IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Introduce function acpi_power_on_resources() that reference counts
and possibly turns on ACPI power resources for a given device and
a given power state of it.
This function will be used for reference counting device power
resources during initialization.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPI device power resources should be reference counted during
device initialization, so that their reference counters are always
up to date. It is convenient to do that with the help of a function
that will reference count and possibly turn on power resources in
a given list, so introduce that function, acpi_power_on_list().
For symmetry, introduce acpi_power_off_list() for performing the
reverse operation and use the both of them to simplify
acpi_power_transition().
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
acpi_power_get_inferred_state() should not update
device->power.state behind the back of its caller, so make it return
the state via a pointer instead.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
Modify/add some comments to minimize ACPICA/linux GPE code divergence.
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The global event handler is called whenever a general purpose
or fixed ACPI event occurs.
Also update Linux OSL to collect events counter with
global event handler.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This feature provides an automatic device notification for wake devices
when a wakeup GPE occurs and there is no corresponding GPE method or
handler. Rather than ignoring such a GPE, an implicit AML Notify
operation is performed on the parent device object.
This feature is not part of the ACPI specification and is provided for
Windows compatibility only.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Change the local variable in acpi_ev_asynch_execute_gpe_method()
back into a pointer as ACPICA code base does.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The new GPE handler callback has 2 additional parameters, gpe_device and
gpe_number.
typedef
u32 (*acpi_gpe_handler) (acpi_handle gpe_device, u32 gpe_number, void *context);
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some function and variable names are renamed to be consistent with
ACPICA code base.
acpi_raw_enable_gpe -> acpi_ev_add_gpe_reference
acpi_raw_disable_gpe -> acpi_ev_remove_gpe_reference
acpi_gpe_can_wake -> acpi_setup_gpe_for_wake
acpi_gpe_wakeup -> acpi_set_gpe_wake_mask
acpi_update_gpes -> acpi_update_all_gpes
acpi_all_gpes_initialized -> acpi_gbl_all_gpes_initialized
acpi_handler_info -> acpi_gpe_handler_info
...
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Create a new file evxfgpe.c and move GPE specific functions to it.
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
This patch adds POLL/IRQ/NMI notification types support.
Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.
Known issue:
- Error information can not be printed for recoverable errors notified
via NMI, because printk is not NMI-safe. Will fix this via delay
printing to IRQ context via irq_work or make printk NMI-safe.
v2:
- adjust printk format per comments.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
sysfs I/F for ACPI power devices, including AC and Battery,
has been working in upstream kenrel since 2.6.24, Sep 2007.
In 2.6.37, we made the sysfs I/F always built in and this option
disabled by default.
Now, we plan to remove this option and the ACPI power procfs
interface in 2.6.39.
First, update the feature-removal-schedule to announce this change.
Second, add runtime warnings in ACPI AC/Battery/SBS driver, so that
users will notice this change even if "make oldconfig" is used.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Update CONFIG_ACPI_PROCFS description because the processor,
video and thermal zone procfs I/F have been removed.
Some ACPI drivers, e.g. button, have their procfs I/F always built in,
because we don't have sysfs I/F replacement at the moment.
But once we finish developing the sysfs I/F for these driver,
we need CONFIG_ACPI_PROCFS to enabled/disable the corresponding procfs I/F.
So just updating the description rather than removing this option,
although there is no procfs I/F depends on it for now.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
After one CPU is offlined, it is unnecessary to switch T-state for it.
So it will be better that the throttling is disabled after the cpu
is offline.
At the same time after one cpu is online, we should check whether
the T-state is supported and then set the corresponding T-state
flag.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Now before it executes the T-state operation on one CPU, it will try to
migrate to the target CPU. Especially this is required on the system that
uses the MSR_IA32_THERMAL_CONTROL register to switch T-state.
But unfortunately it doesn't check whether the migration is successful or not.
In such case we will get/set the incorrect T-state on the offline CPU as
it fails in the migration to the offline CPU.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
Apparently, Averatec AV1020-ED2 does not resume correctly without
acpi_sleep=nonvs, so add it to the ACPI sleep blacklist.
References: https://bugzilla.kernel.org/show_bug.cgi?id=16396#c86
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
Since ACPI buttons and lids can be configured to wake up the system
from sleep states, report wakeup events from these devices.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
Drop special ACPI wakeup flags, wakeup.state.enabled and
wakeup.flags.always_enabled, that aren't necessary any more after
we've started to use standard device wakeup flags for handling ACPI
wakeup devices.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
There are ACPI devices (buttons and the laptop lid) that can wake up
the system from sleep states and have no "physical" companion
devices. The ACPI subsystem uses two flags, wakeup.state.enabled and
wakeup.flags.always_enabled, for handling those devices, but they
are not accessible through the standard device wakeup infrastructure.
