IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
On the virtual engines, we only use the intel_breadcrumbs for tracking
signaling of stale breadcrumbs from the irq_workers. They do not have
any associated interrupt handling, active requests are passed to a
physical engine and associated breadcrumb interrupt handler. This causes
issues for us as we need to ensure that we do not actually try and
enable interrupts and the powermanagement required for them on the
virtual engine, as they will never be disabled. Instead, let's
specify the physical engine used for interrupt handler on a particular
breadcrumb.
v2: Drop b->irq_armed = true mocking for no interrupt HW
Fixes: 4fe6abb8f5 ("drm/i915/gt: Ignore irq enabling on the virtual engines")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200731154834.8378-4-chris@chris-wilson.co.uk
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Since the introduction of 'soft-rc6', we aim to park the device quickly
and that results in frequent idling of the whole device. Currently upon
idling we free the batch buffer pool, and so this renders the cache
ineffective for many workloads. If we want to have an effective cache of
recently allocated buffers available for reuse, we need to decouple that
cache from the engine powermanagement and make it timer based. As there
is no reason then to keep it within the engine (where it once made
retirement order easier to track), we can move it up the hierarchy to the
owner of the memory allocations.
v2: Hook up to debugfs/drop_caches to clear the cache on demand.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200430111819.10262-2-chris@chris-wilson.co.uk
We need to keep the default context state around to instantiate new
contexts (aka golden rendercontext), and we also keep it pinned while
the engine is active so that we can quickly reset a hanging context.
However, the default contexts are large enough to merit keeping in
swappable memory as opposed to kernel memory, so we store them inside
shmemfs. Currently, we use the normal GEM objects to create the default
context image, but we can throw away all but the shmemfs file.
This greatly simplifies the tricky power management code which wants to
run underneath the normal GT locking, and we definitely do not want to
use any high level objects that may appear to recurse back into the GT.
Though perhaps the primary advantage of the complex GEM object is that
we aggressively cache the mapping, but here we are recreating the
vm_area everytime time we unpark. At the worst, we add a lightweight
cache, but first find a microbenchmark that is impacted.
Having started to create some utility functions to make working with
shmemfs objects easier, we can start putting them to wider use, where
GEM objects are overkill, such as storing persistent error state.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Ramalingam C <ramalingam.c@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429172429.6054-1-chris@chris-wilson.co.uk
Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk
Pull more drm updates from Dave Airlie:
"Rob pointed out I missed his pull request for msm-next, it's been in
next for a while outside of my tree so shouldn't cause any unexpected
issues, it has some OCMEM support in drivers/soc that is acked by
other maintainers as it's outside my tree.
Otherwise it's a usual fixes pull, i915, amdgpu, the main ones, with
some tegra, omap, mgag200 and one core fix.
Summary:
msm-next:
- OCMEM support for a3xx and a4xx GPUs.
- a510 support + display support
core:
- mst payload deletion fix
i915:
- uapi alignment fix
- fix for power usage regression due to security fixes
- change default preemption timeout to 640ms from 100ms
- EHL voltage level display fixes
- TGL DGL PHY fix
- gvt - MI_ATOMIC cmd parser fix, CFL non-priv warning
- CI spotted deadlock fix
- EHL port D programming fix
amdgpu:
- VRAM lost fixes on BACO for CI/VI
- navi14 DC fixes
- misc SR-IOV, gfx10 fixes
- XGMI fixes for arcturus
- SRIOV fixes
amdkfd:
- KFD on ppc64le enabled
- page table optimisations
radeon:
- fix for r1xx/2xx register checker.
