IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The first patch consolidates SYNACK and other RTT measurement to use a
central function tcp_ack_update_rtt(). A (small) bonus is now SYNACK
RTT measurement happens after PAWS check, potentially reducing the
impact of RTO seeding on bad TCP timestamps values.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In previous discussions, I tried to find some reasonable heuristics
for delayed ACK, however this seems not possible, according to Eric:
"ACKS might also be delayed because of bidirectional
traffic, and is more controlled by the application
response time. TCP stack can not easily estimate it."
"ACK can be incredibly useful to recover from losses in
a short time.
The vast majority of TCP sessions are small lived, and we
send one ACK per received segment anyway at beginning or
retransmits to let the sender smoothly increase its cwnd,
so an auto-tuning facility wont help them that much."
and according to David:
"ACKs are the only information we have to detect loss.
And, for the same reasons that TCP VEGAS is fundamentally
broken, we cannot measure the pipe or some other
receiver-side-visible piece of information to determine
when it's "safe" to stretch ACK.
And even if it's "safe", we should not do it so that losses are
accurately detected and we don't spuriously retransmit.
The only way to know when the bandwidth increases is to
"test" it, by sending more and more packets until drops happen.
That's why all successful congestion control algorithms must
operate on explicited tested pieces of information.
Similarly, it's not really possible to universally know if
it's safe to stretch ACK or not."
It still makes sense to enable or disable quick ack mode like
what TCP_QUICK_ACK does.
Similar to TCP_QUICK_ACK option, but for people who can't
modify the source code and still wants to control
TCP delayed ACK behavior. As David suggested, this should belong
to per-path scope, since different pathes may want different
behaviors.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Rick Jones <rick.jones2@hp.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Graf <tgraf@suug.ch>
CC: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Linux sends new unset data during disorder and recovery state if all
(suspected) lost packets have been retransmitted ( RFC5681, section
3.2 step 1 & 2, RFC3517 section 4, NexSeg() Rule 2). One requirement
is to keep the receive window about twice the estimated sender's
congestion window (tcp_rcv_space_adjust()), assuming the fast
retransmits repair the losses in the next round trip.
But currently it's not the case on the first round trip in either
normal or Fast Open connection, beucase the initial receive window
is identical to (expected) sender's initial congestion window. The
fix is to double it.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If the receiver supports DSACK, sender can detect false recoveries and
revert cwnd reductions triggered by either severe network reordering or
concurrent reordering and loss event.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Upon detecting spurious fast retransmit via timestamps during recovery,
use PRR to clock out new data packet instead of retransmission. Once
all retransmission are proven spurious, the sender then reverts the
cwnd reduction and congestion state to open or disorder.
The current code does the opposite: it undoes cwnd as soon as any
retransmission is spurious and continues to retransmit until all
data are acked. This nullifies the point to undo the cwnd because
the sender is still retransmistting spuriously. This patch fixes
it. The undo_ssthresh argument of tcp_undo_cwnd_reductiuon() is no
longer needed and is removed.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor and relocate various functions or variables to prepare the
undo fix. Remove some unused function arguments. Rename tcp_undo_cwr
to tcp_undo_cwnd_reduction to be consistent with the rest of
CWR related function names.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch series fixes an undo bug in fast recovery: the sender
mistakenly undos the cwnd too early but continues fast retransmits
until all pending data are acked. This also multiplies the SNMP
stat PARTIALUNDO events by the degree of the network reordering.
The first patch prepares the fix by consolidating the accounting
of newly_acked_sacked in tcp_cwnd_reduction(), instead of updating
newly_acked_sacked everytime sacked_out is adjusted. Also pass
acked and prior_unsacked as const type because they are readonly
in the rest of recovery processing.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
case TCP_FIN_WAIT1 can also be simplified by reversing tests
and adding breaks;
Add braces after case and move automatic definitions.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
case TCP_SYN_RECV: can have another indentation level removed
by converting
if (acceptable) {
...;
} else {
return 1;
}
to
if (!acceptable)
return 1;
...;
Reflow code and comments to fit 80 columns.
Another pure cleanup patch.
Signed-off-by: Joe Perches <joe@perches.com>
Improved-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove one level of indentation 'introduced' in commit
c3ae62af8e75 (tcp: should drop incoming frames without ACK flag set)
if (true) {
...
}
@acceptable variable is a boolean.
