IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This commit hoists much of the initialization of the scf_check
structure out of the switch statement, thus saving a few lines of code.
The initialization of the ->scfc_in field remains in each leg of the
switch statement in order to more heavily stress memory ordering.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves checking of the ->scfc_out field and the freeing of
the scf_check structure down below the end of switch statement, thus
saving a few lines of code.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds checks for memory misordering across calls to and
returns from smp_call_function() in the case where the caller waits.
Misordering results in a splat.
Note that in contrast to smp_call_function_single(), this code does not
test memory ordering into the handler in the no-wait case because none
of the handlers would be able to free the scf_check structure without
introducing heavy synchronization to work out which was last.
[ paulmck: s/GFP_KERNEL/GFP_ATOMIC/ per kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds checks for memory misordering across calls to and
returns from smp_call_function_many() in the case where the caller waits.
Misordering results in a splat.
Note that in contrast to smp_call_function_single(), this code does not
test memory ordering into the handler in the no-wait case because none
of the handlers would be able to free the scf_check structure without
introducing heavy synchronization to work out which was last.
[ paulmck: s/GFP_KERNEL/GFP_ATOMIC/ per kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds checks for memory misordering across calls to
smp_call_function_single() and also across returns in the case where
the caller waits. Misordering results in a splat.
[ paulmck: s/GFP_KERNEL/GFP_ATOMIC/ per kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit summarizes the per-thread statistics, providing counts of
the number of single, many, and all calls, both no-wait and wait, and,
for the single case, the number where the target CPU was offline.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, can_stop_idle_tick() prints "NOHZ: local_softirq_pending HH"
(where "HH" is the hexadecimal softirq vector number) when one or more
non-RCU softirq handlers are still enabled when checking to stop the
scheduler-tick interrupt. This message is not as enlightening as one
might hope, so this commit changes it to "NOHZ tick-stop error: Non-RCU
local softirq work is pending, handler #HH".
Reported-by: Andy Lutomirski <luto@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit uses the scftorture.weight* kernel parameters to randomly
chooses between smp_call_function_single(), smp_call_function_many(),
and smp_call_function(). For each variant, it also randomly chooses
whether to invoke it synchronously (wait=1) or asynchronously (wait=0).
The percentage weighting for each option are dumped to the console log
(search for "scf_sel_dump").
This accumulates statistics, which a later commit will dump out at the
end of the run.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds an smp_call_function() torture test that repeatedly
invokes this function and complains if things go badly awry.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The x86/entry work removed all uses of __rcu_is_watching(), therefore
this commit removes it entirely.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The RCU grace-period kthread's force-quiescent state (FQS) loop should
never see an offline CPU that has not yet reported a quiescent state.
After all, the offline CPU should have reported a quiescent state
during the CPU-offline process, or, failing that, by rcu_gp_init()
if it ran concurrently with either the CPU going offline or the last
task on a leaf rcu_node structure exiting its RCU read-side critical
section while all CPUs corresponding to that structure are offline.
The FQS loop should therefore complain if it does see an offline CPU
that has not yet reported a quiescent state.
And it does, but only once the grace period has been in force for a
full second. This commit therefore makes this warning more aggressive,
so that it will trigger as soon as the condition makes its appearance.
Light testing with TREE03 and hotplug shows no warnings. This commit
also converts the warning to WARN_ON_ONCE() in order to stave off possible
log spam.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since at least v4.19, the FQS loop no longer reports quiescent states
for offline CPUs except in emergency situations.
This commit therefore fixes the comment in rcu_gp_init() to match the
current code.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit increases RCU's ability to defend itself by emitting a warning
if one of the nocb CB kthreads invokes the GP kthread's wait function.
This warning augments a similar check that is carried out at the end
of rcutorture testing and when RCU CPU stall warnings are emitted.