User space can only control them via the /proc/acpi/wakeup interface
that is not really convenient (e.g. the way in which devices are
enabled to wake up the system is not portable between different
systems, because it requires one to know the devices' "names" used in
the system's ACPI tables).
To address this problem, use standard device wakeup flags instead of
the special ACPI flags for handling those devices. In particular,
use device_set_wakeup_capable() to mark the ACPI wakeup devices
during initialization and use device_set_wakeup_enable() to allow
or disallow them to wake up the system from sleep states. Rework
the /proc/acpi/wakeup interface to take these changes into account.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
If a device is enabled to wake up the system from sleep states via
/proc/acpi/wakeup and there are other devices associated with the
same wakeup GPE, all of these devices are automatically enabled to
wake up the system. This isn't correct, because the fact the GPE is
shared need not imply that wakeup power has to be enabled for all the
devices at the same time (i.e. it is possible that one device will
have its wakeup power enabled and it will wake up the system from a
sleep state if the shared wakeup GPE is enabled, while another device
having its wakeup power disabled will not wake up the system even
though the GPE is enabled). Rework acpi_system_write_wakeup_device()
so that it only enables wakeup for one device at a time.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
There are two problems with the ACPICA's current implementation of
the global lock acquisition. First, acpi_ev_global_lock_handler(),
which in fact is an interface to the outside of the kernel, doesn't
validate its input, so it only works correctly if the other side
(i.e. the ACPI firmware) is fully specification-compliant (as far
as the global lock is concerned). Unfortunately, that's known not
to be the case on some systems (i.e. we get spurious global lock
signaling interrupts without the pending flag set on some systems).
Second, acpi_ev_global_lock_handler() attempts to acquire the global
lock on behalf of a thread waiting for it without checking if there
actually is such a thread. Both of these shortcomings need to be
addressed to prevent all possible race conditions from happening.
Rework acpi_ev_global_lock_handler() so that it doesn't try to
acquire the global lock and make it signal the availability of the
global lock to the waiting thread instead. Make sure that the
availability of the global lock can only be signaled when there
is a thread waiting for it and that it can't be signaled more than
once in a row (to keep acpi_gbl_global_lock_semaphore in balance).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
Although the temporary boot-time ACPI table mappings
were set up with CPU caching enabled, the permanent table
mappings and AML run-time region memory accesses were
set up with ioremap(), which on x86 is a synonym for
ioremap_nocache().
Changing this to ioremap_cache() improves performance as
seen when accessing the tables via acpidump,
or /sys/firmware/acpi/tables. It should also improve
AML run-time performance.
No change on ia64.
Reported-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
It turns out that the NVS memory region that suspend_nvs_save()
attempts to map has been already mapped by acpi_os_map_memory(), so
suspend_nvs_save() should better use acpi_os_map_memory() for mapping
memory to avoid conflicts.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
The file information and the list of include in drivers/acpi/nvs.c
are outdated, so update them.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
The saving of the ACPI NVS area during hibernation and suspend and
restoring it during the subsequent resume is entirely specific to
ACPI, so move it to drivers/acpi and drop the CONFIG_SUSPEND_NVS
configuration option which is redundant.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
When ioremap() fails (which might happen for some reason), we nicely
oops in suspend_nvs_save() due to NULL dereference by memcpy() in there.
Fail gracefully instead.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix APIC ID sizing bug on larger systems, clean up MAX_APICS confusion
x86, acpi: Parse all SRAT cpu entries even above the cpu number limitation
x86, acpi: Add MAX_LOCAL_APIC for 32bit
x86: io_apic: Split setup_ioapic_ids_from_mpc()
x86: io_apic: Fix CONFIG_X86_IO_APIC=n breakage
x86: apic: Move probe_nr_irqs_gsi() into ioapic_init_mappings()
x86: Allow platforms to force enable apic
GPEs with corresponding _Lxx/_Exx control methods need to be disabled
during initialization in case they have been enabled by the BIOS, so
that they don't fire up until they are enabled by acpi_update_gpes().
References: https://bugzilla.kernel.org/show_bug.cgi?id=25412
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
This reverts commit 3138b32d5e0998ba3cbd1c74bdc1887d74c5279b.
as it caused a crash upon battery removal:
https://bugzilla.kernel.org/show_bug.cgi?id=25302
Signed-off-by: Len Brown <len.brown@intel.com>
Recent Intel new system have different order in MADT, aka will list all thread0
at first, then all thread1.