This patch is a pure cleanup.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Merge net into net-next because some upcoming net-next changes
build on top of bug fixes that went into net.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is a fix for a bug triggering newly_acked_sacked < 0
in tcp_ack(.).
The bug is triggered by sacked_out decreasing relative to prior_sacked,
but packets_out remaining the same as pior_packets. This is because the
snapshot of prior_packets is taken after tcp_sacktag_write_queue() while
prior_sacked is captured before tcp_sacktag_write_queue(). The problem
is: tcp_sacktag_write_queue (tcp_match_skb_to_sack() -> tcp_fragment)
adjusts the pcount for packets_out and sacked_out (MSS change or other
reason). As a result, this delta in pcount is reflected in
(prior_sacked - sacked_out) but not in (prior_packets - packets_out).
This patch does the following:
1) initializes prior_packets at the start of tcp_ack() so as to
capture the delta in packets_out created by tcp_fragment.
2) introduces a new "previous_packets_out" variable that snapshots
packets_out right before tcp_clean_rtx_queue, so pkts_acked can be
correctly computed as before.
3) Computes pkts_acked using previous_packets_out, and computes
newly_acked_sacked using prior_packets.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_timeout_skb() was intended to trigger fast recovery on timeout,
unfortunately in reality it often causes spurious retransmission
storms during fast recovery. The particular sign is a fast retransmit
over the highest sacked sequence (SND.FACK).
Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion
to avoid spurious timeout: when SND.UNA advances the sender re-arms
RTO and extends the timeout by icsk_rto. The sender does not offset
the time elapsed since the packet at SND.UNA was sent.
But if the next (DUP)ACK arrives later than ~RTTVAR and triggers
tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet
sent before the icsk_rto interval lost, including one that's above the
highest sacked sequence. Most likely a large part of scorebard will be
marked.
If most packets are not lost then the subsequent DUPACKs with new SACK
blocks will cause the sender to continue to retransmit packets beyond
SND.FACK spuriously. Even if only one packet is lost the sender may
falsely retransmit almost the entire window.
The situation becomes common in the world of bufferbloat: the RTT
continues to grow as the queue builds up but RTTVAR remains small and
close to the minimum 200ms. If a data packet is lost and the DUPACK
triggered by the next data packet is slightly delayed, then a spurious
retransmission storm forms.
As the original comment on tcp_timeout_skb() suggests: the usefulness
of this feature is questionable. It also wastes cycles walking the
sack scoreboard and is actually harmful because of false recovery.
It's time to remove this.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_fixup_rcvbuf() contains a loop to estimate initial socket
rcv space needed for a given mss. With large MTU (like 64K on lo),
we can loop ~500 times and consume a lot of cpu cycles.
perf top of 200 concurrent netperf -t TCP_CRR
5.62% netperf [kernel.kallsyms] [k] tcp_init_buffer_space
1.71% netperf [kernel.kallsyms] [k] _raw_spin_lock
1.55% netperf [kernel.kallsyms] [k] kmem_cache_free
1.51% netperf [kernel.kallsyms] [k] tcp_transmit_skb
1.50% netperf [kernel.kallsyms] [k] tcp_ack
Lets use a 100% factor, and remove the loop.
100% is needed anyway for tcp_adv_win_scale=1
default value, and is also the maximum factor.
Refs: commit b49960a05e32
("tcp: change tcp_adv_win_scale and tcp_rmem[2]")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add MIB counters for checksum errors in IP layer,
and TCP/UDP/ICMP layers, to help diagnose problems.
$ nstat -a | grep Csum
IcmpInCsumErrors 72 0.0
TcpInCsumErrors 382 0.0
UdpInCsumErrors 463221 0.0
Icmp6InCsumErrors 75 0.0
Udp6InCsumErrors 173442 0.0
IpExtInCsumErrors 10884 0.0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/emulex/benet/be_main.c
drivers/net/ethernet/intel/igb/igb_main.c
drivers/net/wireless/brcm80211/brcmsmac/mac80211_if.c
include/net/scm.h
net/batman-adv/routing.c
net/ipv4/tcp_input.c
The e{uid,gid} --> {uid,gid} credentials fix conflicted with the
cleanup in net-next to now pass cred structs around.
The be2net driver had a bug fix in 'net' that overlapped with the VLAN
interface changes by Patrick McHardy in net-next.
An IGB conflict existed because in 'net' the build_skb() support was
reverted, and in 'net-next' there was a comment style fix within that
code.