The problem with those checks is that the miscreants have long since
departed and disposed of any and all evidence.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the rcu_cpu_started per-CPU variable was added by commit
f64c6013a202 ("rcu/x86: Provide early rcu_cpu_starting() callback"),
there were multiple sets of per-CPU rcu_data structures. Therefore, the
rcu_cpu_started flag was added as a separate per-CPU variable. But now
there is only one set of per-CPU rcu_data structures, so this commit
moves rcu_cpu_started to a new ->cpu_started field in that structure.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_cpu_stall_ftrace_dump at any
time, this commit adds a READ_ONCE() to the accesses to that variable.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_kick_kthreads at any time,
this commit adds a READ_ONCE() to the sole access to that variable.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_resched_ns at any time,
this commit adds a READ_ONCE() to the sole access to that variable.
While in the area, this commit also adds bounds checking, clamping the
value to at least a millisecond, but no longer than a second.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_divisor at any time, this
commit adds a READ_ONCE to the sole access to that variable. While in
the area, this commit also adds bounds checking, clamping the value to
a shift that makes sense for a signed long.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_data structure's ->nocb_timer field is used to defer wakeups of
the corresponding no-CBs CPU's grace-period kthread ("rcuog*"), and that
structure's ->nocb_defer_wakeup field is used to track such deferral.
This means that the show_rcu_nocb_state() printing an error when those
fields are set for a CPU not corresponding to a no-CBs grace-period
kthread is erroneous.
This commit therefore switches the check from ->nocb_timer to
->nocb_bypass_timer and removes the check of ->nocb_defer_wakeup.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Originally, the call to rcu_preempt_blocked_readers_cgp() from
force_qs_rnp() had to be conditioned on CONFIG_PREEMPT_RCU=y, as in
commit a77da14ce9af ("rcu: Yet another fix for preemption and CPU
hotplug"). However, there is now a CONFIG_PREEMPT_RCU=n definition of
rcu_preempt_blocked_readers_cgp() that unconditionally returns zero, so
invoking it is now safe. In addition, the CONFIG_PREEMPT_RCU=n definition
of rcu_initiate_boost() simply releases the rcu_node structure's ->lock,
which is what happens when the "if" condition evaluates to false.
This commit therefore drops the IS_ENABLED(CONFIG_PREEMPT_RCU) check,
so that rcu_initiate_boost() is called only in CONFIG_PREEMPT_RCU=y
kernels when there are readers blocking the current grace period.
This does not change the behavior, but reduces code-reader confusion by
eliminating non-CONFIG_PREEMPT_RCU=y calls to rcu_initiate_boost().
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
On callback overload, it is necessary to quickly detect idle CPUs,
and rcu_gp_fqs_check_wake() checks for this condition. Unfortunately,
the code following the call to this function does not repeat this check,
which means that in reality no actual quiescent-state forcing, instead
only a couple of quick and pointless wakeups at the beginning of the
grace period.
This commit therefore adds a check for the RCU_GP_FLAG_OVLD flag in
the post-wakeup "if" statement in rcu_gp_fqs_loop().
Fixes: 1fca4d12f4637 ("rcu: Expedite first two FQS scans under callback-overload conditions")
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
A message of the form "rcu: !!! lDTs ." can be tracked down, but
doing so is not trivial. This commit therefore eases this process by
adding text so that this error message now reads as follows:
"rcu: nocb GP activity on CB-only CPU!!! lDTs ."
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
During acceleration of CB, the rsp's gp_seq is rcu_seq_snap'd. This is
the value used for acceleration - it is the value of gp_seq at which it
is safe the execute all callbacks in the callback list.
The rdp's gp_seq is not very useful for this scenario. Make
rcu_grace_period report the gp_seq_req instead as it allows one to
reason about how the acceleration works.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the initialization of the CONFIG_PREEMPT=n version of
the rcu_exp_handler() function's rdp and rnp local variables into their
respective declarations to save a couple lines of code.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
KCSAN is now in mainline, so this commit removes the stubs for the
data_race(), ASSERT_EXCLUSIVE_WRITER(), and ASSERT_EXCLUSIVE_ACCESS()
macros.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
KCSAN is now in mainline, so this commit removes the stubs for the
data_race(), ASSERT_EXCLUSIVE_WRITER(), and ASSERT_EXCLUSIVE_ACCESS()
macros.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
KCSAN is now in mainline, so this commit removes the stubs for the
data_race(), ASSERT_EXCLUSIVE_WRITER(), and ASSERT_EXCLUSIVE_ACCESS()
macros.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Remove kcsan_counter_inc/dec() functions, as they perform no other
logic, and are no longer needed.