tegra:
- displayport regression fixes
- DMA API regression fixes
mgag200:
- fix devices that can't scanout except at 0 addr
omap:
- fix dma_addr refcounting"
* tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm: (100 commits)
drm/dp_mst: Correct the bug in drm_dp_update_payload_part1()
drm/omap: fix dma_addr refcounting
drm/tegra: Run hub cleanup on ->remove()
drm/tegra: sor: Make the +5V HDMI supply optional
drm/tegra: Silence expected errors on IOMMU attach
drm/tegra: vic: Export module device table
drm/tegra: sor: Implement system suspend/resume
drm/tegra: Use proper IOVA address for cursor image
drm/tegra: gem: Remove premature import restrictions
drm/tegra: gem: Properly pin imported buffers
drm/tegra: hub: Remove bogus connection mutex check
ia64: agp: Replace empty define with do while
agp: Add bridge parameter documentation
agp: remove unused variable num_segments
agp: move AGPGART_MINOR to include/linux/miscdevice.h
agp: remove unused variable size in agp_generic_create_gatt_table
drm/dp_mst: Fix build on systems with STACKTRACE_SUPPORT=n
drm/radeon: fix r1xx/r2xx register checker for POT textures
drm/amdgpu: fix GFX10 missing CSIB set(v3)
drm/amdgpu: should stop GFX ring in hw_fini
...
Pull drm updates from Dave Airlie:
"Lots of stuff in here, though it hasn't been too insane this merge
apart from dealing with the security fun.
uapi:
- export different colorspace properties on DP vs HDMI
- new fourcc for ARM 16x16 block format
- syncobj: allow querying last submitted timeline value
- DRM_FORMAT_BIG_ENDIAN defined as unsigned
core:
- allow using gem vma manager in ttm
- connector/encoder/bridge doc fixes
- allow more than 3 encoders for a connector
- displayport mst suspend/resume reprobing support
- vram lazy unmapping, uniform vram mm and gem vram
- edid cleanups + AVI informframe bar info
- displayport helpers - dpcd parser added
dp_cec:
- Allow a connector to be associated with a cec device
ttm:
- pipelining with no_gpu_wait fix
- always keep BOs on the LRU
sched:
- allow free_job routine to sleep
i915:
- Block userptr from mappable GTT
- i915 perf uapi versioning
- OA stream dynamic reconfiguration
- make context persistence optional
- introduce DRM_I915_UNSTABLE Kconfig
- add fake lmem testing under unstable
- BT.2020 support for DP MSA
- struct mutex elimination
- Tigerlake display/PLL/power management improvements
- Jasper Lake PCH support
- refactor PMU for multiple GPUs
- Icelake firmware update
- Split out vga + switcheroo code
amdgpu:
- implement dma-buf import/export without helpers
- vega20 RAS enablement
- DC i2c over aux fixes
- renoir GPU reset
- DC HDCP support
- BACO support for CI/VI asics
- MSI-X support
- Arcturus EEPROM support
- Arcturus VCN encode support
- VCN dynamic powergating on RV/RV2
amdkfd:
- add navi12/14/renoir support to kfd
radeon:
- SI dpm fix ported from amdgpu
- fix bad DMA on ppc platforms
gma500:
- memory leak fixes
qxl:
- convert to new gem mmap
exynos:
- build warning fix
komeda:
- add aclk sysfs attribute
v3d:
- userspace cleanup uapi change
i810:
- fix for underflow in dispatch ioctls
ast:
- refactor show_cursor
mgag200:
- refactor show_cursor
arcgpu:
- encoder finding improvements
mediatek:
- mipi_tx, dsi and partial crtc support for MT8183 SoC
- rotation support
meson:
- add suspend/resume support
omap:
- misc refactors
tegra:
- DisplayPort support for Tegra 210, 186 and 194.