Several batman-adv conflicts were resolved by making sure that all
calls to batadv_is_my_mac() are changed to have a new bat_priv first
argument.
Eric Dumazet's TS ECR fix in TCP in 'net' conflicted with the F-RTO
rewrite in 'net-next', mostly overlapping changes.
Thanks to Stephen Rothwell and Antonio Quartulli for help with several
of these merge resolutions.
Signed-off-by: David S. Miller <davem@davemloft.net>
commit bd090dfc634d (tcp: tcp_replace_ts_recent() should not be called
from tcp_validate_incoming()) introduced a TS ecr bug in slow path
processing.
1 A > B P. 1:10001(10000) ack 1 <nop,nop,TS val 1001 ecr 200>
2 B < A . 1:1(0) ack 1 win 257 <sack 9001:10001,TS val 300 ecr 1001>
3 A > B . 1:1001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200>
4 A > B . 1001:2001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200>
(ecr 200 should be ecr 300 in packets 3 & 4)
Problem is tcp_ack() can trigger send of new packets (retransmits),
reflecting the prior TSval, instead of the TSval contained in the
currently processed incoming packet.
Fix this by calling tcp_replace_ts_recent() from tcp_ack() after the
checks, but before the actions.
Reported-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
include/net/ipip.h
The changes made to ipip.h in 'net' were already included
in 'net-next' before that header was moved to another location.
Signed-off-by: David S. Miller <davem@davemloft.net>
On SACK reneging the sender immediately retransmits and forces a
timeout but disables Eifel (undo). If the (buggy) receiver does not
drop any packet this can trigger a false slow-start retransmit storm
driven by the ACKs of the original packets. This can be detected with
undo and TCP timestamps.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch implements F-RTO (foward RTO recovery):
When the first retransmission after timeout is acknowledged, F-RTO
sends new data instead of old data. If the next ACK acknowledges
some never-retransmitted data, then the timeout was spurious and the
congestion state is reverted. Otherwise if the next ACK selectively
acknowledges the new data, then the timeout was genuine and the
loss recovery continues. This idea applies to recurring timeouts
as well. While F-RTO sends different data during timeout recovery,
it does not (and should not) change the congestion control.
The implementaion follows the three steps of SACK enhanced algorithm
(section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and
3 are in tcp_process_loss(). The basic version is not supported
because SACK enhanced version also works for non-SACK connections.
The new implementation is functionally in parity with the old F-RTO
implementation except the one case where it increases undo events:
In addition to the RFC algorithm, a spurious timeout may be detected
without sending data in step 2, as long as the SACK confirms not
all the original data are dropped. When this happens, the sender
will undo the cwnd and perhaps enter fast recovery instead. This
additional check increases the F-RTO undo events by 5x compared
to the prior implementation on Google Web servers, since the sender
often does not have new data to send for HTTP.
Note F-RTO may detect spurious timeout before Eifel with timestamps
does so.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Consolidate all of TCP CA_Loss state processing in
tcp_fastretrans_alert() into a new function called tcp_process_loss().
This is to prepare the new F-RTO implementation in the next patch.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The patch series refactor the F-RTO feature (RFC4138/5682).
This is to simplify the loss recovery processing. Existing F-RTO
was developed during the experimental stage (RFC4138) and has
many experimental features. It takes a separate code path from
the traditional timeout processing by overloading CA_Disorder
instead of using CA_Loss state. This complicates CA_Disorder state
handling because it's also used for handling dubious ACKs and undos.
While the algorithm in the RFC does not change the congestion control,
the implementation intercepts congestion control in various places
(e.g., frto_cwnd in tcp_ack()).
The new code implements newer F-RTO RFC5682 using CA_Loss processing
path. F-RTO becomes a small extension in the timeout processing
and interfaces with congestion control and Eifel undo modules.
It lets congestion control (module) determines how many to send
independently. F-RTO only chooses what to send in order to detect
spurious retranmission. If timeout is found spurious it invokes
existing Eifel undo algorithms like DSACK or TCP timestamp based
detection.
The first patch removes all F-RTO code except the sysctl_tcp_frto is
left for the new implementation. Since CA_EVENT_FRTO is removed, TCP
westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCPCT uses option-number 253, reserved for experimental use and should
not be used in production environments.
Further, TCPCT does not fully implement RFC 6013.
