IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The new per-cpu counter for writes_pending is initialised in
md_alloc(), which is not called by dm-raid.
So dm-raid fails when md_write_start() is called.
Move the initialization to the personality modules
that need it. This way it is always initialised when needed,
but isn't unnecessarily initialized (requiring memory allocation)
when the personality doesn't use writes_pending.
Reported-by: Heinz Mauelshagen <heinzm@redhat.com>
Fixes: 4ad23a976413 ("MD: use per-cpu counter for writes_pending")
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
This makes it possible, with appropriate filesystem support, for a
sysadmin to tell what is affected by the mismatch, and whether
it should be ignored (if it's inside a swap partition, for
instance).
We ratelimit to prevent log flooding: if there are so many
mismatches that ratelimiting is necessary, the individual messages
are relatively unlikely to be important (either the machine is
swapping like crazy or something is very wrong with the disk).
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Currently, sync of raid456 array cannot make progress when hitting
data in writeback r5cache.
This patch fixes this issue by flushing cached data of the stripe
before processing the sync request. This is achived by:
1. In handle_stripe(), do not set STRIPE_SYNCING if the stripe is
in write back cache;
2. In r5c_try_caching_write(), handle the stripe in sync with write
through;
3. In do_release_stripe(), make stripe in sync write out and send
it to the state machine.
Shaohua: explictly set STRIPE_HANDLE after write out completed
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
For the raid456 with writeback cache, when journal device failed during
normal operation, it is still possible to persist all data, as all
pending data is still in stripe cache. However, it is necessary to handle
journal failure gracefully.
During journal failures, the following logic handles the graceful shutdown
of journal:
1. raid5_error() marks the device as Faulty and schedules async work
log->disable_writeback_work;
2. In disable_writeback_work (r5c_disable_writeback_async), the mddev is
suspended, set to write through, and then resumed. mddev_suspend()
flushes all cached stripes;
3. All cached stripes need to be flushed carefully to the RAID array.
This patch fixes issues within the process above:
1. In r5c_update_on_rdev_error() schedule disable_writeback_work for
journal failures;
2. In r5c_disable_writeback_async(), wait for MD_SB_CHANGE_PENDING,
since raid5_error() updates superblock.
3. In handle_stripe(), allow stripes with data in journal (s.injournal > 0)
to make progress during log_failed;
4. In delay_towrite(), if log failed only process data in the cache (skip
new writes in dev->towrite);
5. In __get_priority_stripe(), process loprio_list during journal device
failures.
6. In raid5_remove_disk(), wait for all cached stripes are flushed before
calling log_exit().
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
This essentially reverts commit b5470dc5fc18 ("md: resolve external
metadata handling deadlock in md_allow_write") with some adjustments.
Since commit 6791875e2e53 ("md: make reconfig_mutex optional for writes
to md sysfs files.") changing array_state to 'active' does not use
mddev_lock() and will not cause a deadlock with md_allow_write(). This
revert simplifies userspace tools that write to sysfs attributes like
"stripe_cache_size" or "consistency_policy" because it removes the need
for special handling for external metadata arrays, checking for EAGAIN
and retrying the write.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
On mainline, there is no functional difference, just less code, and
symmetric lock/unlock paths.
On PREEMPT_RT builds, this fixes the following warning, seen by
Alexander GQ Gerasiov, due to the sleeping nature of spinlocks.
BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:993
in_atomic(): 0, irqs_disabled(): 1, pid: 58, name: kworker/u12:1
CPU: 5 PID: 58 Comm: kworker/u12:1 Tainted: G W 4.9.20-rt16-stand6-686 #1
Hardware name: Supermicro SYS-5027R-WRF/X9SRW-F, BIOS 3.2a 10/28/2015
Workqueue: writeback wb_workfn (flush-253:0)
Call Trace:
dump_stack+0x47/0x68
? migrate_enable+0x4a/0xf0
___might_sleep+0x101/0x180
rt_spin_lock+0x17/0x40
add_stripe_bio+0x4e3/0x6c0 [raid456]
? preempt_count_add+0x42/0xb0
raid5_make_request+0x737/0xdd0 [raid456]
Reported-by: Alexander GQ Gerasiov <gq@redlab-i.ru>
Tested-by: Alexander GQ Gerasiov <gq@redlab-i.ru>
Signed-off-by: Julia Cartwright <julia@ni.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We can clear 'WantReplacement' flag directly no
matter it's replacement existed or not since the
semantic is same as before.
