IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If a tty in N_TTY mode with echo enabled manages to get itself into a state
where
- echo characters are pending
- FASYNC is enabled
- tty_write_wakeup is called from either
- a device write path (pty)
- an IRQ (serial)
then it either deadlocks or explodes taking a mutex in the IRQ path.
On the serial side it is almost impossible to reproduce because you have to
go from a full serial port to a near empty one with echo characters
pending. The pty case happens to have become possible to trigger using
emacs and ptys, the pty changes having created a scenario which shows up
this bug.
The code path is
n_tty:process_echoes() (takes mutex)
tty_io:tty_put_char()
pty:pty_write (or serial paths)
tty_wakeup (from pty_write or serial IRQ)
n_tty_write_wakeup()
process_echoes()
*KABOOM*
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having cleaned up the allocators we might as well remove the inline helpers
for some of it
Signed-off-by: Alan Cox <alan@lxorguk.ukuu.org.uk
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Long long ago a 4K kmalloc allocated two pages so the tty layer used the
page allocator, except on some machines where the page size was huge. This was
removed from the core tty layer with the tty buffer re-implementation but not
from tty_audit or the n_tty ldisc.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The N_TTY ldisc layer does not send SIGIO POLL_OUTs correctly when output is
possible due to flawed handling of the TTY_DO_WRITE_WAKEUP bit. It will
either send no SIGIOs at all or on every tty wakeup.
The fix is to set the bit when the tty driver write would block and test
and clear it on write wakeup.
[Merged with existing N_TTY patches and a small buglet fixed -- Alan]
Signed-off-by: Thomas Pfaff <tpfaff@pcs.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch causes "bell" (^G) characters (invoked when the input buffer
is full) to be immediately output rather than filling the echo buffer.
This is especially a problem when the tty is stopped and buffers fill, since
the bells do not serve their purpose of immediate notification that the
buffer cannot take further input, and they will flush all at once when the
tty is restarted.
Signed-off-by: Joe Peterson <joe@skyrush.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the handling of input characters when the tty buffer is full or nearly
full. This includes tests that are done in n_tty_receive_char() and handling
of PARMRK.
Problems with the buffer-full tests done in receive_char() caused characters to
be lost at times when the buffer(s) filled. Also, these full conditions
would often only be detected with echo on, and PARMRK was not accounted for
properly in all cases. One symptom of these problems, in addition to lost
characters, was early termination from unix commands like tr and cat when
^Q was used to break from a stopped tty with full buffers (note that breaking
out was often previously not possible, due to the pty getting in "gridlock",
which will be addressed in another patch). Note space is always reserved
at the end of the buffer for a newline (or EOF/EOL) in canonical mode.
Signed-off-by: Joe Peterson <joe@skyrush.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix process_output_block to detect continuation characters correctly
and to handle control characters even when O_OLCUC is enabled. Make
similar change to do_output_char().
Signed-off-by: Joe Peterson <joe@skyrush.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes the loss of echoed (and other ldisc-generated characters) when
the tty is stopped or when the driver output buffer is full (happens
frequently for input during continuous program output, such as ^C)
and removes the Big Kernel Lock from the N_TTY line discipline.
Adds an "echo buffer" to the N_TTY line discipline that handles all
ldisc-generated output (including echoed characters). Along with the
loss of characters, this also fixes the associated loss of sync between
tty output and the ldisc state when characters cannot be immediately
written to the tty driver.
The echo buffer stores (in addition to characters) state operations that need
to be done at the time of character output (like management of the column
position). This allows echo to cooperate correctly with program output,
since the ldisc state remains consistent with actual characters written.
Since the echo buffer code now isolates the tty column state code
to the process_out* and process_echoes functions, we can remove the
Big Kernel Lock (BKL) and replace it with mutex locks.