- IOMMU-backed DMA API fixes
panfrost:
- fix lockdep issue
- simplify devfreq integration
rcar-du:
- R8A774B1 SoC support
- fixes for H2 ES2.0
sun4i:
- vcc-dsi regulator support
virtio-gpu:
- vmexit vs spinlock fix
- move to gem shmem helpers
- handle large command buffers with cma"
* tag 'drm-next-2019-11-27' of git://anongit.freedesktop.org/drm/drm: (1855 commits)
drm/amdgpu: invalidate mmhub semaphore workaround in gmc9/gmc10
drm/amdgpu: initialize vm_inv_eng0_sem for gfxhub and mmhub
drm/amd/amdgpu/sriov skip RLCG s/r list for arcturus VF.
drm/amd/amdgpu/sriov temporarily skip ras,dtm,hdcp for arcturus VF
drm/amdgpu/gfx10: re-init clear state buffer after gpu reset
merge fix for "ftrace: Rework event_create_dir()"
drm/amdgpu: Update Arcturus golden registers
drm/amdgpu/gfx10: fix out-of-bound mqd_backup array access
drm/amdgpu/gfx10: explicitly wait for cp idle after halt/unhalt
Revert "drm/amd/display: enable S/G for RAVEN chip"
drm/amdgpu: disable gfxoff on original raven
drm/amdgpu: remove experimental flag for Navi14
drm/amdgpu: disable gfxoff when using register read interface
drm/amdgpu/powerplay: properly set PP_GFXOFF_MASK (v2)
drm/amdgpu: fix bad DMA from INTERRUPT_CNTL2
drm/radeon: fix bad DMA from INTERRUPT_CNTL2
drm/amd/display: Fix debugfs on MST connectors
drm/amdgpu/nv: add asic func for fetching vbios from rom directly
drm/amdgpu: put flush_delayed_work at first
drm/amdgpu/vcn2.5: fix the enc loop with hw fini
...
The expected downside to commit 58b4c1a07a ("drm/i915: Reduce nested
prepare_remote_context() to a trylock") was that it would need to return
-EAGAIN to userspace in order to resolve potential mutex inversion. Such
an unsightly round trip is unnecessary if we could atomically insert a
barrier into the i915_active_fence, so make it happen.
Currently, we use the timeline->mutex (or some other named outer lock)
to order insertion into the i915_active_fence (and so individual nodes
of i915_active). Inside __i915_active_fence_set, we only need then
serialise with the interrupt handler in order to claim the timeline for
ourselves.
However, if we remove the outer lock, we need to ensure the order is
intact between not only multiple threads trying to insert themselves
into the timeline, but also with the interrupt handler completing the
previous occupant. We use xchg() on insert so that we have an ordered
sequence of insertions (and each caller knows the previous fence on
which to wait, preserving the chain of all fences in the timeline), but
we then have to cmpxchg() in the interrupt handler to avoid overwriting
the new occupant. The only nasty side-effect is having to temporarily
strip off the RCU-annotations to apply the atomic operations, otherwise
the rules are much more conventional!
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=112402
Fixes: 58b4c1a07a ("drm/i915: Reduce nested prepare_remote_context() to a trylock")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191127134527.3438410-1-chris@chris-wilson.co.uk
In the next patch, we will introduce a new asynchronous retirement
worker, fed by execlists CS events. Here we may queue a retirement as
soon as a request is submitted to HW (and completes instantly), and we
also want to process that retirement as early as possible and cannot
afford to postpone (as there may not be another opportunity to retire it
for a few seconds). To allow the new async retirer to run in parallel
with our submission, pull the __i915_request_queue (that passes the
request to HW) inside the timelines spinlock so that the retirement
cannot release the timeline before we have completed the submission.
v2: Actually to play nicely with engine_retire, we have to raise the
timeline.active_lock before releasing the HW. intel_gt_retire_requsts()
is still serialised by the outer lock so they cannot see this
intermediate state, and engine_retire is serialised by HW submission.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-2-chris@chris-wilson.co.uk
(cherry picked from commit 88a4655e75)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
In commit a79ca656b6 ("drm/i915: Push the wakeref->count deferral to
the backend"), I erroneously concluded that we last modify the engine
inside __i915_request_commit() meaning that we could enable concurrent
submission for userspace as we enqueued this request. However, this
falls into a trap with other users of the engine->kernel_context waking
up and submitting their request before the idle-switch is queued, with
the result that the kernel_context is executed out-of-sequence most
likely upsetting the GPU and certainly ourselves when we try to retire
the out-of-sequence requests.
