IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If an exception needs to be handled while reading an MSR - which is in
most of the cases caused by a #GP on a non-existent MSR - then this
is most likely the incarnation of a BIOS or a hardware bug. Such bug
violates the architectural guarantee that MCA banks are present with all
MSRs belonging to them.
The proper fix belongs in the hardware/firmware - not in the kernel.
Handling an #MC exception which is raised while an NMI is being handled
would cause the nasty NMI nesting issue because of the shortcoming of
IRET of reenabling NMIs when executed. And the machine is in an #MC
context already so <Deity> be at its side.
Tracing MSR accesses while in #MC is another no-no due to tracing being
inherently a bad idea in atomic context:
vmlinux.o: warning: objtool: do_machine_check()+0x4a: call to mce_rdmsrl() leaves .noinstr.text section
so remove all that "additional" functionality from mce_rdmsrl() and
provide it with a special exception handler which panics the machine
when that MSR is not accessible.
The exception handler prints a human-readable message explaining what
the panic reason is but, what is more, it panics while in the #GP
handler and latter won't have executed an IRET, thus opening the NMI
nesting issue in the case when the #MC has happened while handling
an NMI. (#MC itself won't be reenabled until MCG_STATUS hasn't been
cleared).
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
[ Add missing prototypes for ex_handler_* ]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200906212130.GA28456@zn.tnic
x86_64 zero extends 32bit operations, so for 64bit operands,
XORL r32,r32 is functionally equal to XORQ r64,r64, but avoids
a REX prefix byte when legacy registers are used.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
x86_64 zero extends 32bit operations, so for 64bit operands,
XORL r32,r32 is functionally equal to XORL r64,r64, but avoids
a REX prefix byte when legacy registers are used.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Make sure the machine supports RDRAND, otherwise there is no trusted
source of randomness in the system.
To also check this in the pre-decompression stage, make has_cpuflag()
not depend on CONFIG_RANDOMIZE_BASE anymore.
Signed-off-by: Martin Radev <martin.b.radev@gmail.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-73-joro@8bytes.org
Calling down to EFI runtime services can result in the firmware
performing VMGEXIT calls. The firmware is likely to use the GHCB of the
OS (e.g., for setting EFI variables), so each GHCB in the system needs
to be identity-mapped in the EFI page tables, as unencrypted, to avoid
page faults.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: Moved GHCB mapping loop to sev-es.c ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-72-joro@8bytes.org
Commit
0c2a3913d6f5 ("x86/fpu: Parse clearcpuid= as early XSAVE argument")
changed clearcpuid parsing from __setup() to cmdline_find_option().
While the __setup() function would have been called for each clearcpuid=
parameter on the command line, cmdline_find_option() will only return
the last one, so the change effectively made it impossible to disable
more than one bit.
Allow a comma-separated list of bit numbers as the argument for
clearcpuid to allow multiple bits to be disabled again. Log the bits
being disabled for informational purposes.
Also fix the check on the return value of cmdline_find_option(). It
returns -1 when the option is not found, so testing as a boolean is
incorrect.
Fixes: 0c2a3913d6f5 ("x86/fpu: Parse clearcpuid= as early XSAVE argument")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907213919.2423441-1-nivedita@alum.mit.edu
Unwind hints are useful to provide objtool with information about stack
states in non-standard functions/code.
While the type of information being provided might be very arch
specific, the mechanism to provide the information can be useful for
other architectures.
Move the relevant unwint hint definitions for all architectures to
see.
[ jpoimboe: REGS_IRET -> REGS_PARTIAL ]
Signed-off-by: Julien Thierry <jthierry@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Header frame.h is getting more code annotations to help objtool analyze
object files.
Rename the file to objtool.h.