As a nice side-effect, removing TCPCT increases TCP's performance for
very short flows:
Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests
for files of 1KB size.
before this patch:
average (among 7 runs) of 20845.5 Requests/Second
after:
average (among 7 runs) of 21403.6 Requests/Second
Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is the second of the TLP patch series; it augments the basic TLP
algorithm with a loss detection scheme.
This patch implements a mechanism for loss detection when a Tail
loss probe retransmission plugs a hole thereby masking packet loss
from the sender. The loss detection algorithm relies on counting
TLP dupacks as outlined in Sec. 3 of:
http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
The basic idea is: Sender keeps track of TLP "episode" upon
retransmission of a TLP packet. An episode ends when the sender receives
an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the
episode. We want to make sure that before the episode ends the sender
receives a "TLP dupack", indicating that the TLP retransmission was
unnecessary, so there was no loss/hole that needed plugging. If the
sender gets no TLP dupack before the end of the episode, then it reduces
ssthresh and the congestion window, because the TLP packet arriving at
the receiver probably plugged a hole.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch series implement the Tail loss probe (TLP) algorithm described
in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The
first patch implements the basic algorithm.
TLP's goal is to reduce tail latency of short transactions. It achieves
this by converting retransmission timeouts (RTOs) occuring due
to tail losses (losses at end of transactions) into fast recovery.
TLP transmits one packet in two round-trips when a connection is in
Open state and isn't receiving any ACKs. The transmitted packet, aka
loss probe, can be either new or a retransmission. When there is tail
loss, the ACK from a loss probe triggers FACK/early-retransmit based
fast recovery, thus avoiding a costly RTO. In the absence of loss,
there is no change in the connection state.
PTO stands for probe timeout. It is a timer event indicating
that an ACK is overdue and triggers a loss probe packet. The PTO value
is set to max(2*SRTT, 10ms) and is adjusted to account for delayed
ACK timer when there is only one oustanding packet.
TLP Algorithm
On transmission of new data in Open state:
-> packets_out > 1: schedule PTO in max(2*SRTT, 10ms).
-> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms)
-> PTO = min(PTO, RTO)
Conditions for scheduling PTO:
-> Connection is in Open state.
-> Connection is either cwnd limited or no new data to send.
-> Number of probes per tail loss episode is limited to one.
-> Connection is SACK enabled.
When PTO fires:
new_segment_exists:
-> transmit new segment.
-> packets_out++. cwnd remains same.
no_new_packet:
-> retransmit the last segment.
Its ACK triggers FACK or early retransmit based recovery.
ACK path:
-> rearm RTO at start of ACK processing.
-> reschedule PTO if need be.
In addition, the patch includes a small variation to the Early Retransmit
(ER) algorithm, such that ER and TLP together can in principle recover any
N-degree of tail loss through fast recovery. TLP is controlled by the same
sysctl as ER, tcp_early_retrans sysctl.
tcp_early_retrans==0; disables TLP and ER.
==1; enables RFC5827 ER.
==2; delayed ER.
==3; TLP and delayed ER. [DEFAULT]
==4; TLP only.
The TLP patch series have been extensively tested on Google Web servers.
It is most effective for short Web trasactions, where it reduced RTOs by 15%
and improved HTTP response time (average by 6%, 99th percentile by 10%).
The transmitted probes account for <0.5% of the overall transmissions.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We should not update ts_recent and call tcp_rcv_rtt_measure_ts() both
before and after going to step5. That wastes CPU and double-counts the
receiver-side RTT sample.
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Patch cef401de7be8c4e (net: fix possible wrong checksum
generation) fixed wrong checksum calculation but it broke TSO by
defining new GSO type but not a netdev feature for that type.
net_gso_ok() would not allow hardware checksum/segmentation
offload of such packets without the feature.
Following patch fixes TSO and wrong checksum. This patch uses
same logic that Eric Dumazet used. Patch introduces new flag
SKBTX_SHARED_FRAG if at least one frag can be modified by
the user. but SKBTX_SHARED_FRAG flag is kept in skb shared
info tx_flags rather than gso_type.
tx_flags is better compared to gso_type since we can have skb with
shared frag without gso packet. It does not link SHARED_FRAG to
GSO, So there is no need to define netdev feature for this.
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A socket timestamp is a sum of the global tcp_time_stamp and
a per-socket offset.
A socket offset is added in places where externally visible
tcp timestamp option is parsed/initialized.