As such we need to hold onto the effective engine->kernel_context mutex
lock (via the engine pm mutex proxy) until we have finish queuing the
request to the engine.
v2: Serialise against concurrent intel_gt_retire_requests()
v3: Describe the hairy locking scheme with intel_gt_retire_requests()
for future reference.
v4: Combine timeline->lock and engine pm release; it's hairy.
Fixes: a79ca656b6 ("drm/i915: Push the wakeref->count deferral to the backend")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191120165514.3955081-2-chris@chris-wilson.co.uk
(cherry picked from commit 5cba288466)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
In the next patch, we will introduce a new asynchronous retirement
worker, fed by execlists CS events. Here we may queue a retirement as
soon as a request is submitted to HW (and completes instantly), and we
also want to process that retirement as early as possible and cannot
afford to postpone (as there may not be another opportunity to retire it
for a few seconds). To allow the new async retirer to run in parallel
with our submission, pull the __i915_request_queue (that passes the
request to HW) inside the timelines spinlock so that the retirement
cannot release the timeline before we have completed the submission.
v2: Actually to play nicely with engine_retire, we have to raise the
timeline.active_lock before releasing the HW. intel_gt_retire_requsts()
is still serialised by the outer lock so they cannot see this
intermediate state, and engine_retire is serialised by HW submission.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-2-chris@chris-wilson.co.uk
In commit a79ca656b6 ("drm/i915: Push the wakeref->count deferral to
the backend"), I erroneously concluded that we last modify the engine
inside __i915_request_commit() meaning that we could enable concurrent
submission for userspace as we enqueued this request. However, this
falls into a trap with other users of the engine->kernel_context waking
up and submitting their request before the idle-switch is queued, with
the result that the kernel_context is executed out-of-sequence most
likely upsetting the GPU and certainly ourselves when we try to retire
the out-of-sequence requests.
As such we need to hold onto the effective engine->kernel_context mutex
lock (via the engine pm mutex proxy) until we have finish queuing the
request to the engine.
v2: Serialise against concurrent intel_gt_retire_requests()
v3: Describe the hairy locking scheme with intel_gt_retire_requests()
for future reference.
v4: Combine timeline->lock and engine pm release; it's hairy.
Fixes: a79ca656b6 ("drm/i915: Push the wakeref->count deferral to the backend")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191120165514.3955081-2-chris@chris-wilson.co.uk
To flush idle barriers, and even inflight requests, we want to send a
preemptive 'pulse' along an engine. We use a no-op request along the
pinned kernel_context at high priority so that it should run or else
kick off the stuck requests. We can use this to ensure idle barriers are
immediately flushed, as part of a context cancellation mechanism, or as
part of a heartbeat mechanism to detect and reset a stuck GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191021174339.5389-1-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
We use timeline->mutex to protect modifications to
context->active_count, and the associated enable/disable callbacks.
Due to complications with engine-pm barrier there is a path where we used
a "superlock" to provide serialised protect and so could not
unconditionally assert with lockdep that it was always held. However,
we can mark the mutex as taken (noting that we may be nested underneath
ourselves) which means we can be reassured the right timeline->mutex is
always treated as held and let lockdep roam free.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816121000.8507-1-chris@chris-wilson.co.uk
By placing our idle-barriers in the i915_active fence tree, we expose
those for reuse by other components that are issuing requests along the
kernel_context. Reusing the proto-barrier active_node is perfectly fine
as the new request implies a context-switch, and so an opportune point
to run the idle-barrier. However, the proto-barrier is not equivalent
to a normal active_node and care must be taken to avoid dereferencing the
ERR_PTR used as its request marker.
v2: Comment the more egregious cheek
v3: A glossary!