[ jpoimboe: add objtool.h to MAINTAINERS ]
Signed-off-by: Julien Thierry <jthierry@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Compiler is not happy about one function prototype:
CC kernel/dma/swiotlb.o
kernel/dma/swiotlb.c:275:1: warning: no previous prototype for ‘swiotlb_late_init_with_default_size’ [-Wmissing-prototypes]
275 | swiotlb_late_init_with_default_size(size_t default_size)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since it's used outside of the module, move its declaration to the header
from the user.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Stephane Eranian found a bug in that IBS' current Fetch counter was not
being reset when the driver would write the new value to clear it along
with the enable bit set, and found that adding an MSR write that would
first disable IBS Fetch would make IBS Fetch reset its current count.
Indeed, the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54 - Sep 12,
2019 states "The periodic fetch counter is set to IbsFetchCnt [...] when
IbsFetchEn is changed from 0 to 1."
Explicitly set IbsFetchEn to 0 and then to 1 when re-enabling IBS Fetch,
so the driver properly resets the internal counter to 0 and IBS
Fetch starts counting again.
A family 15h machine tested does not have this problem, and the extra
wrmsr is also not needed on Family 19h, so only do the extra wrmsr on
families 16h through 18h.
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
[peterz: optimized]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Family 19h RAPL support did not change from Family 17h; extend
the existing Fam17h support to work on Family 19h too.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-8-kim.phillips@amd.com
IBS hardware with the OpCntExt feature gets a 7-bit wider internal
counter. Both the maximum and current count bitfields in the
IBS_OP_CTL register are extended to support reading and writing it.
No changes are necessary to the driver for handling the extra
contiguous current count bits (IbsOpCurCnt), as the driver already
passes through 32 bits of that field. However, the driver has to do
some extra bit manipulation when converting from a period to the
non-contiguous (although conveniently aligned) extra bits in the
IbsOpMaxCnt bitfield.
This decreases IBS Op interrupt overhead when the period is over
1,048,560 (0xffff0), which would previously activate the driver's
software counter. That threshold is now 134,217,712 (0x7fffff0).
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-7-kim.phillips@amd.com
Neither IbsBrTarget nor OPDATA4 are populated in IBS Fetch mode.
Don't accumulate them into raw sample user data in that case.
Also, in Fetch mode, add saving the IBS Fetch Control Extended MSR.
Technically, there is an ABI change here with respect to the IBS raw
sample data format, but I don't see any perf driver version information
being included in perf.data file headers, but, existing users can detect
whether the size of the sample record has reduced by 8 bytes to
determine whether the IBS driver has this fix.
Fixes: 904cb3677f3a ("perf/x86/amd/ibs: Update IBS MSRs and feature definitions")
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-6-kim.phillips@amd.com
get_ibs_op_count() adds hardware's current count (IbsOpCurCnt) bits
to its count regardless of hardware's valid status.
According to the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54,
if the counter rolls over, valid status is set, and the lower 7 bits
of IbsOpCurCnt are randomized by hardware.
Don't include those bits in the driver's event count.
Fixes: 8b1e13638d46 ("perf/x86-ibs: Fix usage of IBS op current count")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 5738891229a2 ("perf/x86/amd: Add support for Large Increment
per Cycle Events") mistakenly zeroes the upper 16 bits of the count
in set_period(). That's fine for counting with perf stat, but not
sampling with perf record when only Large Increment events are being
sampled. To enable sampling, we sign extend the upper 16 bits of the
merged counter pair as described in the Family 17h PPRs:
"Software wanting to preload a value to a merged counter pair writes the
high-order 16-bit value to the low-order 16 bits of the odd counter and
then writes the low-order 48-bit value to the even counter. Reading the
even counter of the merged counter pair returns the full 64-bit value."
Fixes: 5738891229a2 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 2f217d58a8a0 ("perf/x86/amd/uncore: Set the thread mask for
F17h L3 PMCs") inadvertently changed the uncore driver's behaviour
wrt perf tool invocations with or without a CPU list, specified with
-C / --cpu=.
Change the behaviour of the driver to assume the former all-cpu (-a)
case, which is the more commonly desired default. This fixes
'-a -A' invocations without explicit cpu lists (-C) to not count
L3 events only on behalf of the first thread of the first core
in the L3 domain.