Connections in the SYN_RECV state are not supported, global
tcp_time_stamp is used for them, because repair mode doesn't support
this state. In a future it can be implemented by the similar way
as for TIME_WAIT sockets.
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: James Morris <jmorris@namei.org>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: Patrick McHardy <kaber@trash.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Synchronize with 'net' in order to sort out some l2tp, wireless, and
ipv6 GRE fixes that will be built on top of in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
There are transients during normal FRTO procedure during which
the packets_in_flight can go to zero between write_queue state
updates and firing the resulting segments out. As FRTO processing
occurs during that window the check must be more precise to
not match "spuriously" :-). More specificly, e.g., when
packets_in_flight is zero but FLAG_DATA_ACKED is true the problematic
branch that set cwnd into zero would not be taken and new segments
might be sent out later.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP Appropriate Byte Count was added by me, but later disabled.
There is no point in maintaining it since it is a potential source
of bugs and Linux already implements other better window protection
heuristics.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/intel/e1000e/ethtool.c
drivers/net/vmxnet3/vmxnet3_drv.c
drivers/net/wireless/iwlwifi/dvm/tx.c
net/ipv6/route.c
The ipv6 route.c conflict is simple, just ignore the 'net' side change
as we fixed the same problem in 'net-next' by eliminating cached
neighbours from ipv6 routes.
The e1000e conflict is an addition of a new statistic in the ethtool
code, trivial.
The vmxnet3 conflict is about one change in 'net' removing a guarding
conditional, whilst in 'net-next' we had a netdev_info() conversion.
The iwlwifi conflict is dealing with a WARN_ON() conversion in
'net-next' vs. a revert happening in 'net'.
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 9dc274151a548 (tcp: fix ABC in tcp_slow_start())
uncovered a bug in FRTO code :
tcp_process_frto() is setting snd_cwnd to 0 if the number
of in flight packets is 0.
As Neal pointed out, if no packet is in flight we lost our
chance to disambiguate whether a loss timeout was spurious.
We should assume it was a proper loss.
Reported-by: Pasi Kärkkäinen <pasik@iki.fi>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On receiving the SYN-ACK, Fast Open checks icsk_retransmit for SYN
retransmission to detect SYN/data drops. But if F-RTO is disabled,
icsk_retransmit is reset at step D of tcp_fastretrans_alert() (
under tcp_ack()) before tcp_rcv_fastopen_synack(). The fix is to use
total_retrans instead which accounts for SYN retransmission regardless
the use of F-RTO.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pravin Shelar mentioned that GSO could potentially generate
wrong TX checksum if skb has fragments that are overwritten
by the user between the checksum computation and transmit.
He suggested to linearize skbs but this extra copy can be
avoided for normal tcp skbs cooked by tcp_sendmsg().
This patch introduces a new SKB_GSO_SHARED_FRAG flag, set
in skb_shinfo(skb)->gso_type if at least one frag can be
modified by the user.
Typical sources of such possible overwrites are {vm}splice(),
sendfile(), and macvtap/tun/virtio_net drivers.
Tested:
$ netperf -H 7.7.8.84
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
7.7.8.84 () port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 10.00 3959.52
$ netperf -H 7.7.8.84 -t TCP_SENDFILE
TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 ()
port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 10.00 3216.80
Performance of the SENDFILE is impacted by the extra allocation and
copy, and because we use order-0 pages, while the TCP_STREAM uses
bigger pages.
Reported-by: Pravin Shelar <pshelar@nicira.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
Documentation/networking/ip-sysctl.txt
drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
Both conflicts were simply overlapping context.
A build fix for qlcnic is in here too, simply removing the added
devinit annotations which no longer exist.
Signed-off-by: David S. Miller <davem@davemloft.net>
commit c3ae62af8e755 (tcp: should drop incoming frames without ACK flag
set) added a regression on the handling of RST messages.
RST should be allowed to come even without ACK bit set. We validate
the RST by checking the exact sequence, as requested by RFC 793 and
5961 3.2, in tcp_validate_incoming()
Reported-by: Eric Wong <normalperson@yhbt.net>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Tested-by: Eric Wong <normalperson@yhbt.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
As per suggestion from Eric Dumazet this patch makes tcp_ecn sysctl
namespace aware. The reason behind this patch is to ease the testing
of ecn problems on the internet and allows applications to tune their
own use of ecn.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 96e0bf4b5193d (tcp: Discard segments that ack data not yet
sent) John Dykstra enforced a check against ack sequences.
