15 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Greg Ungerer
8cf4a973b4 m68k: generalize io memory region setup for ColdFire ACR registers
The ACR registers of the ColdFire define at a macro level what regions
of the addresses space should have caching or other attribute types applied.

Currently for the MMU enabled setups we map the interal IO peripheral addres
space as uncachable based on the define for the MBAR address (CONFIG_MBAR).
Not all ColdFire SoC use a programmable MBAR register address. Some parts
have fixed addressing for their internal peripheral registers.

Generalize the way we get the internal peripheral base address so all types
can be accomodated in the ACR definitions. Each ColdFire SoC type now sets
its IO memory base and size definitions (which may be based on MBAR) which
are then used in the ACR definitions.

Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26 12:02:58 +10:00
Adam Buchbinder
efbec135f1 m68k: Fix misspellings in comments.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Acked-by: Greg Ungerer <gerg@uclinux.org> [nommu, coldfire]
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2016-02-29 09:51:44 +01:00
Stany MARCEL
a4eff487da m68k: Set ColdFire ACR1 cache mode depending on kernel configuration
For coldfire with MMU enabled, data cache did not follow the configuration but
was configured in writethrough mode.

Signed-off-by: Stany MARCEL <stany.marcel@novasys-ingenierie.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2013-04-29 09:17:57 +10:00
Steven King
bea8bcb12d m68knommu: Add support for the Coldfire m5441x.
Add support for the Coldfire 5441x (54410/54415/54416/54417/54418).  Currently
we only support noMMU mode.  It requires the PIT patch posted previously as it
uses the PIT instead of the dma timer as a clock source so we can get all that
GENERIC_CLOCKEVENTS goodness.  It also adds some simple clk definitions and
very simple minded power management.  The gpio code is tweeked and some
additional devices are added to devices.c.  The Makefile uses -mv4e as
apparently, the only difference a v4m (m5441x) and a v4e is the later has a
FPU, which I don't think should matter to us in the kernel.

Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-07-16 09:59:21 +10:00
Greg Ungerer
0b0b808b50 m68k: modify ColdFire 54xx cache support for MMU enabled
Modify the cache setup for the ColdFire 54xx parts when running with
the MMU enabled.

We want to map the peripheral register space (MBAR region) as non
cacheable. And create an identity mapping for all of RAM for the
kernel.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
2011-12-30 10:20:29 +10:00
Greg Ungerer
07ffee59a7 m68knommu: create optimal separate instruction and data cache for ColdFire
Create separate functions to deal with instruction and data cache flushing.
This way we can optimize them for the vairous cache types and arrangements
used across the ColdFire family.

For example the unified caches in the version 3 cores means we don't
need to flush the instruction cache. For the version 2 cores that do
not do data cacheing (or where we choose instruction cache only) we
don't need to do any data flushing.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:20 +10:00
Greg Ungerer
4a5bae4165 m68knommu: support ColdFire caches that do copyback and write-through
The version 3 and version 4 ColdFire cache controllers support both
write-through and copy-back modes on the data cache. Allow for Kconfig
time configuration of this, and set the cache mode appropriately.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:20 +10:00
Greg Ungerer
d475e3e473 m68knommu: make cache push code ColdFire generic
Currently the code to push cache lines is only available to version 4
cores. Version 3 cores may also need to use this if we support copy-
back caches on them. Move this code to make it more generic, and
useful for all version ColdFire cores.

With this in place we can now have a single cache_flush_all() code
path that does all the right things on all version cores.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:19 +10:00
Greg Ungerer
8ce877a8eb m68knommu: clean up ColdFire cache control code
The cache control code for the ColdFire CPU's is a big ugly mess
of "#ifdef"ery liberally coated with bit constants. Clean it up.

The cache controllers in the various ColdFire parts are actually quite
similar. Just differing in some bit flags and options supported. Using
the header defines now in place it is pretty easy to factor out the
small differences and use common setup and flush/invalidate code.

I have preserved the cache setups as they where in the old code
(except where obviously wrong - like in the case of the 5249). Following
from this it should be easy now to extend the possible setups used on
the CACHE controllers that support split cacheing or copy-back or
write through options.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:18 +10:00
Greg Ungerer
1c83af5f9d m68knommu: use user stack pointer hardware on some ColdFire cores
The more modern ColdFire parts (even if based on older version cores)
have separate user and supervisor stack pointers (a7 register).
Modify the ColdFire CPU setup and exception code to enable and use
this on parts that have it.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:18 +10:00
Greg Ungerer
5b2e6555ac m68knommu: make Coldfire 548x support more generic
The ColdFire 547x family of processors is very similar to the ColdFire
548x series. Almost all of the support for them is the same. Make the
code supporting the 548x more gneric, so it will be capable of
supporting both families.

For the most part this is a renaming excerise to make the support
code more obviously apply to both families.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Philippe De Muyter
9c68015b14 m68knommu: Use symbolic constants for cache operations on M54xx
Now that we have meaningfull symbolic constants for bit definitions
of the cache registers of m5407 and m548x chips, use them to
improve readability, portability and efficiency of the cache operations.

This also fixes __flush_cache_all for m548x chips : implicit
DCACHE_SIZE was exact for m5407, but wrong for m548x.

Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Philippe De Muyter
b3d75b09bf m68knommu: Move __flush_cache_all definition for m54xx in m54xxacr.h
__flush_cache_all for m54xx is intrinsically related to the bit
definitions in m54xxacr.h.  Move it there from cacheflush_no.h,
for easier maintenance.

Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Philippe De Muyter
5291fa9856 m68knommu: Create new m54xxacr.h from m5407sim.h subpart
The MCF548x have the same cache control registers as the MCF5407.
Extract the bit definitions for the ACR and CACR registers from m5407sim.h
and move them to a new file m54xxacr.h.  Those definitions are not used
anywhere yet, so no other file is involved.  This is a preparation for
m54xx cache support cleanup.

Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:16 +10:00