BEFORE:
Activity performed by the first thread of the last core (CPU#43) in
CPU#40's L3 domain is not reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 21,835 l3_request_g1.caching_l3_cache_accesses
CPU40 87,066 l3_request_g1.caching_l3_cache_accesses
CPU44 17,360 l3_request_g1.caching_l3_cache_accesses
...
AFTER:
The L3 domain activity is now reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 354,891 l3_request_g1.caching_l3_cache_accesses
CPU40 1,780,870 l3_request_g1.caching_l3_cache_accesses
CPU44 315,062 l3_request_g1.caching_l3_cache_accesses
...
Fixes: 2f217d58a8a0 ("perf/x86/amd/uncore: Set the thread mask for F17h L3 PMCs")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-2-kim.phillips@amd.com
A warning as below may be triggered when sampling with large PEBS.
[ 410.411250] perf: interrupt took too long (72145 > 71975), lowering
kernel.perf_event_max_sample_rate to 2000
[ 410.724923] ------------[ cut here ]------------
[ 410.729822] WARNING: CPU: 0 PID: 16397 at arch/x86/events/core.c:1422
x86_pmu_stop+0x95/0xa0
[ 410.933811] x86_pmu_del+0x50/0x150
[ 410.937304] event_sched_out.isra.0+0xbc/0x210
[ 410.941751] group_sched_out.part.0+0x53/0xd0
[ 410.946111] ctx_sched_out+0x193/0x270
[ 410.949862] __perf_event_task_sched_out+0x32c/0x890
[ 410.954827] ? set_next_entity+0x98/0x2d0
[ 410.958841] __schedule+0x592/0x9c0
[ 410.962332] schedule+0x5f/0xd0
[ 410.965477] exit_to_usermode_loop+0x73/0x120
[ 410.969837] prepare_exit_to_usermode+0xcd/0xf0
[ 410.974369] ret_from_intr+0x2a/0x3a
[ 410.977946] RIP: 0033:0x40123c
[ 411.079661] ---[ end trace bc83adaea7bb664a ]---
In the non-overflow context, e.g., context switch, with large PEBS, perf
may stop an event twice. An example is below.
//max_samples_per_tick is adjusted to 2
//NMI is triggered
intel_pmu_handle_irq()
handle_pmi_common()
drain_pebs()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
hwc->interrupts = 1
return 0
//A context switch happens right after the NMI.
//In the same tick, the perf_throttled_seq is not changed.
perf_event_task_sched_out()
perf_pmu_sched_task()
intel_pmu_drain_pebs_buffer()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
++hwc->interrupts >= max_samples_per_tick
return 1
x86_pmu_stop(); # First stop
perf_event_context_sched_out()
task_ctx_sched_out()
ctx_sched_out()
event_sched_out()
x86_pmu_del()
x86_pmu_stop(); # Second stop and trigger the warning
Perf should only invoke the perf_event_overflow() in the overflow
context.
Current drain_pebs() is called from:
- handle_pmi_common() -- overflow context
- intel_pmu_pebs_sched_task() -- non-overflow context
- intel_pmu_pebs_disable() -- non-overflow context
- intel_pmu_auto_reload_read() -- possible overflow context
With PERF_SAMPLE_READ + PERF_FORMAT_GROUP, the function may be
invoked in the NMI handler. But, before calling the function, the
PEBS buffer has already been drained. The __intel_pmu_pebs_event()
will not be called in the possible overflow context.
To fix the issue, an indicator is required to distinguish between the
overflow context aka handle_pmi_common() and other cases.
The dummy regs pointer can be used as the indicator.
In the non-overflow context, perf should treat the last record the same
as other PEBS records, and doesn't invoke the generic overflow handler.
Fixes: 21509084f999 ("perf/x86/intel: Handle multiple records in the PEBS buffer")
Reported-by: Like Xu <like.xu@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Like Xu <like.xu@linux.intel.com>
Link: https://lkml.kernel.org/r/20200902210649.2743-1-kan.liang@linux.intel.com
Latch sequence counters have unique read and write APIs, and thus
seqcount_latch_t was recently introduced at seqlock.h.