Also since the disk is removed from array, then
it is straightforward to remove 'WantReplacement'
flag and the comments in raid10/5 can be removed
as well.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
chunk_aligned_read() currently uses fs_bio_set - which is meant for
filesystems to use - and loops if multiple splits are needed, which is
not best practice.
As this is only used for READ requests, not writes, it is unlikely
to cause a problem. However it is best to be consistent in how
we split bios, and to follow the pattern used in raid1/raid10.
So create a private bioset, bio_split, and use it to perform a single
split, submitting the remainder to generic_make_request() for later
processing.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
In case of read-modify-write, partial partity is the same as the result
of ops_run_prexor5(), so we can just copy sh->dev[pd_idx].page into
sh->ppl_page instead of calculating it again.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Use resize_stripes() instead of raid5_reset_stripe_cache() to allocate
or free sh->ppl_page at runtime for all stripes in the stripe cache.
raid5_reset_stripe_cache() required suspending the mddev and could
deadlock because of GFP_KERNEL allocations.
Move the 'newsize' check to check_reshape() to allow reallocating the
stripes with the same number of disks. Allocate sh->ppl_page in
alloc_stripe() instead of grow_buffers(). Pass 'struct r5conf *conf' as
a parameter to alloc_stripe() because it is needed to check whether to
allocate ppl_page. Add free_stripe() and use it to free stripes rather
than directly call kmem_cache_free(). Also free sh->ppl_page in
free_stripe().
Set MD_HAS_PPL at the end of ppl_init_log() instead of explicitly
setting it in advance and add another parameter to log_init() to allow
calling ppl_init_log() without the bit set. Don't try to calculate
partial parity or add a stripe to log if it does not have ppl_page set.
Enabling ppl can now be performed without suspending the mddev, because
the log won't be used until new stripes are allocated with ppl_page.
Calling mddev_suspend/resume is still necessary when disabling ppl,
because we want all stripes to finish before stopping the log, but
resize_stripes() can be called after mddev_resume() when ppl is no
longer active.
Suggested-by: NeilBrown <neilb@suse.com>
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
When recoverying a single missing/failed device in a RAID6,
those stripes where the Q block is on the missing device are
handled a bit differently. In these cases it is easy to
check that the P block is correct, so we do. This results
in the P block be destroy. Consequently the P block needs
to be read a second time in order to compute Q. This causes
lots of seeks and hurts performance.
It shouldn't be necessary to re-read P as it can be computed
from the DATA. But we only compute blocks on missing
devices, since c337869d9501 ("md: do not compute parity
unless it is on a failed drive").
So relax the change made in that commit to allow computing
of the P block in a RAID6 which it is the only missing that
block.
This makes RAID6 recovery run much faster as the disk just
"before" the recovering device is no longer seeking
back-and-forth.
Reported-by-tested-by: Brad Campbell <lists2009@fnarfbargle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Now that we use the proper REQ_OP_WRITE_ZEROES operation everywhere we can
kill this hack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Copy & paste from the REQ_OP_WRITE_SAME code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
When journal device of an array fails, the array is forced into read-only
mode. To make the array normal without adding another journal device, we
need to remove journal _feature_ from the array.
This patch allows remove journal _feature_ from an array, For journal
existing journal should be either missing or faulty.
To remove journal feature, it is necessary to remove the journal device
first:
mdadm --fail /dev/md0 /dev/sdb
mdadm: set /dev/sdb faulty in /dev/md0
mdadm --remove /dev/md0 /dev/sdb
mdadm: hot removed /dev/sdb from /dev/md0
Then the journal feature can be removed by echoing into the sysfs file:
cat /sys/block/md0/md/consistency_policy
journal
echo resync > /sys/block/md0/md/consistency_policy
cat /sys/block/md0/md/consistency_policy
resync
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
This test on ->writes_pending cannot be safe as the counter
can be incremented at any moment and cannot be locked against.
Change it to test conf->active_stripes, which at least
can be locked against. More changes are still needed.
A future patch will change ->writes_pending, and testing it here will
be very inconvenient.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
This reverts commit e8d7c33232e5fdfa761c3416539bc5b4acd12db5.
Now that raid5 doesn't abuse bi_phys_segments any more, we no longer
need to impose these limits.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
When a read request, which bypassed the cache, fails, we need to retry
it through the cache.