This avoids several calls in kcsan_setup_watchpoint() and
kcsan_found_watchpoint(), as well as lets the compiler warn us about
potential out-of-bounds accesses as the array's size is known at all
usage sites at compile-time.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Use the same pr_fmt throughout for consistency. [ The only exception is
report.c, where the format must be kept precisely as-is. ]
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Show a message in the kernel log if KCSAN was enabled early.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Remove the debugfs test command, as it is no longer needed now that we
have the KUnit+Torture based kcsan-test module. This is to avoid
confusion around how KCSAN should be tested, as only the kcsan-test
module is maintained.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Simplify checking prefixes and length calculation of constant strings.
For the former, the kernel provides str_has_prefix(), and the latter we
should just use strlen("..") because GCC and Clang have optimizations
that optimize these into constants.
No functional change intended.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Simplify counter ID to name mapping by using an array with designated
inits. This way, we can turn a run-time BUG() into a compile-time static
assertion failure if a counter name is missing.
No functional change intended.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Changes kcsan-test module to support checking reports that include
compound instrumentation. Since we should not fail the test if this
support is unavailable, we have to add a config variable that the test
can use to decide what to check for.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Add missing CONFIG_KCSAN_IGNORE_ATOMICS checks for the builtin atomics
instrumentation.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For compound instrumentation and assert accesses, skew the watchpoint
delay to be longer if randomized. This is useful to improve race
detection for such accesses.
For compound accesses we should increase the delay as we've aggregated
both read and write instrumentation. By giving up 1 call into the
runtime, we're less likely to set up a watchpoint and thus less likely
to detect a race. We can balance this by increasing the watchpoint
delay.
For assert accesses, we know these are of increased interest, and we
wish to increase our chances of detecting races for such checks.
Note that, kcsan_udelay_{task,interrupt} define the upper bound delays.
When randomized, delays are uniformly distributed between [0, delay].
Skewing the delay does not break this promise as long as the defined
upper bounds are still adhered to. The current skew results in delays
uniformly distributed between [delay/2, delay].
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Add support for compounded read-write instrumentation if supported by
the compiler. Adds the necessary instrumentation functions, and a new
type which is used to generate a more descriptive report.
Furthermore, such compounded memory access instrumentation is excluded
from the "assume aligned writes up to word size are atomic" rule,
because we cannot assume that the compiler emits code that is atomic for
compound ops.
LLVM/Clang added support for the feature in:
785d41a261
The new instrumentation is emitted for sets of memory accesses in the
same basic block to the same address with at least one read appearing
before a write. These typically result from compound operations such as
++, --, +=, -=, |=, &=, etc. but also equivalent forms such as "var =
var + 1". Where the compiler determines that it is equivalent to emit a
call to a single __tsan_read_write instead of separate __tsan_read and
__tsan_write, we can then benefit from improved performance and better
reporting for such access patterns.
The new reports now show that the ops are both reads and writes, for
example:
read-write to 0xffffffff90548a38 of 8 bytes by task 143 on cpu 3:
test_kernel_rmw_array+0x45/0xa0
access_thread+0x71/0xb0
kthread+0x21e/0x240
ret_from_fork+0x22/0x30
read-write to 0xffffffff90548a38 of 8 bytes by task 144 on cpu 2:
test_kernel_rmw_array+0x45/0xa0
access_thread+0x71/0xb0
kthread+0x21e/0x240
ret_from_fork+0x22/0x30
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Adds test case to kcsan-test module, to test atomic builtin
instrumentation works.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some architectures (currently e.g. s390 partially) implement atomics
using the compiler's atomic builtins (__atomic_*, __sync_*). To support
enabling KCSAN on such architectures in future, or support experimental
use of these builtins, implement support for them.