Use that new data type instead of plain seqcount_t. This adds the
necessary type-safety and ensures that only latching-safe seqcount APIs
are to be used.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
[peterz: unwreck cyc2ns_read_begin()]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-7-a.darwish@linutronix.de
When running under SEV-ES, the kernel has to tell the hypervisor when to
open the NMI window again after an NMI was injected. This is done with
an NMI-complete message to the hypervisor.
Add code to the kernel's NMI handler to send this message right at the
beginning of do_nmi(). This always allows nesting NMIs.
[ bp: Mark __sev_es_nmi_complete() noinstr:
vmlinux.o: warning: objtool: exc_nmi()+0x17: call to __sev_es_nmi_complete()
leaves .noinstr.text section
While at it, use __pa_nodebug() for the same reason due to
CONFIG_DEBUG_VIRTUAL=y:
vmlinux.o: warning: objtool: __sev_es_nmi_complete()+0xd9: call to __phys_addr()
leaves .noinstr.text section ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-71-joro@8bytes.org
Add a play_dead handler when running under SEV-ES. This is needed
because the hypervisor can't deliver an SIPI request to restart the AP.
Instead, the kernel has to issue a VMGEXIT to halt the VCPU until the
hypervisor wakes it up again.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-70-joro@8bytes.org
The APs are not ready to handle exceptions when verify_cpu() is called
in secondary_startup_64().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-69-joro@8bytes.org
The IDT on 64-bit contains vectors which use paranoid_entry() and/or IST
stacks. To make these vectors work, the TSS and the getcpu GDT entry need
to be set up before the IDT is loaded.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-68-joro@8bytes.org
As part of the GHCB specification, the booting of APs under SEV-ES
requires an AP jump table when transitioning from one layer of code to
another (e.g. when going from UEFI to the OS). As a result, each layer
that parks an AP must provide the physical address of an AP jump table
to the next layer via the hypervisor.
Upon booting of the kernel, read the AP jump table address from the
hypervisor. Under SEV-ES, APs are started using the INIT-SIPI-SIPI
sequence. Before issuing the first SIPI request for an AP, the start
CS and IP is programmed into the AP jump table. Upon issuing the SIPI
request, the AP will awaken and jump to that start CS:IP address.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: - Adapted to different code base
- Moved AP table setup from SIPI sending path to
real-mode setup code
- Fix sparse warnings ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-67-joro@8bytes.org
The code at the trampoline entry point is executed in real-mode. In
real-mode, #VC exceptions can't be handled so anything that might cause
such an exception must be avoided.
In the standard trampoline entry code this is the WBINVD instruction and
the call to verify_cpu(), which are both not needed anyway when running
as an SEV-ES guest.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-66-joro@8bytes.org
Implement the callbacks to copy the processor state required by KVM to
the GHCB.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: - Split out of a larger patch
- Adapt to different callback functions ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-64-joro@8bytes.org
Add two new paravirt callbacks to provide hypervisor-specific processor
state in the GHCB and to copy state from the hypervisor back to the
processor.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-63-joro@8bytes.org
Handle #VC exceptions caused by #DB exceptions in the guest. Those
must be handled outside of instrumentation_begin()/end() so that the
handler will not be raised recursively.
Handle them by calling the kernel's debug exception handler.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-62-joro@8bytes.org
Implement a handler for #VC exceptions caused by #AC exceptions. The
#AC exception is just forwarded to do_alignment_check() and not pushed
down to the hypervisor, as requested by the SEV-ES GHCB Standardization
Specification.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-61-joro@8bytes.org
Implement a handler for #VC exceptions caused by VMMCALL instructions.
This is only a starting point, VMMCALL emulation under SEV-ES needs
further hypervisor-specific changes to provide additional state.
[ bp: Drop "this patch". ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: Adapt to #VC handling infrastructure ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-60-joro@8bytes.org
Implement a handler for #VC exceptions caused by INVD instructions.