Highlights are:
* Handles echo (and other ldisc output) when tty driver buffer is full
- continuous program output can block echo
* Saves echo when tty is in stopped state (e.g. ^S)
- (e.g.: ^Q will correctly cause held characters to be released for output)
* Control character pairs (e.g. "^C") are treated atomically and not
split up by interleaved program output
* Line discipline state is kept consistent with characters sent to
the tty driver
* Remove the big kernel lock (BKL) from N_TTY line discipline
Signed-off-by: Joe Peterson <joe@skyrush.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Original idea for this from a patch by Rodolfo Giometti which merges various
bits of PPS support
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the set up on ldisc change into the ldisc
Move the INQ/OUTQ cases into the driver not in shared ioctl code where it
gives bogus answers for other ldisc values
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the line disciplines towards a conventional ->ops arrangement. For
the moment the actual 'tty_ldisc' struct in the tty is kept as part of
the tty struct but this can then be changed if it turns out that when it
all settles down we want to refcount ldiscs separately to the tty.
Pull the ldisc code out of /proc and put it with our ldisc code.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enabling the BKL to be lockdep tracked uncovered the following
upstream kernel bug in the tty code, which caused a BKL
reference leak:
================================================
[ BUG: lock held when returning to user space! ]
------------------------------------------------
dmesg/3121 is leaving the kernel with locks still held!
1 lock held by dmesg/3121:
#0: (kernel_mutex){--..}, at: [<c02f34d9>] opost+0x24/0x194
this might explain some of the atomicity warnings and crashes
that -tip tree testing has been experiencing since the BKL
was converted back to a spinlock.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Something Arjan suggested which allows us to clean up the code nicely
Signed-off-by: Alan Cox <alan@redhat.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Operations are now a shared const function block as with most other Linux
objects
- Introduce wrappers for some optional functions to get consistent behaviour
- Wrap put_char which used to be patched by the tty layer
- Document which functions are needed/optional
- Make put_char report success/fail
- Cache the driver->ops pointer in the tty as tty->ops
- Remove various surplus lock calls we no longer need
- Remove proc_write method as noted by Alexey Dobriyan
- Introduce some missing sanity checks where certain driver/ldisc
combinations would oops as they didn't check needed methods were present
[akpm@linux-foundation.org: fix fs/compat_ioctl.c build]
[akpm@linux-foundation.org: fix isicom]
[akpm@linux-foundation.org: fix arch/ia64/hp/sim/simserial.c build]
[akpm@linux-foundation.org: fix kgdb]
Signed-off-by: Alan Cox <alan@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Refine these behaviors in the N_TTY line discipline:
1) Handle the signal characters consistently when received in a stopped TTY
so that SUSP (typically ctrl-Z) behaves like INTR and QUIT in resuming a
stopped TTY.
2) Adjust the order in which the IGNCR/ICRNL/INLCR processing is applied to
be more logical and consistent with the behavior of other Unix systems.
Signed-off-by: Joe Peterson <joe@skyrush.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Push the BKL down into the line disciplines
- Switch the tty layer to unlocked_ioctl
- Introduce a new ctrl_lock spin lock for the control bits
- Eliminate much of the lock_kernel use in n_tty
- Prepare to (but don't yet) call the drivers with the lock dropped
on the paths that historically held the lock
BKL now primarily protects open/close/ldisc change in the tty layer
[jirislaby@gmail.com: a couple of fixes]
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix two N_TTY line discipline issues related to resuming a stopped TTY
(typically done with ctrl-S):
1) Fix handling of character that resumes a stopped TTY (with IXANY)
With "stty ixany", the TTY line discipline would lose the first character
after the stop, so typing, for example, "hi^Sthere" resulted in "hihere"
(the 't' would cause the resume after ^S, but it would then be thrown away
rather than processed as an input character). This was inconsistent with
the behavior of other Unix systems.
2) Fix interrupt signal (e.g. ctrl-C) behavior in stopped TTYs
With "stty -ixany" (often the default), interrupt signals were ignored
in a stopped TTY until the TTY was resumed with the start char (typically
ctrl-Q), which was inconsistent with the behavior of other Unix systems.
Signed-off-by: Joe Peterson <joe@skyrush.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Turn on INTR/QUIT/SUSP echoing in the N_TTY line discipline (e.g. ctrl-C
will appear as "^C" if stty echoctl is set and ctrl-C is set as INTR).