We should also avoid breaking KCSAN kernels due to use (accidental or
otherwise) of atomic builtins in drivers, as has happened in the past:
https://lkml.kernel.org/r/5231d2c0-41d9-6721-e15f-a7eedf3ce69e@infradead.org
The instrumentation is subtly different from regular reads/writes: TSAN
instrumentation replaces the use of atomic builtins with a call into the
runtime, and the runtime's job is to also execute the desired atomic
operation. We rely on the __atomic_* compiler builtins, available with
all KCSAN-supported compilers, to implement each TSAN atomic
instrumentation function.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
version messed up the reload of the syscall number from pt_regs after
ptrace and seccomp which breaks syscall number rewriting.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl9CI6YTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQCvEACoc8+Nd3sFR1UoNASbu5DV6PkUmgGy
eQLKUA42toTzqJIcyXPRAjBrRc51IFEaxZlqGC7KWjQM9d9cdJGylg4zfwspZoI+
tsvYKCPxvswVJ09QZmibn35+dbJEiYtQ96Cq0BQx/kaaouNeceRtDXV2ptP9dPSx
pyv3pb8nchjADcKrqbMYe8t647X1kM25BglbTkHOJZDSubEsgMbN6P3d70n2sNO6
8jQC4o9DX2AJnN5K3tLyN1yoLUYKUdFlj6X2BgusK8HbBVQ2m7eTPaIT2aNGs648
7CrY49ggFnr8BVJuhIvjAwdyJPcTm9rcWphfD+WBAWrVO7r205aKAINDsoZwrhBe
4ykfhs2PzfvHMrqKfKfbfNDQu9p6ZWwh3ZLbUpbunZQPCFB8EwL1x/5O/pGWGCNF
F4rvfh02BuRPTljjM0pXFx05etT/OKKHjgdB7vxKJzb52dxcIZqqbut+lcTCYAmS
n2M2H/Tgt4NgJsu4dgGamL6JNvHf1JUhyWVB2ZfRLvGMiiEDmyttct2E1Ji+AVqZ
Dufui4KajQda+bS6VjCLtBNjC5WJ3gOzpIa4nrRw8mlTGWCgRGjsqu/Ze0Fkds6X
r6WT4NzJ4pD3E/bXpbegf0eikLIx+sEfiLpJGbuQ+stD52/AQjef1oaLDmmiPXKY
Ep+yR6l58erLbg==
=2OhI
-----END PGP SIGNATURE-----
Merge tag 'core-urgent-2020-08-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull entry fix from Thomas Gleixner:
"A single bug fix for the common entry code.
The transcription of the x86 version messed up the reload of the
syscall number from pt_regs after ptrace and seccomp which breaks
syscall number rewriting"
* tag 'core-urgent-2020-08-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
core/entry: Respect syscall number rewrites
Pull networking fixes from David Miller:
"Nothing earth shattering here, lots of small fixes (f.e. missing RCU
protection, bad ref counting, missing memset(), etc.) all over the
place:
1) Use get_file_rcu() in task_file iterator, from Yonghong Song.
2) There are two ways to set remote source MAC addresses in macvlan
driver, but only one of which validates things properly. Fix this.
From Alvin Šipraga.
3) Missing of_node_put() in gianfar probing, from Sumera
Priyadarsini.
4) Preserve device wanted feature bits across multiple netlink
ethtool requests, from Maxim Mikityanskiy.
5) Fix rcu_sched stall in task and task_file bpf iterators, from
Yonghong Song.
6) Avoid reset after device destroy in ena driver, from Shay
Agroskin.
7) Missing memset() in netlink policy export reallocation path, from
Johannes Berg.
8) Fix info leak in __smc_diag_dump(), from Peilin Ye.