Since Linux should never use INVD, just mark it as unsupported.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: Adapt to #VC handling infrastructure ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-57-joro@8bytes.org
Implement a handler for #VC exceptions caused by RDTSC and RDTSCP
instructions. Also make it available in the pre-decompression stage
because the KASLR code uses RDTSC/RDTSCP to gather entropy and some
hypervisors intercept these instructions.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: - Adapt to #VC handling infrastructure
- Make it available early ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-55-joro@8bytes.org
Add code to handle #VC exceptions on DR7 register reads and writes.
This is needed early because show_regs() reads DR7 to print it out.
Under SEV-ES, there is currently no support for saving/restoring the
DRx registers but software expects to be able to write to the DR7
register. For now, cache the value written to DR7 and return it on
read attempts, but do not touch the real hardware DR7.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: - Adapt to #VC handling framework
- Support early usage ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-53-joro@8bytes.org
Add handling for emulation of the MOVS instruction on MMIO regions, as
done by the memcpy_toio() and memcpy_fromio() functions.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-51-joro@8bytes.org
Add a handler for #VC exceptions caused by MMIO intercepts. These
intercepts come along as nested page faults on pages with reserved
bits set.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: Adapt to VC handling framework ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-50-joro@8bytes.org
When a #VC exception is triggered by user-space, the instruction decoder
needs to read the instruction bytes from user addresses. Enhance
vc_decode_insn() to safely fetch kernel and user instructions.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-49-joro@8bytes.org
The #VC handler needs special entry code because:
1. It runs on an IST stack
2. It needs to be able to handle nested #VC exceptions
To make this work, the entry code is implemented to pretend it doesn't
use an IST stack. When entered from user-mode or early SYSCALL entry
path it switches to the task stack. If entered from kernel-mode it tries
to switch back to the previous stack in the IRET frame.
The stack found in the IRET frame is validated first, and if it is not
safe to use it for the #VC handler, the code will switch to a
fall-back stack (the #VC2 IST stack). From there, it can cause nested
exceptions again.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-46-joro@8bytes.org
The get_stack_info() functionality is needed in the entry code for the
#VC exception handler. Provide a version of it in the .text.noinstr
section which can be called safely from there.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-45-joro@8bytes.org
When an NMI hits in the #VC handler entry code before it has switched to
another stack, any subsequent #VC exception in the NMI code-path will
overwrite the interrupted #VC handler's stack.
Make sure this doesn't happen by explicitly adjusting the #VC IST entry
in the NMI handler for the time it can cause #VC exceptions.
[ bp: Touchups, spelling fixes. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-44-joro@8bytes.org
Allocate and map an IST stack and an additional fall-back stack for
the #VC handler. The memory for the stacks is allocated only when
SEV-ES is active.
The #VC handler needs to use an IST stack because a #VC exception can be
raised from kernel space with unsafe stack, e.g. in the SYSCALL entry
path.
Since the #VC exception can be nested, the #VC handler switches back to
the interrupted stack when entered from kernel space. If switching back
is not possible, the fall-back stack is used.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-43-joro@8bytes.org
The runtime handler needs one GHCB per-CPU. Set them up and map them
unencrypted.
[ bp: Touchups and simplification. ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-42-joro@8bytes.org
Add the infrastructure to handle #VC exceptions when the kernel runs on
virtual addresses and has mapped a GHCB. This handler will be used until
the runtime #VC handler takes over.
Since the handler runs very early, disable instrumentation for sev-es.c.
[ bp: Make vc_ghcb_invalidate() __always_inline so that it can be
inlined in noinstr functions like __sev_es_nmi_complete(). ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200908123816.GB3764@8bytes.org
Setup an early handler for #VC exceptions. There is no GHCB mapped
yet, so just re-use the vc_no_ghcb_handler(). It can only handle
CPUID exit-codes, but that should be enough to get the kernel through
verify_cpu() and __startup_64() until it runs on virtual addresses.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
[ boot failure Error: kernel_ident_mapping_init() failed. ]
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20200908123517.GA3764@8bytes.org