But SRAT table still old order, it will list cpus in one socket all together.
If the user have compiled limited NR_CPUS or boot with nr_cpus=, could have missed
to put some cpus apic id to node mapping into apicid_to_node[].
for example for 4 sockets system with 64 cpus with nr_cpus=32 will get crash...
[ 9.106288] Total of 32 processors activated (136190.88 BogoMIPS).
[ 9.235021] divide error: 0000 [#1] SMP
[ 9.235315] last sysfs file:
[ 9.235481] CPU 1
[ 9.235592] Modules linked in:
[ 9.245398]
[ 9.245478] Pid: 2, comm: kthreadd Not tainted 2.6.37-rc1-tip-yh-01782-ge92ef79-dirty #274 /Sun Fire x4800
[ 9.265415] RIP: 0010:[<ffffffff81075a8f>] [<ffffffff81075a8f>] select_task_rq_fair+0x4f0/0x623
...
[ 9.645938] RIP [<ffffffff81075a8f>] select_task_rq_fair+0x4f0/0x623
[ 9.665356] RSP <ffff88103f8d1c40>
[ 9.665568] ---[ end trace 2296156d35fdfc87 ]---
So let just parse all cpu entries in SRAT.
Also add apicid checking with MAX_LOCAL_APIC, in case We could out of boundaries of
apicid_to_node[].
it fixes following bug too.
https://bugzilla.kernel.org/show_bug.cgi?id=22662
-v2: expand to 32bit according to hpa
need to add MAX_LOCAL_APIC for 32bit
Reported-and-Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Reported-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Tested-by: Myron Stowe <myron.stowe@hp.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D0AD486.9020704@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
If a device is reported as inactive or not present by its _STA
control method, acpi_bus_check_add() skips it without evaluating its
_PRW method. This leads to a problem when the device's _PRW method
points to a GPE, because in that case the GPE may be enabled by
ACPICA during the subsequent acpi_update_gpes() call which, in
turn, may cause a GPE storm to appear.
To avoid this issue, make acpi_bus_check_add() evaluate _PRW for
inactive or not present devices and register the wakeup GPE
information returned by them, so that acpi_update_gpes() does not
enable their GPEs unnecessarily.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
__get_cpu_var() can be replaced with this_cpu_read and will then use a single
read instruction with implied address calculation to access the correct per cpu
instance.
However, the address of a per cpu variable passed to __this_cpu_read() cannot be
determed (since its an implied address conversion through segment prefixes).
Therefore apply this only to uses of __get_cpu_var where the addres of the
variable is not used.
V3->V4:
- Move one instance of this_cpu_inc_return to a later patch
so that this one can go in without percpu infrastructrure
changes.
Sedat: fixed compile failure caused by an extra ')'.
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
ACPI 4.0 spec adds the ACPI IPMI opregion, which means that the ACPI AML
code can also communicate with the BMC controller. This is to install
the ACPI IPMI opregion and enable the ACPI to access the BMC controller
through the IPMI message.
It will create IPMI user interface for every IPMI device detected
in ACPI namespace and install the corresponding IPMI opregion space handler.
Then it can enable ACPI to access the BMC controller through the IPMI
message.
The following describes how to process the IPMI request in IPMI space handler:
1. format the IPMI message based on the request in AML code.
IPMI system address. Now the address type is SYSTEM_INTERFACE_ADDR_TYPE
IPMI net function & command
IPMI message payload
2. send the IPMI message by using the function of ipmi_request_settime
3. wait for the completion of IPMI message. It can be done in different
routes: One is in handled in IPMI user recv callback function. Another is
handled in timeout function.
4. format the IPMI response and return it to ACPI AML code.
At the same time it also addes the module dependency. The ACPI IPMI opregion
will depend on the IPMI subsystem.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Introduce module parameter video.use_bios_initial_backlight.
Some BIOSes claim they use the minimum backlight at boot,
and this may bring dimming screen after boot.
https://bugzilla.kernel.org/show_bug.cgi?id=21212
use video.use_bios_initl_backlight=0 to use
the maximum backlight level after boot.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
cap._DDC is defined but never used.
Check this flag now and don't try to get EDID for video output devices with this flag cleared.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Remove the ACPI video output switching control as it never works.
With the patch applied,
ACPI video driver still catches the video output notification,
but it does nothing but raises the notification to userspace.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Remove deprecated ACPI process procfs I/F for throttling control.