Linux seems to be the only unix-like OS (recently I've verified this on
Solaris, BSD, and Mac OS X) that does *not* behave this way, and I really
miss this as a good visual confirmation of the interrupt of a program in
the console or xterm. I remember this fondly from many Unixs I've used
over the years as well. Bringing this to Linux also seems like a good way
to make it yet more compliant with standard unix-like behavior.
[akpm@linux-foundation.org: coding-style fixes]
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the various misspellings of "system", controller", "interrupt" and
"[un]necessary".
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Add TTY input auditing, used to audit system administrator's actions. This is
required by various security standards such as DCID 6/3 and PCI to provide
non-repudiation of administrator's actions and to allow a review of past
actions if the administrator seems to overstep their duties or if the system
becomes misconfigured for unknown reasons. These requirements do not make it
necessary to audit TTY output as well.
Compared to an user-space keylogger, this approach records TTY input using the
audit subsystem, correlated with other audit events, and it is completely
transparent to the user-space application (e.g. the console ioctls still
work).
TTY input auditing works on a higher level than auditing all system calls
within the session, which would produce an overwhelming amount of mostly
useless audit events.
Add an "audit_tty" attribute, inherited across fork (). Data read from TTYs
by process with the attribute is sent to the audit subsystem by the kernel.
The audit netlink interface is extended to allow modifying the audit_tty
attribute, and to allow sending explanatory audit events from user-space (for
example, a shell might send an event containing the final command, after the
interactive command-line editing and history expansion is performed, which
might be difficult to decipher from the TTY input alone).
Because the "audit_tty" attribute is inherited across fork (), it would be set
e.g. for sshd restarted within an audited session. To prevent this, the
audit_tty attribute is cleared when a process with no open TTY file
descriptors (e.g. after daemon startup) opens a TTY.
See https://www.redhat.com/archives/linux-audit/2007-June/msg00000.html for a
more detailed rationale document for an older version of this patch.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Miloslav Trmac <mitr@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Paul Fulghum <paulkf@microgate.com>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without this a tty write could block if a previous blocking tty write was
in progress on the same tty and blocked by a line discipline or hardware
event. Originally found and reported by Dave Johnson.
Signed-off-by: Alan Cox <alan@redhat.com>
Acked-by: Dave Johnson <djohnson+linux-kernel@sw.starentnetworks.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Spotted by Satoru Takeuchi.
kill_pgrp(task_pgrp(current)) sends the signal to the current's thread
group, but can choose any sub-thread as a target for signal_wake_up().
This means that job_control() and tty_check_change() may return
-ERESTARTSYS without signal_pending().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add compat_ioctl method for tty code to allow processing of 32 bit ioctl
calls on 64 bit systems by tty core, tty drivers, and line disciplines.
Based on patch by Arnd Bergmann:
http://www.uwsg.iu.edu/hypermail/linux/kernel/0511.0/1732.html
[akpm@linux-foundation.org: make things static]
Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Of kernel subsystems that work with pids the tty layer is probably the largest
consumer. But it has the nice virtue that the assiation with a session only
lasts until the session leader exits. Which means that no reference counting
is required. So using struct pid winds up being a simple optimization to
avoid hash table lookups.
In the long term the use of pid_nr also ensures that when we have multiple pid
spaces mixed everything will work correctly.
Signed-off-by: Eric W. Biederman <eric@maxwell.lnxi.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every call to is_orphaned_pgrp passed in process_group(current) which is racy
with respect to another thread changing our process group. It didn't bite us
because we were dealing with integers and the worse we would get would be a
stale answer.
In switching the checks to use struct pid to be a little more efficient and
prepare the way for pid namespaces this race became apparent.
So I simplified the calls to the more specialized is_current_pgrp_orphaned so
I didn't have to worry about making logic changes to avoid the race.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I don't see why there is a memory barrier in copy_from_read_buf() at all.