In commit 354e4aa391ed5 (tcp: RFC 5961 5.2 Blind Data Injection Attack
Mitigation) I added more safety tests.
But we missed fact that these tests are not performed if ACK bit is
not set.
RFC 793 3.9 mandates TCP should drop a frame without ACK flag set.
" fifth check the ACK field,
if the ACK bit is off drop the segment and return"
Not doing so permits an attacker to only guess an acceptable sequence
number, evading stronger checks.
Many thanks to Zhiyun Qian for bringing this issue to our attention.
See :
http://web.eecs.umich.edu/~zhiyunq/pub/ccs12_TCP_sequence_number_inference.pdf
Reported-by: Zhiyun Qian <zhiyunq@umich.edu>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Nandita Dukkipati <nanditad@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: John Dykstra <john.dykstra1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking changes from David Miller:
1) Allow to dump, monitor, and change the bridge multicast database
using netlink. From Cong Wang.
2) RFC 5961 TCP blind data injection attack mitigation, from Eric
Dumazet.
3) Networking user namespace support from Eric W. Biederman.
4) tuntap/virtio-net multiqueue support by Jason Wang.
5) Support for checksum offload of encapsulated packets (basically,
tunneled traffic can still be checksummed by HW). From Joseph
Gasparakis.
6) Allow BPF filter access to VLAN tags, from Eric Dumazet and
Daniel Borkmann.
7) Bridge port parameters over netlink and BPDU blocking support
from Stephen Hemminger.
8) Improve data access patterns during inet socket demux by rearranging
socket layout, from Eric Dumazet.
9) TIPC protocol updates and cleanups from Ying Xue, Paul Gortmaker, and
Jon Maloy.
10) Update TCP socket hash sizing to be more in line with current day
realities. The existing heurstics were choosen a decade ago.
From Eric Dumazet.
11) Fix races, queue bloat, and excessive wakeups in ATM and
associated drivers, from Krzysztof Mazur and David Woodhouse.
12) Support DOVE (Distributed Overlay Virtual Ethernet) extensions
in VXLAN driver, from David Stevens.
13) Add "oops_only" mode to netconsole, from Amerigo Wang.
14) Support set and query of VEB/VEPA bridge mode via PF_BRIDGE, also
allow DCB netlink to work on namespaces other than the initial
namespace. From John Fastabend.
15) Support PTP in the Tigon3 driver, from Matt Carlson.
16) tun/vhost zero copy fixes and improvements, plus turn it on
by default, from Michael S. Tsirkin.
17) Support per-association statistics in SCTP, from Michele
Baldessari.
And many, many, driver updates, cleanups, and improvements. Too
numerous to mention individually.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1722 commits)
net/mlx4_en: Add support for destination MAC in steering rules
net/mlx4_en: Use generic etherdevice.h functions.
net: ethtool: Add destination MAC address to flow steering API
bridge: add support of adding and deleting mdb entries
bridge: notify mdb changes via netlink
ndisc: Unexport ndisc_{build,send}_skb().
uapi: add missing netconf.h to export list
pkt_sched: avoid requeues if possible
solos-pci: fix double-free of TX skb in DMA mode
bnx2: Fix accidental reversions.
bna: Driver Version Updated to 3.1.2.1
bna: Firmware update
bna: Add RX State
bna: Rx Page Based Allocation
bna: TX Intr Coalescing Fix
bna: Tx and Rx Optimizations
bna: Code Cleanup and Enhancements
ath9k: check pdata variable before dereferencing it
ath5k: RX timestamp is reported at end of frame
ath9k_htc: RX timestamp is reported at end of frame
...
If SYN-ACK partially acks SYN-data, the client retransmits the
remaining data by tcp_retransmit_skb(). This increments lost recovery
state variables like tp->retrans_out in Open state. If loss recovery
happens before the retransmission is acked, it triggers the WARN_ON
check in tcp_fastretrans_alert(). For example: the client sends
SYN-data, gets SYN-ACK acking only ISN, retransmits data, sends
another 4 data packets and get 3 dupacks.
Since the retransmission is not caused by network drop it should not
update the recovery state variables. Further the server may return a
smaller MSS than the cached MSS used for SYN-data, so the retranmission
needs a loop. Otherwise some data will not be retransmitted until timeout
or other loss recovery events.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We added support for RFC 5961 in latest kernels but TCP fails
to perform exhaustive check of ACK sequence.