This involves attaching it to a sequence of stripe_heads, and it may not
be possible to get all the stripe_heads we need at once.
We do what we can, and record how far we got in ->bi_phys_segments so
we can pick up again later.
There is only ever one bio which may have a non-zero offset stored in
->bi_phys_segments, the one that is either active in the single thread
which calls retry_aligned_read(), or is in conf->retry_read_aligned
waiting for retry_aligned_read() to be called again.
So we only need to store one offset value. This can be in a local
variable passed between remove_bio_from_retry() and
retry_aligned_read(), or in the r5conf structure next to the
->retry_read_aligned pointer.
Storing it there allows the last usage of ->bi_phys_segments to be
removed from md/raid5.c.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
md/raid5 needs to keep track of how many stripe_heads are processing a
bio so that it can delay calling bio_endio() until all stripe_heads
have completed. It currently uses 16 bits of ->bi_phys_segments for
this purpose.
16 bits is only enough for 256M requests, and it is possible for a
single bio to be larger than this, which causes problems. Also, the
bio struct contains a larger counter, __bi_remaining, which has a
purpose very similar to the purpose of our counter. So stop using
->bi_phys_segments, and instead use __bi_remaining.
This means we don't need to initialize the counter, as our caller
initializes it to '1'. It also means we can call bio_endio() directly
as it tests this counter internally.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We currently gather bios that need to be returned into a bio_list
and call bio_endio() on them all together.
The original reason for this was to avoid making the calls while
holding a spinlock.
Locking has changed a lot since then, and that reason is no longer
valid.
So discard return_io() and various return_bi lists, and just call
bio_endio() directly as needed.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
If a device fails during a write, we must ensure the failure is
recorded in the metadata before the completion of the write is
acknowleged.
Commit c3cce6cda162 ("md/raid5: ensure device failure recorded before
write request returns.") added code for this, but it was
unnecessarily complicated. We already had similar functionality for
handling updates to the bad-block-list, thanks to Commit de393cdea66c
("md: make it easier to wait for bad blocks to be acknowledged.")
So revert most of the former commit, and instead avoid collecting
completed writes if MD_CHANGE_PENDING is set. raid5d() will then flush
the metadata and retry the stripe_head.
As this change can leave a stripe_head ready for handling immediately
after handle_active_stripes() returns, we change raid5_do_work() to
pause when MD_CHANGE_PENDING is set, so that it doesn't spin.
We check MD_CHANGE_PENDING *after* analyse_stripe() as it could be set
asynchronously. After analyse_stripe(), we have collected stable data
about the state of devices, which will be used to make decisions.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We use md_write_start() to increase the count of pending writes, and
md_write_end() to decrement the count. We currently count bios
submitted to md/raid5. Change it count stripe_heads that a WRITE bio
has been attached to.
So now, raid5_make_request() calls md_write_start() and then
md_write_end() to keep the count elevated during the setup of the
request.
add_stripe_bio() calls md_write_start() for each stripe_head, and the
completion routines always call md_write_end(), instead of only
calling it when raid5_dec_bi_active_stripes() returns 0.
make_discard_request also calls md_write_start/end().
The parallel between md_write_{start,end} and use of bi_phys_segments
can be seen in that:
Whenever we set bi_phys_segments to 1, we now call md_write_start.
Whenever we increment it on non-read requests with
raid5_inc_bi_active_stripes(), we now call md_write_start().
Whenever we decrement bi_phys_segments on non-read requsts with
raid5_dec_bi_active_stripes(), we now call md_write_end().
This reduces our dependence on keeping a per-bio count of active
stripes in bi_phys_segments.
md_write_inc() is added which parallels md_write_start(), but requires
that a write has already been started, and is certain never to sleep.
This can be used inside a spinlocked region when adding to a write
request.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Allow writing to 'consistency_policy' attribute when the array is
active. Add a new function 'change_consistency_policy' to the
md_personality operations structure to handle the change in the
personality code. Values "ppl" and "resync" are accepted and
turn PPL on and off respectively.
When enabling PPL its location and size should first be set using
'ppl_sector' and 'ppl_size' attributes and a valid PPL header should be
written at this location on each member device.