Even if it was useful spin_unlock_irqrestore implies a barrier.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the grungy swap all the occurrences in the right places patch that
goes with the updates. At this point we have the same functionality as
before (except that sgttyb() returns speeds not zero) and are ready to
begin turning new stuff on providing nobody reports lots of bugs
If you are a tty driver author converting an out of tree driver the only
impact should be termios->ktermios name changes for the speed/property
setting functions from your upper layers.
If you are implementing your own TCGETS function before then your driver
was broken already and its about to get a whole lot more painful for you so
please fix it 8)
Also fill in c_ispeed/ospeed on init for most devices, although the current
code will do this for you anyway but I'd like eventually to lose that extra
paranoia
[akpm@osdl.org: bluetooth fix]
[mp3@de.ibm.com: sclp fix]
[mp3@de.ibm.com: warning fix for tty3270]
[hugh@veritas.com: fix tty_ioctl powerpc build]
[jdike@addtoit.com: uml: fix ->set_termios declaration]
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Martin Peschke <mp3@de.ibm.com>
Acked-by: Peter Oberparleiter <oberpar@de.ibm.com>
Cc: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove TTY_DONT_FLIP tty flag. This flag was introduced in 2.1.X kernels
to prevent the N_TTY line discipline functions read_chan() and
n_tty_receive_buf() from running at the same time. 2.2.15 introduced
tty->read_lock to protect access to the N_TTY read buffer, which is the
only state requiring protection between these two functions.
The current TTY_DONT_FLIP implementation is broken for SMP, and is not
universally honored by drivers that send data directly to the line
discipline receive_buf function.
Because TTY_DONT_FLIP is not necessary, is broken in implementation, and is
not universally honored, it is removed.
Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
People have been reporting that PPP connections over ptys, such as
used with PPTP, will hang randomly when transferring large amounts of
data, for instance in http://bugzilla.kernel.org/show_bug.cgi?id=6530.
I have managed to reproduce the problem, and the patch below fixes the
actual cause.
The problem is not in fact in ppp_async.c but in n_tty.c. What
happens is that when pptp reads from the pty, we call read_chan() in
drivers/char/n_tty.c on the master side of the pty. That copies all
the characters out of its buffer to userspace and then calls
check_unthrottle(), which calls the pty unthrottle routine, which
calls tty_wakeup on the slave side, which calls ppp_asynctty_wakeup,
which calls tasklet_schedule. So far so good. Since we are in
process context, the tasklet runs immediately and calls
ppp_async_process(), which calls ppp_async_push, which calls the
tty->driver->write function to send some more output.
However, tty->driver->write() returns zero, because the master
tty->receive_room is still zero. We haven't returned from
check_unthrottle() yet, and read_chan() only updates tty->receive_room
_after_ calling check_unthrottle. That means that the driver->write
call in ppp_async_process() returns 0. That would be fine if we were
going to get a subsequent wakeup call, but we aren't (we just had it,
and the buffer is now empty).
The solution is for n_tty.c to update tty->receive_room _before_
calling the driver unthrottle routine. The patch below does this.
With this patch I was able to transfer a 900MB file over a PPTP
connection (taking about 25 minutes), whereas without the patch the
connection would always stall in under a minute.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The API and code have been through various bits of initial review by
serial driver people but they definitely need to live somewhere for a
while so the unconverted drivers can get knocked into shape, existing
drivers that have been updated can be better tuned and bugs whacked out.
This replaces the tty flip buffers with kmalloc objects in rings. In the
normal situation for an IRQ driven serial port at typical speeds the
behaviour is pretty much the same, two buffers end up allocated and the
kernel cycles between them as before.
When there are delays or at high speed we now behave far better as the
buffer pool can grow a bit rather than lose characters. This also means
that we can operate at higher speeds reliably.
For drivers that receive characters in blocks (DMA based, USB and
especially virtualisation) the layer allows a lot of driver specific
code that works around the tty layer with private secondary queues to be
removed. The IBM folks need this sort of layer, the smart serial port
people do, the virtualisers do (because a virtualised tty typically
operates at infinite speed rather than emulating 9600 baud).