9) Decapsulate ECN properly for ipv6 in ipv4 tunnels, from Mark
Tomlinson.
10) Fix number of data stream negotiation in SCTP, from David Laight.
11) Fix double free in connection tracker action module, from Alaa
Hleihel.
12) Don't allow empty NHA_GROUP attributes, from Nikolay Aleksandrov"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (46 commits)
net: nexthop: don't allow empty NHA_GROUP
bpf: Fix two typos in uapi/linux/bpf.h
net: dsa: b53: check for timeout
tipc: call rcu_read_lock() in tipc_aead_encrypt_done()
net/sched: act_ct: Fix skb double-free in tcf_ct_handle_fragments() error flow
net: sctp: Fix negotiation of the number of data streams.
dt-bindings: net: renesas, ether: Improve schema validation
gre6: Fix reception with IP6_TNL_F_RCV_DSCP_COPY
hv_netvsc: Fix the queue_mapping in netvsc_vf_xmit()
hv_netvsc: Remove "unlikely" from netvsc_select_queue
bpf: selftests: global_funcs: Check err_str before strstr
bpf: xdp: Fix XDP mode when no mode flags specified
selftests/bpf: Remove test_align leftovers
tools/resolve_btfids: Fix sections with wrong alignment
net/smc: Prevent kernel-infoleak in __smc_diag_dump()
sfc: fix build warnings on 32-bit
net: phy: mscc: Fix a couple of spelling mistakes "spcified" -> "specified"
libbpf: Fix map index used in error message
net: gemini: Fix missing free_netdev() in error path of gemini_ethernet_port_probe()
net: atlantic: Use readx_poll_timeout() for large timeout
...
printk wants to store various timestamps (MONOTONIC, REALTIME, BOOTTIME) to
make correlation of dmesg from several systems easier.
Provide an interface to retrieve all three timestamps in one go.
There are some caveats:
1) Boot time and late sleep time injection
Boot time is a racy access on 32bit systems if the sleep time injection
happens late during resume and not in timekeeping_resume(). That could be
avoided by expanding struct tk_read_base with boot offset for 32bit and
adding more overhead to the update. As this is a hard to observe once per
resume event which can be filtered with reasonable effort using the
accurate mono/real timestamps, it's probably not worth the trouble.
Aside of that it might be possible on 32 and 64 bit to observe the
following when the sleep time injection happens late:
CPU 0 CPU 1
timekeeping_resume()
ktime_get_fast_timestamps()
mono, real = __ktime_get_real_fast()
inject_sleep_time()
update boot offset
boot = mono + bootoffset;
That means that boot time already has the sleep time adjustment, but
real time does not. On the next readout both are in sync again.
Preventing this for 64bit is not really feasible without destroying the
careful cache layout of the timekeeper because the sequence count and
struct tk_read_base would then need two cache lines instead of one.
2) Suspend/resume timestamps
Access to the time keeper clock source is disabled accross the innermost
steps of suspend/resume. The accessors still work, but the timestamps
are frozen until time keeping is resumed which happens very early.
For regular suspend/resume there is no observable difference vs. sched
clock, but it might affect some of the nasty low level debug printks.
OTOH, access to sched clock is not guaranteed accross suspend/resume on
all systems either so it depends on the hardware in use.
If that turns out to be a real problem then this could be mitigated by
using sched clock in a similar way as during early boot. But it's not as
trivial as on early boot because it needs some careful protection
against the clock monotonic timestamp jumping backwards on resume.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.159981360@linutronix.de
During early boot the NMI safe timekeeper returns 0 until the first
clocksource becomes available.
This prevents it from being used for printk or other facilities which today
use sched clock. sched clock can be available way before timekeeping is
initialized.
The obvious workaround for this is to utilize the early sched clock in the
default dummy clock read function until a clocksource becomes available.
After switching to the clocksource clock MONOTONIC and BOOTTIME will not
jump because the timekeeping_init() bases clock MONOTONIC on sched clock
and the offset between clock MONOTONIC and BOOTTIME is zero during boot.