This is because the t-state control should only be done in kernel,
when system is in a overheating state.
Now users can only change the processor t-state indirectly,
by poking the cooling device sysfs I/F of the processor.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
printk is one of the methods to report hardware errors to user space.
This patch implements hardware error reporting for GHES via printk.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
In APEI, Hardware error information reported by firmware to Linux
kernel is in the data structure of APEI generic error status (struct
acpi_hes_generic_status). While now printk is used by Linux kernel to
report hardware error information to user space.
So, this patch adds printing support for the data structure, so that
the corresponding hardware error information can be reported to user
space via printk.
PCIe AER information printing is not implemented yet. Will refactor the
original PCIe AER information printing code to avoid code duplicating.
The output format is as follow:
<error record> :=
APEI generic hardware error status
severity: <integer>, <severity string>
section: <integer>, severity: <integer>, <severity string>
flags: <integer>
<section flags strings>
fru_id: <uuid string>
fru_text: <string>
section_type: <section type string>
<section data>
<severity string>* := recoverable | fatal | corrected | info
<section flags strings># :=
[primary][, containment warning][, reset][, threshold exceeded]\
[, resource not accessible][, latent error]
<section type string> := generic processor error | memory error | \
PCIe error | unknown, <uuid string>
<section data> :=
<generic processor section data> | <memory section data> | \
<pcie section data> | <null>
<generic processor section data> :=
[processor_type: <integer>, <proc type string>]
[processor_isa: <integer>, <proc isa string>]
[error_type: <integer>
<proc error type strings>]
[operation: <integer>, <proc operation string>]
[flags: <integer>
<proc flags strings>]
[level: <integer>]
[version_info: <integer>]
[processor_id: <integer>]
[target_address: <integer>]
[requestor_id: <integer>]
[responder_id: <integer>]
[IP: <integer>]
<proc type string>* := IA32/X64 | IA64
<proc isa string>* := IA32 | IA64 | X64
<processor error type strings># :=
[cache error][, TLB error][, bus error][, micro-architectural error]
<proc operation string>* := unknown or generic | data read | data write | \
instruction execution
<proc flags strings># :=
[restartable][, precise IP][, overflow][, corrected]
<memory section data> :=
[error_status: <integer>]
[physical_address: <integer>]
[physical_address_mask: <integer>]
[node: <integer>]
[card: <integer>]
[module: <integer>]
[bank: <integer>]
[device: <integer>]
[row: <integer>]
[column: <integer>]
[bit_position: <integer>]
[requestor_id: <integer>]
[responder_id: <integer>]
[target_id: <integer>]
[error_type: <integer>, <mem error type string>]
<mem error type string>* :=
unknown | no error | single-bit ECC | multi-bit ECC | \
single-symbol chipkill ECC | multi-symbol chipkill ECC | master abort | \
target abort | parity error | watchdog timeout | invalid address | \
mirror Broken | memory sparing | scrub corrected error | \
scrub uncorrected error
<pcie section data> :=
[port_type: <integer>, <pcie port type string>]
[version: <integer>.<integer>]
[command: <integer>, status: <integer>]
[device_id: <integer>:<integer>:<integer>.<integer>
slot: <integer>
secondary_bus: <integer>
vendor_id: <integer>, device_id: <integer>
class_code: <integer>]
[serial number: <integer>, <integer>]
[bridge: secondary_status: <integer>, control: <integer>]
<pcie port type string>* := PCIe end point | legacy PCI end point | \
unknown | unknown | root port | upstream switch port | \
downstream switch port | PCIe to PCI/PCI-X bridge | \
PCI/PCI-X to PCIe bridge | root complex integrated endpoint device | \
root complex event collector
Where, [] designate corresponding content is optional
All <field string> description with * has the following format:
field: <integer>, <field string>
Where value of <integer> should be the position of "string" in <field
string> description. Otherwise, <field string> will be "unknown".
All <field strings> description with # has the following format:
field: <integer>
<field strings>
Where each string in <fields strings> corresponding to one set bit of
<integer>. The bit position is the position of "string" in <field
strings> description.
For more detailed explanation of every field, please refer to UEFI
specification version 2.3 or later, section Appendix N: Common
Platform Error Record.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The saving of the NVS memory area during suspend and restoring it
during resume causes problems to appear on Sony Vaio VGN-NW130D, so
blacklist that machine to avoid those problems.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=23002
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-and-tested-by: Adriano <adriano.vilela@yahoo.com>
Signed-off-by: Len Brown <len.brown@intel.com>