Enabling or disabling PPL is performed under a suspended array. The
raid5_reset_stripe_cache function frees the stripe cache and allocates
it again in order to allocate or free the ppl_pages for the stripes in
the stripe cache.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Add a function to modify the log by removing an rdev when a drive fails
or adding when a spare/replacement is activated as a raid member.
Removing a disk just clears the child log rdev pointer. No new stripes
will be accepted for this child log in ppl_write_stripe() and running io
units will be processed without writing PPL to the device.
Adding a disk sets the child log rdev pointer and writes an empty PPL
header.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Load the log from each disk when starting the array and recover if the
array is dirty.
The initial empty PPL is written by mdadm. When loading the log we
verify the header checksum and signature. For external metadata arrays
the signature is verified in userspace, so here we read it from the
header, verifying only if it matches on all disks, and use it later when
writing PPL.
In addition to the header checksum, each header entry also contains a
checksum of its partial parity data. If the header is valid, recovery is
performed for each entry until an invalid entry is found. If the array
is not degraded and recovery using PPL fully succeeds, there is no need
to resync the array because data and parity will be consistent, so in
this case resync will be disabled.
Due to compatibility with IMSM implementations on other systems, we
can't assume that the recovery data block size is always 4K. Writes
generated by MD raid5 don't have this issue, but when recovering PPL
written in other environments it is possible to have entries with
512-byte sector granularity. The recovery code takes this into account
and also the logical sector size of the underlying drives.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Implement the calculation of partial parity for a stripe and PPL write
logging functionality. The description of PPL is added to the
documentation. More details can be found in the comments in raid5-ppl.c.
Attach a page for holding the partial parity data to stripe_head.
Allocate it only if mddev has the MD_HAS_PPL flag set.
Partial parity is the xor of not modified data chunks of a stripe and is
calculated as follows:
- reconstruct-write case:
xor data from all not updated disks in a stripe
- read-modify-write case:
xor old data and parity from all updated disks in a stripe
Implement it using the async_tx API and integrate into raid_run_ops().
It must be called when we still have access to old data, so do it when
STRIPE_OP_BIODRAIN is set, but before ops_run_prexor5(). The result is
stored into sh->ppl_page.
Partial parity is not meaningful for full stripe write and is not stored
in the log or used for recovery, so don't attempt to calculate it when
stripe has STRIPE_FULL_WRITE.
Put the PPL metadata structures to md_p.h because userspace tools
(mdadm) will also need to read/write PPL.
Warn about using PPL with enabled disk volatile write-back cache for
now. It can be removed once disk cache flushing before writing PPL is
implemented.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Move raid5-cache declarations from raid5.h to raid5-log.h, add inline
wrappers for functions which will be shared with ppl and use them in
raid5 core instead of direct calls to raid5-cache.
Remove unused parameter from r5c_cache_data(), move two duplicated
pr_debug() calls to r5l_init_log().
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Previous patch (raid5: only dispatch IO from raid5d for harddisk raid)
defers IO dispatching. The goal is to create better IO pattern. At that
time, we don't sort the deffered IO and hope the block layer can do IO
merge and sort. Now the raid5-cache writeback could create large amount
of bios. And if we enable muti-thread for stripe handling, we can't
control when to dispatch IO to raid disks. In a lot of time, we are
dispatching IO which block layer can't do merge effectively.
This patch moves further for the IO dispatching defer. We accumulate
bios, but we don't dispatch all the bios after a threshold is met. This
'dispatch partial portion of bios' stragety allows bios coming in a
large time window are sent to disks together. At the dispatching time,
there is large chance the block layer can merge the bios. To make this
more effective, we dispatch IO in ascending order. This increases
request merge chance and reduces disk seek.
Signed-off-by: Shaohua Li <shli@fb.com>
In raid5-cache writeback mode, we have two types of stripes to handle.
- stripes which aren't cached yet
- stripes which are cached and flushing out to raid disks
Upperlayer is more sensistive to latency of the first type of stripes
generally. But we only one handle list for all these stripes, where the
two types of stripes are mixed together. When reclaim flushes a lot of
stripes, the first type of stripes could be noticeably delayed. On the
other hand, if the log space is tight, we'd like to handle the second
type of stripes faster and free log space.
This patch destinguishes the two types stripes. They are added into
different handle list. When we try to get a stripe to handl, we prefer
the first type of stripes unless log space is tight.
This should have no impact for !writeback case.
