VIRTUAL's checks, as the KCORE_TEXT entries are
not in the linear map.
Handle these two cases separately, using __pa_symbol() for the KCORE_TEXT
entries.
Link: http://lkml.kernel.org/r/20180711131944.15252-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Omar Sandoval <osandov@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use new return type vm_fault_t for fault handler in struct
vm_operations_struct. For now, this is just documenting that the function
returns a VM_FAULT value rather than an errno. Once all instances are
converted, vm_fault_t will become a distinct type.
See 1c8f422059 ("mm: change return type to vm_fault_t") for reference.
Link: http://lkml.kernel.org/r/20180702153325.GA3875@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ganesh Goudar <ganeshgr@chelsio.com>
Cc: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Number of CPUs is never high enough to force 64-bit arithmetic.
Save couple of bytes on x86_64.
Link: http://lkml.kernel.org/r/20180627200710.GC18434@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->latency_record is defined as
struct latency_record[LT_SAVECOUNT];
so use the same macro whie iterating.
Link: http://lkml.kernel.org/r/20180627200534.GA18434@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code checks if write is done by current to its own attributes.
For that get/put pair is unnecessary as it can be done under RCU.
Note: rcu_read_unlock() can be done even earlier since pointer to a task
is not dereferenced. It depends if /proc code should look scary or not:
rcu_read_lock();
task = pid_task(...);
rcu_read_unlock();
if (!task)
return -ESRCH;
if (task != current)
return -EACCESS:
P.S.: rename "length" variable. Code like this
length = -EINVAL;
should not exist.
Link: http://lkml.kernel.org/r/20180627200218.GF18113@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Readdir context is thread local, so ->pos is thread local,
move it out of readlock.
Link: http://lkml.kernel.org/r/20180627195339.GD18113@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_monotonic_boottime() is deprecated and uses the old timespec type.
Let's convert /proc/uptime to use ktime_get_boottime_ts64().
Link: http://lkml.kernel.org/r/20180620081746.282742-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
24074a35c5 ("proc: Make inline name size calculation automatic")
started to put PDE allocations into kmalloc-256 which is unnecessary as
~40 character names are very rare.
Put allocation back into kmalloc-192 cache for 64-bit non-debug builds.
Put BUILD_BUG_ON to know when PDE size has gotten out of control.
[adobriyan@gmail.com: fix BUILD_BUG_ON breakage on powerpc64]
Link: http://lkml.kernel.org/r/20180703191602.GA25521@avx2
Link: http://lkml.kernel.org/r/20180617215732.GA24688@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, percpu memory only exposes allocation and utilization
information via debugfs. This more or less is only really useful for
understanding the fragmentation and allocation information at a per-chunk
level with a few global counters. This is also gated behind a config.
BPF and cgroup, for example, have seen an increase in use causing
increased use of percpu memory. Let's make it easier for someone to
identify how much memory is being used.
This patch adds the "Percpu" stat to meminfo to more easily look up how
much percpu memory is in use. This number includes the cost for all
allocated backing pages and not just insight at the per a unit, per chunk
level. Metadata is excluded. I think excluding metadata is fair because
the backing memory scales with the numbere of cpus and can quickly
outweigh the metadata. It also makes this calculation light.
Link: http://lkml.kernel.org/r/20180807184723.74919-1-dennisszhou@gmail.com
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The /proc/pid/smaps_rollup file is currently implemented via the
m_start/m_next/m_stop seq_file iterators shared with the other maps files,
that iterate over vma's. However, the rollup file doesn't print anything
for each vma, only accumulate the stats.
There are some issues with the current code as reported in [1] - the
accumulated stats can get skewed if seq_file start()/stop() op is called
multiple times, if show() is called multiple times, and after seeks to
non-zero position.
Patch [1] fixed those within existing design, but I believe it is
fundamentally wrong to expose the vma iterators to the seq_file mechanism
when smaps_rollup shows logically a single set of values for the whole
address space.
This patch thus refactors the code to provide a single "value" at offset
0, with vma iteration to gather the stats done internally. This fixes the
situations where results are skewed, and simplifies the code, especially
in show_smap(), at the expense of somewhat less code reuse.
[1] https://marc.info/?l=linux-mm&m=151927723128134&w=2
[vbabka@suse.c: use seq_file infrastructure]
Link: http://lkml.kernel.org/r/bf4525b0-fd5b-4c4c-2cb3-adee3dd95a48@suse.cz
Link: http://lkml.kernel.org/r/20180723111933.15443-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Daniel Colascione <dancol@google.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To prepare for handling /proc/pid/smaps_rollup differently from
/proc/pid/smaps factor out from show_smap() printing the parts of output
that are common for both variants, which is the bulk of the gathered
memory stats.
[vbabka@suse.cz: add const, per Alexey]
Link: http://lkml.kernel.org/r/b45f319f-cd04-337b-37f8-77f99786aa8a@suse.cz
Link: http://lkml.kernel.org/r/20180723111933.15443-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Colascione <dancol@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To prepare for handling /proc/pid/smaps_rollup differently from
/proc/pid/smaps factor out vma mem stats gathering from show_smap() - it
will be used by both.
Link: http://lkml.kernel.org/r/20180723111933.15443-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Colascione <dancol@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanups and refactor of /proc/pid/smaps*".
The recent regression in /proc/pid/smaps made me look more into the code.
Especially the issues with smaps_rollup reported in [1] as explained in
Patch 4, which fixes them by refactoring the code. Patches 2 and 3 are
preparations for that. Patch 1 is me realizing that there's a lot of
boilerplate left from times where we tried (unsuccessfuly) to mark thread
stacks in the output.
Originally I had also plans to rework the translation from
/proc/pid/*maps* file offsets to the internal structures. Now the offset
means "vma number", which is not really stable (vma's can come and go
between read() calls) and there's an extra caching of last vma's address.
My idea was that offsets would be interpreted directly as addresses, which
would also allow meaningful seeks (see the ugly seek_to_smaps_entry() in
tools/testing/selftests/vm/mlock2.h). However loff_t is (signed) long
long so that might be insufficient somewhere for the unsigned long
addresses.
So the result is fixed issues with skewed /proc/pid/smaps_rollup results,
simpler smaps code, and a lot of unused code removed.
[1] https://marc.info/?l=linux-mm&m=151927723128134&w=2
This patch (of 4):
Commit b76437579d ("procfs: mark thread stack correctly in
proc/<pid>/maps") introduced differences between /proc/PID/maps and
/proc/PID/task/TID/maps to mark thread stacks properly, and this was
also done for smaps and numa_maps. However it didn't work properly and
was ultimately removed by commit b18cb64ead ("fs/proc: Stop trying to
report thread stacks").
Now the is_pid parameter for the related show_*() functions is unused
and we can remove it together with wrapper functions and ops structures
that differ for PID and TID cases only in this parameter.
Link: http://lkml.kernel.org/r/20180723111933.15443-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Colascione <dancol@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>