Finally many drivers had invalid and unsafe attempts to avoid buffer
overflows by directly invoking tty methods extracted out of the innards
of work queue structs. These are no longer needed and all go away. That
fixes various random hangs with serial ports on overflow.
The other change in here is to optimise the receive_room path that is
used by some callers. It turns out that only one ldisc uses receive room
except asa constant and it updates it far far less than the value is
read. We thus make it a variable not a function call.
I expect the code to contain bugs due to the size alone but I'll be
watching and squashing them and feeding out new patches as it goes.
Because the buffers now dynamically expand you should only run out of
buffering when the kernel runs out of memory for real. That means a lot of
the horrible hacks high performance drivers used to do just aren't needed any
more.
Description:
tty_insert_flip_char is an old API and continues to work as before, as does
tty_flip_buffer_push() [this is why many drivers dont need modification]. It
does now also return the number of chars inserted
There are also
tty_buffer_request_room(tty, len)
which asks for a buffer block of the length requested and returns the space
found. This improves efficiency with hardware that knows how much to
transfer.
and tty_insert_flip_string_flags(tty, str, flags, len)
to insert a string of characters and flags
For a smart interface the usual code is
len = tty_request_buffer_room(tty, amount_hardware_says);
tty_insert_flip_string(tty, buffer_from_card, len);
More description!
At the moment tty buffers are attached directly to the tty. This is causing a
lot of the problems related to tty layer locking, also problems at high speed
and also with bursty data (such as occurs in virtualised environments)
I'm working on ripping out the flip buffers and replacing them with a pool of
dynamically allocated buffers. This allows both for old style "byte I/O"
devices and also helps virtualisation and smart devices where large blocks of
data suddenely materialise and need storing.
So far so good. Lots of drivers reference tty->flip.*. Several of them also
call directly and unsafely into function pointers it provides. This will all
break. Most drivers can use tty_insert_flip_char which can be kept as an API
but others need more.
At the moment I've added the following interfaces, if people think more will
be needed now is a good time to say
int tty_buffer_request_room(tty, size)
Try and ensure at least size bytes are available, returns actual room (may be
zero). At the moment it just uses the flipbuf space but that will change.
Repeated calls without characters being added are not cumulative. (ie if you
call it with 1, 1, 1, and then 4 you'll have four characters of space. The
other functions will also try and grow buffers in future but this will be a
more efficient way when you know block sizes.
int tty_insert_flip_char(tty, ch, flag)
As before insert a character if there is room. Now returns 1 for success, 0
for failure.
int tty_insert_flip_string(tty, str, len)
Insert a block of non error characters. Returns the number inserted.
int tty_prepare_flip_string(tty, strptr, len)
Adjust the buffer to allow len characters to be added. Returns a buffer
pointer in strptr and the length available. This allows for hardware that
needs to use functions like insl or mencpy_fromio.
Signed-off-by: Alan Cox <alan@redhat.com>
Cc: Paul Fulghum <paulkf@microgate.com>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix the sparse warning "implicit cast to nocast type"
Signed-off-by: Victor Fusco <victor@cetuc.puc-rio.br>
Signed-off-by: Domen Puncer <domen@coderock.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The patch fixes a few corner cases around tty line editing with
very long input lines:
- n_tty_receive_char(): don't simply drop eol characters,
otherwise canon_data isn't increased and the reader isn't woken
up.
- n_tty_receive_room(): If there is no newline pending and the
edit buffer is full, allow only a single character to be written
(until eol is found and the line is flushed), so characters from
the next line aren't dropped.
- write_chan(): if an incomplete line was written, continue
writing until write() returns 0, otherwise it might not write
the eol character to flush the line and the writer goes to sleep
without ever being woken up.
BTW the core problem is that part of this should be handled in the
receive_buf path, but for this it has to return the number of
written characters, as the amount of written characters may not be
the same as the amount of characters going into the write buffer,
so the receive_room() usage in pty_write() is not really reliable.
Alan said:
The problem looks valid. The behaviour of 'traditional unix' appears to
be the following
If you exceed the line limit then beep and drop the character
Always allow EOL to complete a canonical line input
Always do signal/control processing if enabled
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!