Signed-off-by: Shaohua Li <shli@fb.com>
Before this patch, device InJournal will be included in prexor
(SYNDROME_SRC_WANT_DRAIN) but not in reconstruct (SYNDROME_SRC_WRITTEN). So it
will break parity calculation. With srctype == SYNDROME_SRC_WRITTEN, we need
include both dev with non-null ->written and dev with R5_InJournal. This fixes
logic in 1e6d690(md/r5cache: caching phase of r5cache)
Cc: stable@vger.kernel.org (v4.10+)
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
raid1_resize and raid5_resize should also check the
mddev->queue if run underneath dm-raid.
And both set_capacity and revalidate_disk are used in
pers->resize such as raid1, raid10 and raid5. So
move them from personality file to common code.
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull md updates from Shaohua Li:
"Mainly fixes bugs and improves performance:
- Improve scalability for raid1 from Coly
- Improve raid5-cache read performance, disk efficiency and IO
pattern from Song and me
- Fix a race condition of disk hotplug for linear from Coly
- A few cleanup patches from Ming and Byungchul
- Fix a memory leak from Neil
- Fix WRITE SAME IO failure from me
- Add doc for raid5-cache from me"
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: (23 commits)
md/raid1: fix write behind issues introduced by bio_clone_bioset_partial
md/raid1: handle flush request correctly
md/linear: shutup lockdep warnning
md/raid1: fix a use-after-free bug
RAID1: avoid unnecessary spin locks in I/O barrier code
RAID1: a new I/O barrier implementation to remove resync window
md/raid5: Don't reinvent the wheel but use existing llist API
md: fast clone bio in bio_clone_mddev()
md: remove unnecessary check on mddev
md/raid1: use bio_clone_bioset_partial() in case of write behind
md: fail if mddev->bio_set can't be created
block: introduce bio_clone_bioset_partial()
md: disable WRITE SAME if it fails in underlayer disks
md/raid5-cache: exclude reclaiming stripes in reclaim check
md/raid5-cache: stripe reclaim only counts valid stripes
MD: add doc for raid5-cache
Documentation: move MD related doc into a separate dir
md: ensure md devices are freed before module is unloaded.
md/r5cache: improve journal device efficiency
md/r5cache: enable chunk_aligned_read with write back cache
...
Although llist provides proper APIs, they are not used. Make them used.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Firstly bio_clone_mddev() is used in raid normal I/O and isn't
in resync I/O path.
Secondly all the direct access to bvec table in raid happens on
resync I/O except for write behind of raid1, in which we still
use bio_clone() for allocating new bvec table.
So this patch replaces bio_clone() with bio_clone_fast()
in bio_clone_mddev().
Also kill bio_clone_mddev() and call bio_clone_fast() directly, as
suggested by Christoph Hellwig.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Shaohua Li <shli@fb.com>
stripes which are being reclaimed are still accounted into cached
stripes. The reclaim takes time. r5c_do_reclaim isn't aware of the
stripes and does unnecessary stripe reclaim. In practice, I saw one
stripe is reclaimed one time. This will cause bad IO pattern. Fixing
this by excluding the reclaing stripes in the check.
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
It is important to be able to flush all stripes in raid5-cache.
Therefore, we need reserve some space on the journal device for
these flushes. If flush operation includes pending writes to the
stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
for the flush out. This reduces the efficiency of journal space.
If we exclude these pending writes from flush operation, we only
need (conf->max_degraded + 1) pages per stripe.
With this patch, when log space is critical (R5C_LOG_CRITICAL=1),
pending writes will be excluded from stripe flush out. Therefore,
we can reduce reserved space for flush out and thus improve journal
device efficiency.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Chunk aligned read significantly reduces CPU usage of raid456.
However, it is not safe to fully bypass the write back cache.
This patch enables chunk aligned read with write back cache.
For chunk aligned read, we track stripes in write back cache at
a bigger granularity, "big_stripe". Each chunk may contain more
than one stripe (for example, a 256kB chunk contains 64 4kB-page,
so this chunk contain 64 stripes). For chunk_aligned_read, these
stripes are grouped into one big_stripe, so we only need one lookup
for the whole chunk.