Clock REALTIME cannot provide useful timestamps during early boot up to
the point where a persistent clock becomes available, which is either in
timekeeping_init() or later when the RTC driver which might depend on I2C
or other subsystems is initialized.
There is a minor difference to sched_clock() vs. suspend/resume. As the
timekeeper clock source might not be accessible during suspend, after
timekeeping_suspend() timestamps freeze up to the point where
timekeeping_resume() is invoked. OTOH this is true for some sched clock
implementations as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.041422402@linutronix.de
Allow calling bpf_map_update_elem on sockmap and sockhash from a BPF
context. The synchronization required for this is a bit fiddly: we
need to prevent the socket from changing its state while we add it
to the sockmap, since we rely on getting a callback via
sk_prot->unhash. However, we can't just lock_sock like in
sock_map_sk_acquire because that might sleep. So instead we disable
softirq processing and use bh_lock_sock to prevent further
modification.
Yet, this is still not enough. BPF can be called in contexts where
the current CPU might have locked a socket. If the BPF can get
a hold of such a socket, inserting it into a sockmap would lead to
a deadlock. One straight forward example are sock_ops programs that
have ctx->sk, but the same problem exists for kprobes, etc.
We deal with this by allowing sockmap updates only from known safe
contexts. Improper usage is rejected by the verifier.
I've audited the enabled contexts to make sure they can't run in
a locked context. It's possible that CGROUP_SKB and others are
safe as well, but the auditing here is much more difficult. In
any case, we can extend the safe contexts when the need arises.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-6-lmb@cloudflare.com
The verifier assumes that map values are simple blobs of memory, and
therefore treats ARG_PTR_TO_MAP_VALUE, etc. as such. However, there are
map types where this isn't true. For example, sockmap and sockhash store
sockets. In general this isn't a big problem: we can just
write helpers that explicitly requests PTR_TO_SOCKET instead of
ARG_PTR_TO_MAP_VALUE.
The one exception are the standard map helpers like map_update_elem,
map_lookup_elem, etc. Here it would be nice we could overload the
function prototype for different kinds of maps. Unfortunately, this
isn't entirely straight forward:
We only know the type of the map once we have resolved meta->map_ptr
in check_func_arg. This means we can't swap out the prototype
in check_helper_call until we're half way through the function.
Instead, modify check_func_arg to treat ARG_PTR_TO_MAP_VALUE to
mean "the native type for the map" instead of "pointer to memory"
for sockmap and sockhash. This means we don't have to modify the
function prototype at all
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-5-lmb@cloudflare.com
Don't go via map->ops to call sock_map_update_elem, since we know
what function to call in bpf_map_update_value. Since we currently
don't allow calling map_update_elem from BPF context, we can remove
ops->map_update_elem and rename the function to sock_map_update_elem_sys.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-4-lmb@cloudflare.com
For bpf_map_elem and bpf_sk_local_storage bpf iterators,
additional map_id should be shown for fdinfo and
userspace query. For example, the following is for
a bpf_map_elem iterator.
$ cat /proc/1753/fdinfo/9
pos: 0
flags: 02000000
mnt_id: 14
link_type: iter
link_id: 34
prog_tag: 104be6d3fe45e6aa
prog_id: 173
target_name: bpf_map_elem
map_id: 127
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821184419.574240-1-yhs@fb.com
This patch implemented bpf_link callback functions
show_fdinfo and fill_link_info to support link_query
interface.
The general interface for show_fdinfo and fill_link_info
will print/fill the target_name. Each targets can
register show_fdinfo and fill_link_info callbacks
to print/fill more target specific information.
For example, the below is a fdinfo result for a bpf
task iterator.
$ cat /proc/1749/fdinfo/7
pos: 0
flags: 02000000
mnt_id: 14
link_type: iter
link_id: 11
prog_tag: 990e1f8152f7e54f
prog_id: 59
target_name: task
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821184418.574122-1-yhs@fb.com