We can update our view of peer tsval from a frame that is
later discarded by tcp_ack()
This makes timestamps enabled sessions vulnerable to injection of
a high tsval : peers start an ACK storm, since the victim
sends a dupack each time it receives an ACK from the other peer.
As tcp_validate_incoming() is called before tcp_ack(), we should
not peform tcp_replace_ts_recent() from it, and let callers do it
at the right time.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Nandita Dukkipati <nanditad@google.com>
Cc: H.K. Jerry Chu <hkchu@google.com>
Cc: Romain Francoise <romain@orebokech.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
Minor conflict between the BCM_CNIC define removal in net-next
and a bug fix added to net. Based upon a conflict resolution
patch posted by Stephen Rothwell.
Signed-off-by: David S. Miller <davem@davemloft.net>
For passive TCP connections using TCP_DEFER_ACCEPT facility,
we incorrectly increment req->retrans each time timeout triggers
while no SYNACK is sent.
SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for
which we received the ACK from client). Only the last SYNACK is sent
so that we can receive again an ACK from client, to move the req into
accept queue. We plan to change this later to avoid the useless
retransmit (and potential problem as this SYNACK could be lost)
TCP_INFO later gives wrong information to user, claiming imaginary
retransmits.
Decouple req->retrans field into two independent fields :
num_retrans : number of retransmit
num_timeout : number of timeouts
num_timeout is the counter that is incremented at each timeout,
regardless of actual SYNACK being sent or not, and used to
compute the exponential timeout.
Introduce inet_rtx_syn_ack() helper to increment num_retrans
only if ->rtx_syn_ack() succeeded.
Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans
when we re-send a SYNACK in answer to a (retransmitted) SYN.
Prior to this patch, we were not counting these retransmits.
Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS
only if a synack packet was successfully queued.
Reported-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Julian Anastasov <ja@ssi.bg>
Cc: Vijay Subramanian <subramanian.vijay@gmail.com>
Cc: Elliott Hughes <enh@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When sending data into a tcp socket in repair state we should check
for the amount of data being 0 explicitly. Otherwise we'll have an skb
with seq == end_seq in rcv queue, but tcp doesn't expect this to happen
(in particular a warn_on in tcp_recvmsg shoots).
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Reported-by: Giorgos Mavrikas <gmavrikas@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A packet with an invalid ack_seq may cause a TCP Fast Open socket to switch
to the unexpected TCP_CLOSING state, triggering a BUG_ON kernel panic.
When a FIN packet with an invalid ack_seq# arrives at a socket in
the TCP_FIN_WAIT1 state, rather than discarding the packet, the current
code will accept the FIN, causing state transition to TCP_CLOSING.
This may be a small deviation from RFC793, which seems to say that the
packet should be dropped. Unfortunately I did not expect this case for
Fast Open hence it will trigger a BUG_ON panic.
It turns out there is really nothing bad about a TFO socket going into
TCP_CLOSING state so I could just remove the BUG_ON statements. But after
some thought I think it's better to treat this case like TCP_SYN_RECV
and return a RST to the confused peer who caused the unacceptable ack_seq
to be generated in the first place.
Signed-off-by: H.K. Jerry Chu <hkchu@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a bit TCPI_OPT_SYN_DATA (32) to the socket option TCP_INFO:tcpi_options.
It's set if the data in SYN (sent or received) is acked by SYN-ACK. Server or
client application can use this information to check Fast Open success rate.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation]
All TCP stacks MAY implement the following mitigation. TCP stacks
that implement this mitigation MUST add an additional input check to
any incoming segment. The ACK value is considered acceptable only if
it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <=
SND.NXT). All incoming segments whose ACK value doesn't satisfy the
above condition MUST be discarded and an ACK sent back.
Move tcp_send_challenge_ack() before tcp_ack() to avoid a forward
declaration.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Jerry Chu <hkchu@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/team/team.c
drivers/net/usb/qmi_wwan.c
net/batman-adv/bat_iv_ogm.c
net/ipv4/fib_frontend.c
net/ipv4/route.c
net/l2tp/l2tp_netlink.c
The team, fib_frontend, route, and l2tp_netlink conflicts were simply
overlapping changes.
qmi_wwan and bat_iv_ogm were of the "use HEAD" variety.
With help from Antonio Quartulli.
Signed-off-by: David S. Miller <davem@davemloft.net>