For each big_stripe, struct big_stripe_info tracks how many stripes
of this big_stripe are in the write back cache. We count how many
stripes of this big_stripe are in the write back cache. These
counters are tracked in a radix tree (big_stripe_tree).
r5c_tree_index() is used to calculate keys for the radix tree.
chunk_aligned_read() calls r5c_big_stripe_cached() to look up
big_stripe of each chunk in the tree. If this big_stripe is in the
tree, chunk_aligned_read() aborts. This look up is protected by
rcu_read_lock().
It is necessary to remember whether a stripe is counted in
big_stripe_tree. Instead of adding new flag, we reuses existing flags:
STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
two flags are set, the stripe is counted in big_stripe_tree. This
requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
r5c_try_caching_write(); and moving clear_bit of
STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
r5c_finish_stripe_write_out().
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We made raid5 stripe handling multi-thread before. It works well for
SSD. But for harddisk, the multi-threading creates more disk seek, so
not always improve performance. For several hard disks based raid5,
multi-threading is required as raid5d becames a bottleneck especially
for sequential write.
To overcome the disk seek issue, we only dispatch IO from raid5d if the
array is harddisk based. Other threads can still handle stripes, but
can't dispatch IO.
Idealy, we should control IO dispatching order according to IO position
interrnally. Right now we still depend on block layer, which isn't very
efficient sometimes though.
My setup has 9 harddisks, each disk can do around 180M/s sequential
write. So in theory, the raid5 can do 180 * 8 = 1440M/s sequential
write. The test machine uses an ATOM CPU. I measure sequential write
with large iodepth bandwidth to raid array:
without patch: ~600M/s
without patch and group_thread_cnt=4: 750M/s
with patch and group_thread_cnt=4: 950M/s
with patch, group_thread_cnt=4, skip_copy=1: 1150M/s
We are pretty close to the maximum bandwidth in the large iodepth
iodepth case. The performance gap of small iodepth sequential write
between software raid and theory value is still very big though, because
we don't have an efficient pipeline.
Cc: NeilBrown <neilb@suse.com>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We will want to have struct backing_dev_info allocated separately from
struct request_queue. As the first step add pointer to backing_dev_info
to request_queue and convert all users touching it. No functional
changes in this patch.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
write-back cache in degraded mode introduces corner cases to the array.
Although we try to cover all these corner cases, it is safer to just
disable write-back cache when the array is in degraded mode.
In this patch, we disable writeback cache for degraded mode:
1. On device failure, if the array enters degraded mode, raid5_error()
will submit async job r5c_disable_writeback_async to disable
writeback;
2. In r5c_journal_mode_store(), it is invalid to enable writeback in
degraded mode;
3. In r5c_try_caching_write(), stripes with s->failed>0 will be handled
in write-through mode.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Write back cache requires a complex RMW mechanism, where old data is
read into dev->orig_page for prexor, and then xor is done with
dev->page. This logic is already implemented in the write path.
However, current read path is not awared of this requirement. When
the array is optimal, the RMW is not required, as the data are
read from raid disks. However, when the target stripe is degraded,
complex RMW is required to generate right data.
To keep read path as clean as possible, we handle read path by
flushing degraded, in-journal stripes before processing reads to
missing dev.
Specifically, when there is read requests to a degraded stripe
with data in journal, handle_stripe_fill() calls
r5c_make_stripe_write_out() and exits. Then handle_stripe_dirtying()
will do the complex RMW and flush the stripe to RAID disks. After
that, read requests are handled.
There is one more corner case when there is non-overwrite bio for
the missing (or out of sync) dev. handle_stripe_dirtying() will not
be able to process the non-overwrite bios without constructing the
data in handle_stripe_fill(). This is fixed by delaying non-overwrite
bios in handle_stripe_dirtying(). So handle_stripe_fill() works on
these bios after the stripe is flushed to raid disks.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
With write back cache, we use orig_page to do prexor. This patch
makes sure we read data into orig_page for it.
Flag R5_OrigPageUPTDODATE is added to show whether orig_page
has the latest data from raid disk.
We introduce a helper function uptodate_for_rmw() to simplify
the a couple conditions in handle_stripe_dirtying().
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
This fixes a build error on certain architectures, such as ppc64.
Fixes: 6995f0b247e("md: takeover should clear unrelated bits")
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Commit 6995f0b (md: takeover should clear unrelated bits) clear
unrelated bits, but it's quite fragile. To avoid error in the future,
define a macro for unsupported mddev flags for each raid type and use it
to clear unsupported mddev flags. This should be less error-prone.
Suggested-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>