Reported-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Fixes: ce476c80b8 ("drm/i915: Keep contexts pinned until after the next kernel context switch")
Fixes: a9877da2d6 ("drm/i915/oa: Reconfigure contexts on the fly")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190802100015.1281-1-chris@chris-wilson.co.uk
The idea behind keeping the saturation mask local to a context backfired
spectacularly. The premise with the local mask was that we would be more
proactive in attempting to use semaphores after each time the context
idled, and that all new contexts would attempt to use semaphores
ignoring the current state of the system. This turns out to be horribly
optimistic. If the system state is still oversaturated and the existing
workloads have all stopped using semaphores, the new workloads would
attempt to use semaphores and be deprioritised behind real work. The
new contexts would not switch off using semaphores until their initial
batch of low priority work had completed. Given sufficient backload load
of equal user priority, this would completely starve the new work of any
GPU time.
To compensate, remove the local tracking in favour of keeping it as
global state on the engine -- once the system is saturated and
semaphores are disabled, everyone stops attempting to use semaphores
until the system is idle again. One of the reason for preferring local
context tracking was that it worked with virtual engines, so for
switching to global state we could either do a complete check of all the
virtual siblings or simply disable semaphores for those requests. This
takes the simpler approach of disabling semaphores on virtual engines.
The downside is that the decision that the engine is saturated is a
local measure -- we are only checking whether or not this context was
scheduled in a timely fashion, it may be legitimately delayed due to user
priorities. We still have the same dilemma though, that we do not want
to employ the semaphore poll unless it will be used.
v2: Explain why we need to assume the worst wrt virtual engines.
Fixes: ca6e56f654 ("drm/i915: Disable semaphore busywaits on saturated systems")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-8-chris@chris-wilson.co.uk
We need to keep the context image pinned in memory until after the GPU
has finished writing into it. Since it continues to write as we signal
the final breadcrumb, we need to keep it pinned until the request after
it is complete. Currently we know the order in which requests execute on
each engine, and so to remove that presumption we need to identify a
request/context-switch we know must occur after our completion. Any
request queued after the signal must imply a context switch, for
simplicity we use a fresh request from the kernel context.
The sequence of operations for keeping the context pinned until saved is:
- On context activation, we preallocate a node for each physical engine
the context may operate on. This is to avoid allocations during
unpinning, which may be from inside FS_RECLAIM context (aka the
shrinker)
- On context deactivation on retirement of the last active request (which
is before we know the context has been saved), we add the
preallocated node onto a barrier list on each engine
- On engine idling, we emit a switch to kernel context. When this
switch completes, we know that all previous contexts must have been
saved, and so on retiring this request we can finally unpin all the
contexts that were marked as deactivated prior to the switch.
We can enhance this in future by flushing all the idle contexts on a
regular heartbeat pulse of a switch to kernel context, which will also
be used to check for hung engines.
v2: intel_context_active_acquire/_release
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-1-chris@chris-wilson.co.uk
In the current scheme, on submitting a request we take a single global
GEM wakeref, which trickles down to wake up all GT power domains. This
is undesirable as we would like to be able to localise our power
management to the available power domains and to remove the global GEM
operations from the heart of the driver. (The intent there is to push
global GEM decisions to the boundary as used by the GEM user interface.)
Now during request construction, each request is responsible via its
logical context to acquire a wakeref on each power domain it intends to
utilize. Currently, each request takes a wakeref on the engine(s) and
the engines themselves take a chipset wakeref. This gives us a
transition on each engine which we can extend if we want to insert more
powermangement control (such as soft rc6). The global GEM operations
that currently require a struct_mutex are reduced to listening to pm
events from the chipset GT wakeref. As we reduce the struct_mutex
requirement, these listeners should evaporate.
Perhaps the biggest immediate change is that this removes the
struct_mutex requirement around GT power management, allowing us greater
flexibility in request construction. Another important knock-on effect,
is that by tracking engine usage, we can insert a switch back to the
kernel context on that engine immediately, avoiding any extra delay or
inserting global synchronisation barriers. This makes tracking when an
engine and its associated contexts are idle much easier -- important for
when we forgo our assumed execution ordering and need idle barriers to
unpin used contexts. In the process, it means we remove a large chunk of
code whose only purpose was to switch back to the kernel context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk