IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We can pass a NULL cache pointer to kmem_cache_destroy(), because it
NULL-checks its argument now. Remove redundant test from
destroy_handle_cache().
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can avoid taking class ->lock around zs_can_compact() in
zs_shrinker_count(), because the number that we return back is outdated
in general case, by design. We have different sources that are able to
change class's state right after we return from zs_can_compact() --
ongoing I/O operations, manually triggered compaction, or two of them
happening simultaneously.
We re-do this calculations during compaction on a per class basis
anyway.
zs_unregister_shrinker() will not return until we have an active
shrinker, so classes won't unexpectedly disappear while
zs_shrinker_count() iterates them.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to recalcurate pages_per_zspage in runtime. Just use
class->pages_per_zspage to avoid unnecessary runtime overhead.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason to prevent select ZS_ALMOST_FULL as migration source
if we cannot find source from ZS_ALMOST_EMPTY.
With this patch, zs_can_compact will return more exact result.
Signed-off-by: Minchan Kim <minchan.kim@lge.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to see more ZS_FULL pages and less ZS_ALMOST_{FULL, EMPTY}
pages. Put a page with higher ->inuse count first within its
->fullness_list, which will give us better chances to fill up this page
with new objects (find_get_zspage() return ->fullness_list head for new
object allocation), so some zspages will become ZS_ALMOST_FULL/ZS_FULL
quicker.
It performs a trivial and cheap ->inuse compare which does not slow down
zsmalloc and in the worst case keeps the list pages in no particular
order.
A more expensive solution could sort fullness_list by ->inuse count.
[minchan@kernel.org: code adjustments]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Perform automatic pool compaction by a shrinker when system is getting
tight on memory.
User-space has a very little knowledge regarding zsmalloc fragmentation
and basically has no mechanism to tell whether compaction will result in
any memory gain. Another issue is that user space is not always aware
of the fact that system is getting tight on memory. Which leads to very
uncomfortable scenarios when user space may start issuing compaction
'randomly' or from crontab (for example). Fragmentation is not always
necessarily bad, allocated and unused objects, after all, may be filled
with the data later, w/o the need of allocating a new zspage. On the
other hand, we obviously don't want to waste memory when the system
needs it.
Compaction now has a relatively quick pool scan so we are able to
estimate the number of pages that will be freed easily, which makes it
possible to call this function from a shrinker->count_objects()
callback. We also abort compaction as soon as we detect that we can't
free any pages any more, preventing wasteful objects migrations.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction returns back to zram the number of migrated objects, which is
quite uninformative -- we have objects of different sizes so user space
cannot obtain any valuable data from that number. Change compaction to
operate in terms of pages and return back to compaction issuer the
number of pages that were freed during compaction. So from now on we
will export more meaningful value in zram<id>/mm_stat -- the number of
freed (compacted) pages.
This requires:
(a) a rename of `num_migrated' to 'pages_compacted'
(b) a internal API change -- return first_page's fullness_group from
putback_zspage(), so we know when putback_zspage() did
free_zspage(). It helps us to account compaction stats correctly.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
`zs_compact_control' accounts the number of migrated objects but it has
a limited lifespan -- we lose it as soon as zs_compaction() returns back
to zram. It worked fine, because (a) zram had it's own counter of
migrated objects and (b) only zram could trigger compaction. However,
this does not work for automatic pool compaction (not issued by zram).
To account objects migrated during auto-compaction (issued by the
shrinker) we need to store this number in zs_pool.
Define a new `struct zs_pool_stats' structure to keep zs_pool's stats
there. It provides only `num_migrated', as of this writing, but it
surely can be extended.
A new zsmalloc zs_pool_stats() symbol exports zs_pool's stats back to
caller.
Use zs_pool_stats() in zram and remove `num_migrated' from zram_stats.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change zs_object_copy() argument order to be (DST, SRC) rather than
(SRC, DST). copy/move functions usually have (to, from) arguments
order.
Rename alloc_target_page() to isolate_target_page(). This function
doesn't allocate anything, it isolates target page, pretty much like
isolate_source_page().
Tweak __zs_compact() comment.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function checks if class compaction will free any pages.
Rephrasing -- do we have enough unused objects to form at least one
ZS_EMPTY page and free it. It aborts compaction if class compaction
will not result in any (further) savings.
EXAMPLE (this debug output is not part of this patch set):
- class size
- number of allocated objects
- number of used objects
- max objects per zspage
- pages per zspage
- estimated number of pages that will be freed
[..]
class-512 objs:544 inuse:540 maxobj-per-zspage:8 pages-per-zspage:1 zspages-to-free:0
... class-512 compaction is useless. break
class-496 objs:660 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:2
class-496 objs:627 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:1
class-496 objs:594 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:0
... class-496 compaction is useless. break
class-448 objs:657 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:4
class-448 objs:648 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:3
class-448 objs:639 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:2
class-448 objs:630 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:1
class-448 objs:621 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:0
... class-448 compaction is useless. break
class-432 objs:728 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:1
class-432 objs:700 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:0
... class-432 compaction is useless. break
class-416 objs:819 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:2
class-416 objs:780 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:1
class-416 objs:741 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:0
... class-416 compaction is useless. break
class-400 objs:690 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:1
class-400 objs:680 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:0
... class-400 compaction is useless. break
class-384 objs:736 inuse:709 maxobj-per-zspage:32 pages-per-zspage:3 zspages-to-free:0
... class-384 compaction is useless. break
[..]
Every "compaction is useless" indicates that we saved CPU cycles.
class-512 has
544 object allocated
540 objects used
8 objects per-page
Even if we have a ALMOST_EMPTY zspage, we still don't have enough room to
migrate all of its objects and free this zspage; so compaction will not
make a lot of sense, it's better to just leave it as is.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always account per-class `zs_size_stat' stats. This data will help us
make better decisions during compaction. We are especially interested
in OBJ_ALLOCATED and OBJ_USED, which can tell us if class compaction
will result in any memory gain.
For instance, we know the number of allocated objects in the class, the
number of objects being used (so we also know how many objects are not
used) and the number of objects per-page. So we can ensure if we have
enough unused objects to form at least one ZS_EMPTY zspage during
compaction.
We calculate this value on per-class basis so we can calculate a total
number of zspages that can be released. Which is exactly what a
shrinker wants to know.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset tweaks compaction and makes it possible to trigger pool
compaction automatically when system is getting low on memory.
zsmalloc in some cases can suffer from a notable fragmentation and
compaction can release some considerable amount of memory. The problem
here is that currently we fully rely on user space to perform compaction
when needed. However, performing zsmalloc compaction is not always an
obvious thing to do. For example, suppose we have a `idle' fragmented
(compaction was never performed) zram device and system is getting low
on memory due to some 3rd party user processes (gcc LTO, or firefox,
etc.). It's quite unlikely that user space will issue zpool compaction
in this case. Besides, user space cannot tell for sure how badly pool
is fragmented; however, this info is known to zsmalloc and, hence, to a
shrinker.
This patch (of 7):
__zs_compact() does not use `nr_to_migrate', drop it.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a memoryless node, the output of get_pfn_range_for_nid are all zero.
It will display mem from 0 to -1.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hot adding a node from add_memory(), we will add memblock first, so
the node is not empty. But when called from cpu_up(), the node should
be empty.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>\
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use sysctl_lowmem_reserve_ratio rather than
sysctl_lower_zone_reserve_ratio to determine how aggressive the kernel
is in defending lowmem from the possibility of being captured into
pinned user memory. To avoid misleading, correct it in some comments.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment says that the per-cpu batchsize and zone watermarks are
determined by present_pages which is definitely wrong, they are both
calculated from managed_pages. Fix it.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no point in initializing vma->vm_pgoff if the insertion attempt
will be failing anyway. Run the checks before performing the
initialization.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1dfb059b94 ("thp: reduce khugepaged freezing latency") fixed
khugepaged to do not block a system suspend. But the result is that it
could not get interrupted before the given timeout because the condition
for the wait event is "false".
This patch puts back the original approach but it uses
freezable_schedule_timeout_interruptible() instead of
schedule_timeout_interruptible(). It does the right thing. I am pretty
sure that the freezable variant was not used in the original fix only
because it was not available at that time.
The regression has been there for ages. It was not critical. It just
did the allocation throttling a little bit more aggressively.
I found this problem when converting the kthread to kthread worker API
and trying to understand the code.
This bug is thought to have minimal userspace-visible impact. Somebody
could set a high alloc_sleep value by mistake, and then try to fix it
back, but khugepaged would keep sleeping until the high value expires.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cache isolate_start_pfn before entering isolate_migratepages(). If
pageblock is skipped in isolate_migratepages() due to whatever reason,
cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages
that were freed. For example, the following scenario can be possible:
- assume order-9 compaction, pageblock order is 9
- start_isolate_pfn is 0x200
- isolate_migratepages()
- skip a number of pageblocks
- start to isolate from pfn 0x600
- cc->migrate_pfn = 0x620
- return
- last_migrated_pfn is set to 0x200
- check flushing condition
- current_block_start is set to 0x600
- last_migrated_pfn < current_block_start then do useless flush
This wrong flush would not help the performance and success rate so this
patch tries to fix it. One simple way to know the exact position where
we start to isolate migratable pages is that we cache it in
isolate_migratepages() before entering actual isolation. This patch
implements that and fixes the problem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is merely a politeness: I've not found that shrink_page_list()
leads to deadlock with the page it holds locked across
wait_on_page_writeback(); but nevertheless, why hold others off by
keeping the page locked there?
And while we're at it: remove the mistaken "not " from the commentary on
this Case 3 (and a distracting blank line from Case 2, if I may).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the list_head is empty then we'll have called list_lru_from_kmem for
nothing. Move that call inside of the list_empty if block.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In log_early function, crt_early_log should also count once when
'crt_early_log >= ARRAY_SIZE(early_log)'. Otherwise the reported count
from kmemleak_init is one less than 'actual number'.
Then, in kmemleak_init, if early_log buffer size equal actual number,
kmemleak will init sucessful, so change warning condition to
'crt_early_log > ARRAY_SIZE(early_log)'.
Signed-off-by: Wang Kai <morgan.wang@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__split_vma() doesn't need out_err label, neither need initializing err.
copy_vma() can return NULL directly when kmem_cache_alloc() fails.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shmem uses shmem_recalc_inode to update i_blocks when it allocates page,
undoes range or swaps. But mm can drop clean page without notifying
shmem. This makes fstat sometimes return out-of-date block size.
The problem can be partially solved when we add
inode_operations->getattr which calls shmem_recalc_inode to update
i_blocks for fstat.
shmem_recalc_inode also updates counter used by statfs and
vm_committed_as. For them the situation is not changed. They still
suffer from the discrepancy after dropping clean page and before the
function is called by aforementioned triggers.
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit e3239ff92a ("memblock: Rename memblock_region to
memblock_type and memblock_property to memblock_region"), all local
variables of the membock_type type were renamed to 'type'. This commit
renames all remaining local variables with the memblock_type type to the
same view.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() can be called at any page at any time, which means that
we can't eliminate the possibility of containment failure. In such case
the best option is to leak the page intentionally (and never touch it
later.)
We have an unpoison function for testing, and it cannot handle such
containment-failed pages, which results in kernel panic (visible with
various calltraces.) So this patch suggests that we limit the
unpoisonable pages to properly contained pages and ignore any other
ones.
Testers are recommended to keep in mind that there're un-unpoisonable
pages when writing test programs.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wanpeng Li reported a race between soft_offline_page() and
unpoison_memory(), which causes the following kernel panic:
BUG: Bad page state in process bash pfn:97000
page:ffffea00025c0000 count:0 mapcount:1 mapping: (null) index:0x7f4fdbe00
flags: 0x1fffff80080048(uptodate|active|swapbacked)
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags:
flags: 0x40(active)
Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 nfsv4 dns_resolver bnep rfcomm nfsd bluetooth auth_rpcgss nfs_acl nfs rfkill lockd grace sunrpc i2c_algo_bit drm_kms_helper snd_hda_codec_realtek snd_hda_codec_generic drm snd_hda_intel fscache snd_hda_codec x86_pkg_temp_thermal coretemp kvm_intel snd_hda_core snd_hwdep kvm snd_pcm snd_seq_dummy snd_seq_oss crct10dif_pclmul snd_seq_midi crc32_pclmul snd_seq_midi_event ghash_clmulni_intel snd_rawmidi aesni_intel lrw gf128mul snd_seq glue_helper ablk_helper snd_seq_device cryptd fuse snd_timer dcdbas serio_raw mei_me parport_pc snd mei ppdev i2c_core video lp soundcore parport lpc_ich shpchp mfd_core ext4 mbcache jbd2 sd_mod e1000e ahci ptp libahci crc32c_intel libata pps_core
CPU: 3 PID: 2211 Comm: bash Not tainted 4.2.0-rc5-mm1+ #45
Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015
Call Trace:
dump_stack+0x48/0x5c
bad_page+0xe6/0x140
free_pages_prepare+0x2f9/0x320
? uncharge_list+0xdd/0x100
free_hot_cold_page+0x40/0x170
__put_single_page+0x20/0x30
put_page+0x25/0x40
unmap_and_move+0x1a6/0x1f0
migrate_pages+0x100/0x1d0
? kill_procs+0x100/0x100
? unlock_page+0x6f/0x90
__soft_offline_page+0x127/0x2a0
soft_offline_page+0xa6/0x200
This race is explained like below:
CPU0 CPU1
soft_offline_page
__soft_offline_page
TestSetPageHWPoison
unpoison_memory
PageHWPoison check (true)
TestClearPageHWPoison
put_page -> release refcount held by get_hwpoison_page in unpoison_memory
put_page -> release refcount held by isolate_lru_page in __soft_offline_page
migrate_pages
The second put_page() releases refcount held by isolate_lru_page() which
will lead to unmap_and_move() releases the last refcount of page and w/
mapcount still 1 since try_to_unmap() is not called if there is only one
user map the page. Anyway, the page refcount and mapcount will still
mess if the page is mapped by multiple users.
This race was introduced by commit 4491f71260 ("mm/memory-failure: set
PageHWPoison before migrate_pages()"), which focuses on preventing the
reuse of successfully migrated page. Before this commit we prevent the
reuse by changing the migratetype to MIGRATE_ISOLATE during soft
offlining, which has the following problems, so simply reverting the
commit is not a best option:
1) it doesn't eliminate the reuse completely, because
set_migratetype_isolate() can fail to set MIGRATE_ISOLATE to the
target page if the pageblock of the page contains one or more
unmovable pages (i.e. has_unmovable_pages() returns true).
2) the original code changes migratetype to MIGRATE_ISOLATE
forcibly, and sets it to MIGRATE_MOVABLE forcibly after soft offline,
regardless of the original migratetype state, which could impact
other subsystems like memory hotplug or compaction.
This patch moves PageSetHWPoison just after put_page() in
unmap_and_move(), which closes up the reported race window and minimizes
another race window b/w SetPageHWPoison and reallocation (which causes
the reuse of soft-offlined page.) The latter race window still exists
but it's acceptable, because it's rare and effectively the same as
ordinary "containment failure" case even if it happens, so keep the
window open is acceptable.
Fixes: 4491f71260 ("mm/memory-failure: set PageHWPoison before migrate_pages()")
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
num_poisoned_pages counter will be changed outside mm/memory-failure.c
by a subsequent patch, so this patch prepares wrappers to manipulate it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace most instances of put_page() in memory error handling with
put_hwpoison_page().
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hwpoison injection takes a refcount of target page and another refcount
of head page of THP if the target page is the tail page of a THP.
However, current code doesn't release the refcount of head page if the
THP is not supported to be injected wrt hwpoison filter.
Fix it by reducing the refcount of head page if the target page is the
tail page of a THP and it is not supported to be injected.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce put_hwpoison_page to put refcount for memory error handling.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP pages will get a refcount in madvise_hwpoison() w/
MF_COUNT_INCREASED flag, however, the refcount is still held when fail
to split THP pages.
Fix it by reducing the refcount of THP pages when fail to split THP.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When booting an arm64 kernel w/initrd using UEFI/grub, use of mem= will
likely cut off part or all of the initrd. This leaves it outside the
kernel linear map which leads to failure when unpacking. The x86 code
has a similar need to relocate an initrd outside of mapped memory in
some cases.
The current x86 code uses early_memremap() to copy the original initrd
from unmapped to mapped RAM. This patchset creates a generic
copy_from_early_mem() utility based on that x86 code and has arm64 and
x86 share it in their respective initrd relocation code.
This patch (of 3):
In some early boot circumstances, it may be necessary to copy from RAM
outside the kernel linear mapping to mapped RAM. The need to relocate
an initrd is one example in the x86 code. This patch creates a helper
function based on current x86 code.
Signed-off-by: Mark Salter <msalter@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction free scanner is looking for PageBuddy() pages and
skipping all others. For large compound pages such as THP or hugetlbfs,
we can save a lot of iterations if we skip them at once using their
compound_order(). This is generally unsafe and we can read a bogus
value of order due to a race, but if we are careful, the only danger is
skipping too much.
When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_free_scanned count decreased by at
least 15%.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction migrate scanner tries to skip THP pages by their order,
to reduce number of iterations for pages it cannot isolate. The check
is only done if PageLRU() is true, which means it applies to THP pages,
but not e.g. hugetlbfs pages or any other non-LRU compound pages, which
we have to iterate by base pages.
This limitation comes from the assumption that it's only safe to read
compound_order() when we have the zone's lru_lock and THP cannot be
split under us. But the only danger (after filtering out order values
that are not below MAX_ORDER, to prevent overflows) is that we skip too
much or too little after reading a bogus compound_order() due to a rare
race. This is the same reasoning as patch 99c0fd5e51 ("mm,
compaction: skip buddy pages by their order in the migrate scanner")
introduced for unsafely reading PageBuddy() order.
After this patch, all pages are tested for PageCompound() and we skip
them by compound_order(). The test is done after the test for
balloon_page_movable() as we don't want to assume if balloon pages (or
other pages with own isolation and migration implementation if a generic
API gets implemented) are compound or not.
When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_migrate_scanned count decreased by
15%.
[kirill.shutemov@linux.intel.com: change PageTransHuge checks to PageCompound for different series was squashed here]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reseting the cached compaction scanner positions is now open-coded in
__reset_isolation_suitable() and compact_finished(). Encapsulate the
functionality in a new function reset_cached_positions().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Handling the position where compaction free scanner should restart
(stored in cc->free_pfn) got more complex with commit e14c720efd ("mm,
compaction: remember position within pageblock in free pages scanner").
Currently the position is updated in each loop iteration of
isolate_freepages(), although it should be enough to update it only when
breaking from the loop. There's also an extra check outside the loop
updates the position in case we have met the migration scanner.
This can be simplified if we move the test for having isolated enough
from the for-loop header next to the test for contention, and
determining the restart position only in these cases. We can reuse the
isolate_start_pfn variable for this instead of setting cc->free_pfn
directly. Outside the loop, we can simply set cc->free_pfn to current
value of isolate_start_pfn without any extra check.
Also add a VM_BUG_ON to catch possible mistake in the future, in case we
later add a new condition that terminates isolate_freepages_block()
prematurely without also considering the condition in
isolate_freepages().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Assorted compaction cleanups and optimizations. The interesting patches
are 4 and 5. In 4, skipping of compound pages in single iteration is
improved for migration scanner, so it works also for !PageLRU compound
pages such as hugetlbfs, slab etc. Patch 5 introduces this kind of
skipping in the free scanner. The trick is that we can read
compound_order() without any protection, if we are careful to filter out
values larger than MAX_ORDER. The only danger is that we skip too much.
The same trick was already used for reading the freepage order in the
migrate scanner.
To demonstrate improvements of Patches 4 and 5 I've run stress-highalloc
from mmtests, set to simulate THP allocations (including __GFP_COMP) on
a 4GB system where 1GB was occupied by hugetlbfs pages. I'll include
just the relevant stats:
Patch 3 Patch 4 Patch 5
Compaction stalls 7523 7529 7515
Compaction success 323 304 322
Compaction failures 7200 7224 7192
Page migrate success 247778 264395 240737
Page migrate failure 15358 33184 21621
Compaction pages isolated 906928 980192 909983
Compaction migrate scanned 2005277 1692805 1498800
Compaction free scanned 13255284 11539986 9011276
Compaction cost 288 305 277
With 5 iterations per patch, the results are still noisy, but we can see
that Patch 4 does reduce migrate_scanned by 15% thanks to skipping the
hugetlbfs pages at once. Interestingly, free_scanned is also reduced
and I have no idea why. Patch 5 further reduces free_scanned as
expected, by 15%. Other stats are unaffected modulo noise.
[1] https://lkml.org/lkml/2015/1/19/158
This patch (of 5):
Compaction should finish when the migration and free scanner meet, i.e.
they reach the same pageblock. Currently however, the test in
compact_finished() simply just compares the exact pfns, which may yield
a false negative when the free scanner position is in the middle of a
pageblock and the migration scanner reaches the begining of the same
pageblock.
This hasn't been a problem until commit e14c720efd ("mm, compaction:
remember position within pageblock in free pages scanner") allowed the
free scanner position to be in the middle of a pageblock between
invocations. The hot-fix 1d5bfe1ffb ("mm, compaction: prevent
infinite loop in compact_zone") prevented the issue by adding a special
check in the migration scanner to satisfy the current detection of
scanners meeting.
However, the proper fix is to make the detection more robust. This
patch introduces the compact_scanners_met() function that returns true
when the free scanner position is in the same or lower pageblock than
the migration scanner. The special case in isolate_migratepages()
introduced by 1d5bfe1ffb is removed.
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a call to dma_pool_alloc() with a ___GFP_ZERO flag returns a
non-zeroed memory region.
This patchset adds support for the __GFP_ZERO flag to dma_pool_alloc(),
adds 2 wrapper functions for allocing zeroed memory from a pool, and
provides a coccinelle script for finding & replacing instances of
dma_pool_alloc() followed by memset(0) with a single dma_pool_zalloc()
call.
There was some concern that this always calls memset() to zero, instead
of passing __GFP_ZERO into the page allocator.
[https://lkml.org/lkml/2015/7/15/881]
I ran a test on my system to get an idea of how often dma_pool_alloc()
calls into pool_alloc_page().
After Boot: [ 30.119863] alloc_calls:541, page_allocs:7
After an hour: [ 3600.951031] alloc_calls:9566, page_allocs:12
After copying 1GB file onto a USB drive:
[ 4260.657148] alloc_calls:17225, page_allocs:12
It doesn't look like dma_pool_alloc() calls down to the page allocator
very often (at least on my system).
This patch (of 4):
Currently the __GFP_ZERO flag is ignored by dma_pool_alloc().
Make dma_pool_alloc() zero the memory if this flag is set.
Signed-off-by: Sean O. Stalley <sean.stalley@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Gilles Muller <Gilles.Muller@lip6.fr>
Cc: Nicolas Palix <nicolas.palix@imag.fr>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
reclaim_clean_pages_from_list() assumes that shrink_page_list() returns
number of pages removed from the candidate list. But shrink_page_list()
puts back mlocked pages without passing it to caller and without
counting as nr_reclaimed. This increases nr_isolated.
To fix this, this patch changes shrink_page_list() to pass unevictable
pages back to caller. Caller will take care those pages.
Minchan said:
It fixes two issues.
1. With unevictable page, cma_alloc will be successful.
Exactly speaking, cma_alloc of current kernel will fail due to
unevictable pages.
2. fix leaking of NR_ISOLATED counter of vmstat
With it, too_many_isolated works. Otherwise, it could make hang until
the process get SIGKILL.
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If transparent huge pages are enabled, we can isolate many more pages
than we actually need to scan, because we count both single and huge
pages equally in isolate_lru_pages().
Since commit 5bc7b8aca9 ("mm: thp: add split tail pages to shrink
page list in page reclaim"), we scan all the tail pages immediately
after a huge page split (see shrink_page_list()). As a result, we can
reclaim up to SWAP_CLUSTER_MAX * HPAGE_PMD_NR (512 MB) in one run!
This is easy to catch on memcg reclaim with zswap enabled. The latter
makes swapout instant so that if we happen to scan an unreferenced huge
page we will evict both its head and tail pages immediately, which is
likely to result in excessive reclaim.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bootmem isn't popular any more, but some architectures still use it, and
freeing to bootmem after calling free_all_bootmem_core() can end up
scribbling over random memory. Instead, make sure the kernel generates
a warning in this case by ensuring the node_bootmem_map field is
non-NULL when are freeing or marking bootmem.
An instance of this bug was just fixed in the tile architecture ("tile:
use free_bootmem_late() for initrd") and catching this case more widely
seems like a good thing.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul McQuade <paulmcquad@gmail.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nowaday, set/unset_migratetype_isolate() is defined and used only in
mm/page_isolation, so let's limit the scope within the file.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This check was introduced as part of
6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
which got duplicated by
48684a65b4 ("mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)")
by reintroducing it earlier on queue_page_test_walk()
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When parsing SRAT, all memory ranges are added into numa_meminfo. In
numa_init(), before entering numa_cleanup_meminfo(), all possible memory
ranges are in numa_meminfo. And numa_cleanup_meminfo() removes all
ranges over max_pfn or empty.
But, this only works if the nodes are continuous. Let's have a look at
the following example:
We have an SRAT like this:
SRAT: Node 0 PXM 0 [mem 0x00000000-0x5fffffff]
SRAT: Node 0 PXM 0 [mem 0x100000000-0x1ffffffffff]
SRAT: Node 1 PXM 1 [mem 0x20000000000-0x3ffffffffff]
SRAT: Node 4 PXM 2 [mem 0x40000000000-0x5ffffffffff] hotplug
SRAT: Node 5 PXM 3 [mem 0x60000000000-0x7ffffffffff] hotplug
SRAT: Node 2 PXM 4 [mem 0x80000000000-0x9ffffffffff] hotplug
SRAT: Node 3 PXM 5 [mem 0xa0000000000-0xbffffffffff] hotplug
SRAT: Node 6 PXM 6 [mem 0xc0000000000-0xdffffffffff] hotplug
SRAT: Node 7 PXM 7 [mem 0xe0000000000-0xfffffffffff] hotplug
On boot, only node 0,1,2,3 exist.
And the numa_meminfo will look like this:
numa_meminfo.nr_blks = 9
1. on node 0: [0, 60000000]
2. on node 0: [100000000, 20000000000]
3. on node 1: [20000000000, 40000000000]
4. on node 4: [40000000000, 60000000000]
5. on node 5: [60000000000, 80000000000]
6. on node 2: [80000000000, a0000000000]
7. on node 3: [a0000000000, a0800000000]
8. on node 6: [c0000000000, a0800000000]
9. on node 7: [e0000000000, a0800000000]
And numa_cleanup_meminfo() will merge 1 and 2, and remove 8,9 because the
end address is over max_pfn, which is a0800000000. But 4 and 5 are not
removed because their end addresses are less then max_pfn. But in fact,
node 4 and 5 don't exist.
In a word, numa_cleanup_meminfo() is not able to handle holes between nodes.
Since memory ranges in node 4 and 5 are in numa_meminfo, in
numa_register_memblks(), node 4 and 5 will be mistakenly set to online.
If you run lscpu, it will show:
NUMA node0 CPU(s): 0-14,128-142
NUMA node1 CPU(s): 15-29,143-157
NUMA node2 CPU(s):
NUMA node3 CPU(s):
NUMA node4 CPU(s): 62-76,190-204
NUMA node5 CPU(s): 78-92,206-220
In this patch, we use memblock_overlaps_region() to check if ranges in
numa_meminfo overlap with ranges in memory_block. Since memory_block
contains all available memory at boot time, if they overlap, it means the
ranges exist. If not, then remove them from numa_meminfo.
After this patch, lscpu will show:
NUMA node0 CPU(s): 0-14,128-142
NUMA node1 CPU(s): 15-29,143-157
NUMA node4 CPU(s): 62-76,190-204
NUMA node5 CPU(s): 78-92,206-220
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_overlaps_region() checks if the given memblock region
intersects a region in memblock. If so, it returns the index of the
intersected region.
But its only caller is memblock_is_region_reserved(), and it returns 0
if false, non-zero if true.
Both of these should return bool.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we have hole punching support for hugetlbfs, we can also
support the MADV_REMOVE interface to it.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is based on the shmem version, but it has diverged quite a bit. We
have no swap to worry about, nor the new file sealing. Add
synchronication via the fault mutex table to coordinate page faults,
fallocate allocation and fallocate hole punch.
What this allows us to do is move physical memory in and out of a
hugetlbfs file without having it mapped. This also gives us the ability
to support MADV_REMOVE since it is currently implemented using
fallocate(). MADV_REMOVE lets madvise() remove pages from the middle of
a hugetlbfs file, which wasn't possible before.
hugetlbfs fallocate only operates on whole huge pages.
Based on code by Dave Hansen.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, there is only a single place where hugetlbfs pages are added
to the page cache. The new fallocate code be adding a second one, so
break the functionality out into its own helper.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Areas hole punched by fallocate will not have entries in the
region/reserve map. However, shared mappings with min_size subpool
reservations may still have reserved pages. alloc_huge_page needs to
handle this special case and do the proper accounting.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In vma_has_reserves(), the current assumption is that reserves are
always present for shared mappings. However, this will not be the case
with fallocate hole punch. When punching a hole, the present page will
be deleted as well as the region/reserve map entry (and hence any
reservation). vma_has_reserves is passed "chg" which indicates whether
or not a region/reserve map is present. Use this to determine if
reserves are actually present or were removed via hole punch.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify truncate_hugepages() to take a range of pages (start, end)
instead of simply start. If an end value of LLONG_MAX is passed, the
current "truncate" functionality is maintained. Existing callers are
modified to pass LLONG_MAX as end of range. By keying off end ==
LLONG_MAX, the routine behaves differently for truncate and hole punch.
Page removal is now synchronized with page allocation via faults by
using the fault mutex table. The hole punch case can experience the
rare region_del error and must handle accordingly.
Add the routine hugetlb_fix_reserve_counts to fix up reserve counts in
the case where region_del returns an error.
Since the routine handles more than just the truncate case, it is
renamed to remove_inode_hugepages(). To be consistent, the routine
truncate_huge_page() is renamed remove_huge_page().
Downstream of remove_inode_hugepages(), the routine
hugetlb_unreserve_pages() is also modified to take a range of pages.
hugetlb_unreserve_pages is modified to detect an error from region_del and
pass it back to the caller.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb page faults are currently synchronized by the table of mutexes
(htlb_fault_mutex_table). fallocate code will need to synchronize with
the page fault code when it allocates or deletes pages. Expose
interfaces so that fallocate operations can be synchronized with page
faults. Minor name changes to be more consistent with other global
hugetlb symbols.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fallocate hole punch will want to remove a specific range of pages. The
existing region_truncate() routine deletes all region/reserve map
entries after a specified offset. region_del() will provide this same
functionality if the end of region is specified as LONG_MAX. Hence,
region_del() can replace region_truncate().
Unlike region_truncate(), region_del() can return an error in the rare
case where it can not allocate memory for a region descriptor. This
ONLY happens in the case where an existing region must be split.
Current callers passing LONG_MAX as end of range will never experience
this error and do not need to deal with error handling. Future callers
of region_del() (such as fallocate hole punch) will need to handle this
error.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs is used today by applications that want a high degree of
control over huge page usage. Often, large hugetlbfs files are used to
map a large number huge pages into the application processes. The
applications know when page ranges within these large files will no
longer be used, and ideally would like to release them back to the
subpool or global pools for other uses. The fallocate() system call
provides an interface for preallocation and hole punching within files.
This patch set adds fallocate functionality to hugetlbfs.
fallocate hole punch will want to remove a specific range of pages.
When pages are removed, their associated entries in the region/reserve
map will also be removed. This will break an assumption in the
region_chg/region_add calling sequence. If a new region descriptor must
be allocated, it is done as part of the region_chg processing. In this
way, region_add can not fail because it does not need to attempt an
allocation.
To prepare for fallocate hole punch, create a "cache" of descriptors
that can be used by region_add if necessary. region_chg will ensure
there are sufficient entries in the cache. It will be necessary to
track the number of in progress add operations to know a sufficient
number of descriptors reside in the cache. A new routine region_abort
is added to adjust this in progress count when add operations are
aborted. vma_abort_reservation is also added for callers creating
reservations with vma_needs_reservation/vma_commit_reservation.
[akpm@linux-foundation.org: fix typo in comment, use more cols]
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pair of get/set_freepage_migratetype() functions are used to cache
pageblock migratetype for a page put on a pcplist, so that it does not
have to be retrieved again when the page is put on a free list (e.g.
when pcplists become full). Historically it was also assumed that the
value is accurate for pages on freelists (as the functions' names
unfortunately suggest), but that cannot be guaranteed without affecting
various allocator fast paths. It is in fact not needed and all such
uses have been removed.
The last remaining (but pointless) usage related to pages of freelists
is in move_freepages(), which this patch removes.
To prevent further confusion, rename the functions to
get/set_pcppage_migratetype() and expand their description. Since all
the users are now in mm/page_alloc.c, move the functions there from the
shared header.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Seungho Park <seungho1.park@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __test_page_isolated_in_pageblock() is used to verify whether all
pages in pageblock were either successfully isolated, or are hwpoisoned.
Two of the possible state of pages, that are tested, are however bogus
and misleading.
Both tests rely on get_freepage_migratetype(page), which however has no
guarantees about pages on freelists. Specifically, it doesn't guarantee
that the migratetype returned by the function actually matches the
migratetype of the freelist that the page is on. Such guarantee is not
its purpose and would have negative impact on allocator performance.
The first test checks whether the freepage_migratetype equals
MIGRATE_ISOLATE, supposedly to catch races between page isolation and
allocator activity. These races should be fixed nowadays with
51bb1a4093 ("mm/page_alloc: add freepage on isolate pageblock to correct
buddy list") and related patches. As explained above, the check
wouldn't be able to catch them reliably anyway. For the same reason
false positives can happen, although they are harmless, as the
move_freepages() call would just move the page to the same freelist it's
already on. So removing the test is not a bug fix, just cleanup. After
this patch, we assume that all PageBuddy pages are on the correct
freelist and that the races were really fixed. A truly reliable
verification in the form of e.g. VM_BUG_ON() would be complicated and
is arguably not needed.
The second test (page_count(page) == 0 && get_freepage_migratetype(page)
== MIGRATE_ISOLATE) is probably supposed (the code comes from a big
memory isolation patch from 2007) to catch pages on MIGRATE_ISOLATE
pcplists. However, pcplists don't contain MIGRATE_ISOLATE freepages
nowadays, those are freed directly to free lists, so the check is
obsolete. Remove it as well.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Seungho Park <seungho1.park@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only user is sock_update_memcg which is living in memcontrol.c so it
doesn't make much sense to pollute sock.h by this inline helper. Move it
to memcontrol.c and open code it into its only caller.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sk_prot->proto_cgroup is allowed to return NULL but sock_update_memcg
doesn't check for NULL. The function relies on the mem_cgroup_is_root
check because we shouldn't get NULL otherwise because mem_cgroup_from_task
will always return !NULL.
All other callers are checking for NULL and we can safely replace
mem_cgroup_is_root() check by cg_proto != NULL which will be more
straightforward (proto_cgroup returns NULL for the root memcg already).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Restructure it to lower nesting level and help the planned threadgroup
leader iteration changes.
This is pure reorganization.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.
This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines. This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)
text data bss dec hex filename
12355346 1823792 1089536 15268674 e8fb42 vmlinux.before
12354970 1823792 1089536 15268298 e8f9ca vmlinux.after
This is not much (370B) but better than nothing.
We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.
The patch doesn't introduce any functional changes.
[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dma_pool_destroy() does not tolerate a NULL dma_pool pointer argument and
performs a NULL-pointer dereference. This requires additional attention
and effort from developers/reviewers and forces all dma_pool_destroy()
callers to do a NULL check
if (pool)
dma_pool_destroy(pool);
Or, otherwise, be invalid dma_pool_destroy() users.
Tweak dma_pool_destroy() and NULL-check the pointer there.
Proposed by Andrew Morton.
Link: https://lkml.org/lkml/2015/6/8/583
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mempool_destroy() does not tolerate a NULL mempool_t pointer argument and
performs a NULL-pointer dereference. This requires additional attention
and effort from developers/reviewers and forces all mempool_destroy()
callers to do a NULL check
if (pool)
mempool_destroy(pool);
Or, otherwise, be invalid mempool_destroy() users.
Tweak mempool_destroy() and NULL-check the pointer there.
Proposed by Andrew Morton.
Link: https://lkml.org/lkml/2015/6/8/583
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmem_cache_destroy() does not tolerate a NULL kmem_cache pointer argument
and performs a NULL-pointer dereference. This requires additional
attention and effort from developers/reviewers and forces all
kmem_cache_destroy() callers (200+ as of 4.1) to do a NULL check
if (cache)
kmem_cache_destroy(cache);
Or, otherwise, be invalid kmem_cache_destroy() users.
Tweak kmem_cache_destroy() and NULL-check the pointer there.
Proposed by Andrew Morton.
Link: https://lkml.org/lkml/2015/6/8/583
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "killed" variable in out_of_memory() can be removed since the call to
oom_kill_process() where we should block to allow the process time to
exit is obvious.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sysrq+f is used to kill a process either for debug or when the VM is
otherwise unresponsive.
It is not intended to trigger a panic when no process may be killed.
Avoid panicking the system for sysrq+f when no processes are killed.
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Michal Hocko <mhocko@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The force_kill member of struct oom_control isn't needed if an order of -1
is used instead. This is the same as order == -1 in struct
compact_control which requires full memory compaction.
This patch introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are essential elements to an oom context that are passed around to
multiple functions.
Organize these elements into a new struct, struct oom_control, that
specifies the context for an oom condition.
This patch introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes set_recommended_min_free_kbytes() have a return type of void as
it cannot fail.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
=== Short summary ====
iov_iter_fault_in_readable() works around a really rare case and we can
avoid the deadlock it addresses in another way: disable page faults and
work around copy failures by faulting after the copy in a slow path
instead of before in a hot one.
I have a little microbenchmark that does repeated, small writes to tmpfs.
This patch speeds that micro up by 6.2%.
=== Long version ===
When doing a sys_write() we have a source buffer in userspace and then a
target file page.
If both of those are the same physical page, there is a potential deadlock
that we avoid. It would happen something like this:
1. We start the write to the file
2. Allocate page cache page and set it !Uptodate
3. Touch the userspace buffer to copy in the user data
4. Page fault (since source of the write not yet mapped)
5. Page fault code tries to lock the page and deadlocks
(more details on this below)
To avoid this, we prefault the page to guarantee that this fault does not
occur. But, this prefault comes at a cost. It is one of the most
expensive things that we do in a hot write() path (especially if we
compare it to the read path). It is working around a pretty rare case.
To fix this, it's pretty simple. We move the "prefault" code to run after
we attempt the copy. We explicitly disable page faults _during_ the copy,
detect the copy failure, then execute the "prefault" ouside of where the
page lock needs to be held.
iov_iter_copy_from_user_atomic() actually already has an implicit
pagefault_disable() inside of it (at least on x86), but we add an explicit
one. I don't think we can depend on every kmap_atomic() implementation to
pagefault_disable() for eternity.
===================================================
The stack trace when this happens looks like this:
wait_on_page_bit_killable+0xc0/0xd0
__lock_page_or_retry+0x84/0xa0
filemap_fault+0x1ed/0x3d0
__do_fault+0x41/0xc0
handle_mm_fault+0x9bb/0x1210
__do_page_fault+0x17f/0x3d0
do_page_fault+0xc/0x10
page_fault+0x22/0x30
generic_perform_write+0xca/0x1a0
__generic_file_write_iter+0x190/0x1f0
ext4_file_write_iter+0xe9/0x460
__vfs_write+0xaa/0xe0
vfs_write+0xa6/0x1a0
SyS_write+0x46/0xa0
entry_SYSCALL_64_fastpath+0x12/0x6a
0xffffffffffffffff
(Note, this does *NOT* happen in practice today because
the kmap_atomic() does a pagefault_disable(). The trace
above was obtained by taking out the pagefault_disable().)
You can trigger the deadlock with this little code snippet:
fd = open("foo", O_RDWR);
fdmap = mmap(NULL, len, PROT_WRITE|PROT_READ, MAP_SHARED, fd, 0);
write(fd, &fdmap[0], 1);
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Paul Cassella <cassella@cray.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to know per-process workingset size for smart memory management
on userland and we use swap(ex, zram) heavily to maximize memory
efficiency so workingset includes swap as well as RSS.
On such system, if there are lots of shared anonymous pages, it's really
hard to figure out exactly how many each process consumes memory(ie, rss
+ wap) if the system has lots of shared anonymous memory(e.g, android).
This patch introduces SwapPss field on /proc/<pid>/smaps so we can get
more exact workingset size per process.
Bongkyu tested it. Result is below.
1. 50M used swap
SwapTotal: 461976 kB
SwapFree: 411192 kB
$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
48236
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
141184
2. 240M used swap
SwapTotal: 461976 kB
SwapFree: 216808 kB
$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
230315
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
1387744
[akpm@linux-foundation.org: simplify kunmap_atomic() call]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Bongkyu Kim <bongkyu.kim@lge.com>
Tested-by: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memtest does not require these headers to be included.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Leon Romanovsky <leon@leon.nu>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- prefer pr_info(... to printk(KERN_INFO ...
- use %pa for phys_addr_t
- use cpu_to_be64 while printing pattern in reserve_bad_mem()
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Leon Romanovsky <leon@leon.nu>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since simple_strtoul is obsolete and memtest_pattern is type of int, use
kstrtouint instead.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Leon Romanovsky <leon@leon.nu>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memblock_region has flags to indicates the type of this range. For
the overlap case, memblock_add_range() inserts the lower part and leave the
upper part as indicated in the overlapped region.
If the flags of the new range differs from the overlapped region, the
information recorded is not correct.
This patch adds a WARN_ON when the flags of the new range differs from the
overlapped region.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit febd5949e1 ("mm/memory hotplug: init the zone's size when
calculating node totalpages") refines the function
free_area_init_core().
After doing so, these two parameters are not used anymore.
This patch removes these two parameters.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nr_node_ids records the highest possible node id, which is calculated by
scanning the bitmap node_states[N_POSSIBLE]. Current implementation
scan the bitmap from the beginning, which will scan the whole bitmap.
This patch reverses the order by scanning from the end with
find_last_bit().
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__dax_fault() takes i_mmap_lock for write. Let's pair it with write
unlock on do_cow_fault() side.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX is not so special: we need i_mmap_lock to protect mapping->i_mmap.
__dax_pmd_fault() uses unmap_mapping_range() shoot out zero page from
all mappings. We need to drop i_mmap_lock there to avoid lock deadlock.
Re-aquiring the lock should be fine since we check i_size after the
point.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is another place where DAX assumed that pgtable_t was a pointer.
Open code the important parts of set_huge_zero_page() in DAX and make
set_huge_zero_page() static again.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original DAX code assumed that pgtable_t was a pointer, which isn't
true on all architectures. Restructure the code to not rely on that
assumption.
[willy@linux.intel.com: further fixes integrated into this patch]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The DAX code neglected to put the refcount on the huge zero page.
Also we must notify on splits.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If two threads write-fault on the same hole at the same time, the winner
of the race will return to userspace and complete their store, only to
have the loser overwrite their store with zeroes. Fix this for now by
taking the i_mmap_sem for write instead of read, and do so outside the
call to get_block(). Now the loser of the race will see the block has
already been zeroed, and will not zero it again.
This severely limits our scalability. I have ideas for improving it, but
those can wait for a later patch.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It would make more sense to have all the return values from
vmf_insert_pfn_pmd() encoded in one place instead of having to follow
the convention into insert_pfn(). Suggested by Jeff Moyer.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to vm_insert_pfn(), but for PMDs rather than PTEs. The 'vmf_'
prefix instead of 'vm_' prefix is intended to indicate that it returns a
VMF_ value rather than an errno (which would only have to be converted
into a VMF_ value anyway).
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To use the huge zero page in DAX, we need these functions exported.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow non-anonymous VMAs to provide huge pages in response to a page fault.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a vma_is_dax() helper macro to test whether the VMA is DAX, and use it
in zap_huge_pmd() and __split_huge_page_pmd().
[akpm@linux-foundation.org: fix build]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Undo the change which "userfaultfd: call handle_userfault() for
userfaultfd_missing() faults" made to set_huge_zero_page(). DAX will
need that return value.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series of patches adds support for using PMD page table entries to
map DAX files. We expect NV-DIMMs to start showing up that are many
gigabytes in size and the memory consumption of 4kB PTEs will be
astronomical.
The patch series leverages much of the Transparant Huge Pages
infrastructure, going so far as to borrow one of Kirill's patches from
his THP page cache series.
This patch (of 10):
Since we're going to have huge pages in page cache, we need to call adjust
file-backed VMA, which potentially can contain huge pages.
For now we call it for all VMAs.
Probably later we will need to introduce a flag to indicate that the VMA
has huge pages.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test-case:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <assert.h>
void *find_vdso_vaddr(void)
{
FILE *perl;
char buf[32] = {};
perl = popen("perl -e 'open STDIN,qq|/proc/@{[getppid]}/maps|;"
"/^(.*?)-.*vdso/ && print hex $1 while <>'", "r");
fread(buf, sizeof(buf), 1, perl);
fclose(perl);
return (void *)atol(buf);
}
#define PAGE_SIZE 4096
int main(void)
{
void *vdso = find_vdso_vaddr();
assert(vdso);
// of course they should differ, and they do so far
printf("vdso pages differ: %d\n",
!!memcmp(vdso, vdso + PAGE_SIZE, PAGE_SIZE));
// split into 2 vma's
assert(mprotect(vdso, PAGE_SIZE, PROT_READ) == 0);
// force another fault on the next check
assert(madvise(vdso, 2 * PAGE_SIZE, MADV_DONTNEED) == 0);
// now they no longer differ, the 2nd vm_pgoff is wrong
printf("vdso pages differ: %d\n",
!!memcmp(vdso, vdso + PAGE_SIZE, PAGE_SIZE));
return 0;
}
Output:
vdso pages differ: 1
vdso pages differ: 0
This is because split_vma() correctly updates ->vm_pgoff, but the logic
in insert_vm_struct() and special_mapping_fault() is absolutely broken,
so the fault at vdso + PAGE_SIZE return the 1st page. The same happens
if you simply unmap the 1st page.
special_mapping_fault() does:
pgoff = vmf->pgoff - vma->vm_pgoff;
and this is _only_ correct if vma->vm_start mmaps the first page from
->vm_private_data array.
vdso or any other user of install_special_mapping() is not anonymous,
it has the "backing storage" even if it is just the array of pages.
So we actually need to make vm_pgoff work as an offset in this array.
Note: this also allows to fix another problem: currently gdb can't access
"[vvar]" memory because in this case special_mapping_fault() doesn't work.
Now that we can use ->vm_pgoff we can implement ->access() and fix this.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
special_mapping_fault() is absolutely broken. It seems it was always
wrong, but this didn't matter until vdso/vvar started to use more than
one page.
And after this change vma_is_anonymous() becomes really trivial, it
simply checks vm_ops == NULL. However, I do think the helper makes
sense. There are a lot of ->vm_ops != NULL checks, the helper makes the
caller's code more understandable (self-documented) and this is more
grep-friendly.
This patch (of 3):
Preparation. Add the new simple helper, vma_is_anonymous(vma), and change
handle_pte_fault() to use it. It will have more users.
The name is not accurate, say a hpet_mmap()'ed vma is not anonymous.
Perhaps it should be named vma_has_fault() instead. But it matches the
logic in mmap.c/memory.c (see next changes). "True" just means that a
page fault will use do_anonymous_page().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
- Convert xen-blkfront to the multiqueue API
- [arm] Support binding event channels to different VCPUs.
- [x86] Support > 512 GiB in a PV guests (off by default as such a
guest cannot be migrated with the current toolstack).
- [x86] PMU support for PV dom0 (limited support for using perf with
Xen and other guests).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJV7wIdAAoJEFxbo/MsZsTR0hEH/04HTKLKGnSJpZ5WbMPxqZxE
UqGlvhvVWNAmFocZmbPcEi9T1qtcFrX5pM55JQr6UmAp3ovYsT2q1Q1kKaOaawks
pSfc/YEH3oQW5VUQ9Lm9Ru5Z8Btox0WrzRREO92OF36UOgUOBOLkGsUfOwDinNIM
lSk2djbYwDYAsoeC3PHB32wwMI//Lz6B/9ZVXcyL6ULynt1ULdspETjGnptRPZa7
JTB5L4/soioKOn18HDwwOhKmvaFUPQv9Odnv7dc85XwZreajhM/KMu3qFbMDaF/d
WVB1NMeCBdQYgjOrUjrmpyr5uTMySiQEG54cplrEKinfeZgKlEyjKvjcAfJfiac=
=Ktjl
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Xen features and fixes for 4.3:
- Convert xen-blkfront to the multiqueue API
- [arm] Support binding event channels to different VCPUs.
- [x86] Support > 512 GiB in a PV guests (off by default as such a
guest cannot be migrated with the current toolstack).
- [x86] PMU support for PV dom0 (limited support for using perf with
Xen and other guests)"
* tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (33 commits)
xen: switch extra memory accounting to use pfns
xen: limit memory to architectural maximum
xen: avoid another early crash of memory limited dom0
xen: avoid early crash of memory limited dom0
arm/xen: Remove helpers which are PV specific
xen/x86: Don't try to set PCE bit in CR4
xen/PMU: PMU emulation code
xen/PMU: Intercept PMU-related MSR and APIC accesses
xen/PMU: Describe vendor-specific PMU registers
xen/PMU: Initialization code for Xen PMU
xen/PMU: Sysfs interface for setting Xen PMU mode
xen: xensyms support
xen: remove no longer needed p2m.h
xen: allow more than 512 GB of RAM for 64 bit pv-domains
xen: move p2m list if conflicting with e820 map
xen: add explicit memblock_reserve() calls for special pages
mm: provide early_memremap_ro to establish read-only mapping
xen: check for initrd conflicting with e820 map
xen: check pre-allocated page tables for conflict with memory map
xen: check for kernel memory conflicting with memory layout
...
Pull vfs updates from Al Viro:
"In this one:
- d_move fixes (Eric Biederman)
- UFS fixes (me; locking is mostly sane now, a bunch of bugs in error
handling ought to be fixed)
- switch of sb_writers to percpu rwsem (Oleg Nesterov)
- superblock scalability (Josef Bacik and Dave Chinner)
- swapon(2) race fix (Hugh Dickins)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (65 commits)
vfs: Test for and handle paths that are unreachable from their mnt_root
dcache: Reduce the scope of i_lock in d_splice_alias
dcache: Handle escaped paths in prepend_path
mm: fix potential data race in SyS_swapon
inode: don't softlockup when evicting inodes
inode: rename i_wb_list to i_io_list
sync: serialise per-superblock sync operations
inode: convert inode_sb_list_lock to per-sb
inode: add hlist_fake to avoid the inode hash lock in evict
writeback: plug writeback at a high level
change sb_writers to use percpu_rw_semaphore
shift percpu_counter_destroy() into destroy_super_work()
percpu-rwsem: kill CONFIG_PERCPU_RWSEM
percpu-rwsem: introduce percpu_rwsem_release() and percpu_rwsem_acquire()
percpu-rwsem: introduce percpu_down_read_trylock()
document rwsem_release() in sb_wait_write()
fix the broken lockdep logic in __sb_start_write()
introduce __sb_writers_{acquired,release}() helpers
ufs_inode_get{frag,block}(): get rid of 'phys' argument
ufs_getfrag_block(): tidy up a bit
...
This makes vma_has_reserves() return bool due to this particular function
only returning either one or zero as its return value.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the madvise_bahaviour_valid() function return bool due to
this particular function always returning the value of either one or
zero as its return value.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the tlb_next_batch() bool due to this particular function only
ever returning either one or zero as its return value.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the function is_page_busy() return bool rather then an int now
due to this particular function's single return statement only ever
evaulating to either one or zero.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minor, but this check is overcomplicated. Two half-intervals do NOT
overlap if END1 <= START2 || END2 <= START1, mremap_to() just needs to
negate this check.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "new_len > old_len" branch in vma_to_resize() looks very confusing.
It only covers the VM_DONTEXPAND/pgoff checks but everything below is
equally unneeded if new_len == old_len.
Change this code to return if "new_len == old_len", new_len < old_len is
not possible, otherwise the code below is wrong anyway.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_vma() sets *locked even if move_page_tables() or ->mremap() fails,
change sys_mremap() to check "ret & ~PAGE_MASK".
I think we should simply remove the VM_LOCKED code in move_vma(), that is
why this patch doesn't change move_vma(). But this needs more cleanups.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_ops->mremap() looks more natural and clean in move_vma(), and this
way ->mremap() can have more users. Say, vdso.
While at it, s/aio_ring_remap/aio_ring_mremap/.
Note: this is the minimal change before ->mremap() finds another user in
file_operations; this method should have more arguments, and it can be
used to kill arch_remap().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_vma() can't just return if f_op->mremap() fails, we should unmap the
new vma like we do if move_page_tables() fails. To avoid the code
duplication this patch moves the "move entries back" under the new "if
(err)" branch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes vma_shareable() return bool now due to this particular function
only ever returning either one or zero as its return value.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With DAX, pfn mapping becoming more common. The patch adjusts GUP code to
cover pfn mapping for cases when we don't need struct page to proceed.
To make it possible, let's change follow_page() code to return -EEXIST
error code if proper page table entry exists, but no corresponding struct
page. __get_user_page() would ignore the error code and move to the next
page frame.
The immediate effect of the change is working MAP_POPULATE and mlock() on
DAX mappings.
[akpm@linux-foundation.org: fix arm64 build]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The manpage for move_pages(2) specifies that status code for zero page is
supposed to be -EFAULT. Currently kernel return -ENOENT in this case.
follow_page() can do it for us, if we would ask for FOLL_DUMP. The use of
FOLL_DUMP also means that the upper layer page tables pages are no longer
allocated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clark stumbled over a VM_BUG_ON() in -RT which was then was removed by
Johannes in commit f371763a79 ("mm: memcontrol: fix false-positive
VM_BUG_ON() on -rt"). The comment before that patch was a tiny bit better
than it is now. While the patch claimed to fix a false-postive on -RT
this was not the case. None of the -RT folks ACKed it and it was not a
false positive report. That was a *real* problem.
This patch updates the comment that is improper because it refers to
"disabled preemption" as a consequence of that lock being taken. A
spin_lock() disables preemption, true, but in this case the code relies on
the fact that the lock _also_ disables interrupts once it is acquired.
And this is the important detail (which was checked the VM_BUG_ON()) which
needs to be pointed out. This is the hint one needs while looking at the
code. It was explained by Johannes on the list that the per-CPU variables
are protected by local_irq_save(). The BUG_ON() was helpful. This code
has been workarounded in -RT in the meantime. I wouldn't mind running
into more of those if the code in question uses *special* kind of locking
since now there is no verification (in terms of lockdep or BUG_ON()) and
therefore I bring the VM_BUG_ON() check back in.
The two functions after the comment could also have a "local_irq_save()"
dance around them in order to serialize access to the per-CPU variables.
This has been avoided because the interrupts should be off.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memblock_region has nid to indicates the Node ID of this range. For
the overlap case, memblock_add_range() inserts the lower part and leave
the upper part as indicated in the overlapped region.
If the nid of the new range differs from the overlapped region, the
information recorded is not correct.
This patch adds a WARN_ON when the nid of the new range differs from the
overlapped region.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a PTE is unmapped and it's dirty then it was writable recently. Due to
deferred TLB flushing, it's best to assume a writable TLB cache entry
exists. With that assumption, the TLB must be flushed before any IO can
start or the page is freed to avoid lost writes or data corruption. This
patch defers flushing of potentially writable TLBs as long as possible.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An IPI is sent to flush remote TLBs when a page is unmapped that was
potentially accesssed by other CPUs. There are many circumstances where
this happens but the obvious one is kswapd reclaiming pages belonging to a
running process as kswapd and the task are likely running on separate
CPUs.
On small machines, this is not a significant problem but as machine gets
larger with more cores and more memory, the cost of these IPIs can be
high. This patch uses a simple structure that tracks CPUs that
potentially have TLB entries for pages being unmapped. When the unmapping
is complete, the full TLB is flushed on the assumption that a refill cost
is lower than flushing individual entries.
Architectures wishing to do this must give the following guarantee.
If a clean page is unmapped and not immediately flushed, the
architecture must guarantee that a write to that linear address
from a CPU with a cached TLB entry will trap a page fault.
This is essentially what the kernel already depends on but the window is
much larger with this patch applied and is worth highlighting. The
architecture should consider whether the cost of the full TLB flush is
higher than sending an IPI to flush each individual entry. An additional
architecture helper called flush_tlb_local is required. It's a trivial
wrapper with some accounting in the x86 case.
The impact of this patch depends on the workload as measuring any benefit
requires both mapped pages co-located on the LRU and memory pressure. The
case with the biggest impact is multiple processes reading mapped pages
taken from the vm-scalability test suite. The test case uses NR_CPU
readers of mapped files that consume 10*RAM.
Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
Ops lru-file-mmap-read-elapsed 159.62 ( 0.00%) 120.68 ( 24.40%)
Ops lru-file-mmap-read-time_range 30.59 ( 0.00%) 2.80 ( 90.85%)
Ops lru-file-mmap-read-time_stddv 6.70 ( 0.00%) 0.64 ( 90.38%)
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
User 581.00 611.43
System 5804.93 4111.76
Elapsed 161.03 122.12
This is showing that the readers completed 24.40% faster with 29% less
system CPU time. From vmstats, it is known that the vanilla kernel was
interrupted roughly 900K times per second during the steady phase of the
test and the patched kernel was interrupts 180K times per second.
The impact is lower on a single socket machine.
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
Ops lru-file-mmap-read-elapsed 25.33 ( 0.00%) 20.38 ( 19.54%)
Ops lru-file-mmap-read-time_range 0.91 ( 0.00%) 1.44 (-58.24%)
Ops lru-file-mmap-read-time_stddv 0.28 ( 0.00%) 0.47 (-65.34%)
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
User 58.09 57.64
System 111.82 76.56
Elapsed 27.29 22.55
It's still a noticeable improvement with vmstat showing interrupts went
from roughly 500K per second to 45K per second.
The patch will have no impact on workloads with no memory pressure or have
relatively few mapped pages. It will have an unpredictable impact on the
workload running on the CPU being flushed as it'll depend on how many TLB
entries need to be refilled and how long that takes. Worst case, the TLB
will be completely cleared of active entries when the target PFNs were not
resident at all.
[sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The THP faults were not propagating the original fault address. The
latest version of the API with uffd.arg.pagefault.address is supposed to
propagate the full address through THP faults.
This was not a kernel crashing bug and it wouldn't risk to corrupt user
memory, but it would cause a SIGBUS failure because the wrong page was
being copied.
For various reasons this wasn't easily reproducible in the qemu workload,
but the strestest exposed the problem immediately.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the rwsem starves writers it wasn't strictly a bug but lockdep
doesn't like it and this avoids depending on lowlevel implementation
details of the lock.
[akpm@linux-foundation.org: delete weird BUILD_BUG_ON()]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This implements mcopy_atomic and mfill_zeropage that are the lowlevel
VM methods that are invoked respectively by the UFFDIO_COPY and
UFFDIO_ZEROPAGE userfaultfd commands.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If userfaultfd is armed on a certain vma we can't "fill" the holes with
zeroes or we'll break the userland on demand paging. The holes if the
userfault is armed, are really missing information (not zeroes) that the
userland has to load from network or elsewhere.
The same issue happens for wrprotected ptes that we can't just convert
into a single writable pmd_trans_huge.
We could however in theory still merge across zeropages if only
VM_UFFD_MISSING is set (so if VM_UFFD_WP is not set)... that could be
slightly improved but it'd be much more complex code for a tiny corner
case.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_userfaultfd_ctx is yet another vma parameter that vma_merge
must be aware about so that we can merge vmas back like they were
originally before arming the userfaultfd on some memory range.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is where the page faults must be modified to call
handle_userfault() if userfaultfd_missing() is true (so if the
vma->vm_flags had VM_UFFD_MISSING set).
handle_userfault() then takes care of blocking the page fault and
delivering it to userland.
The fault flags must also be passed as parameter so the "read|write"
kind of fault can be passed to userland.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While debugging a networking issue, I hit a condition that triggered an
object to be freed into the wrong kmem cache, and thus triggered the
warning in cache_from_obj().
The arguments in the error message are in wrong order: the location
of the object's kmem cache is in cachep, not s.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Description is almost copied from commit fb05e7a89f ("net: don't wait
for order-3 page allocation").
I saw excessive direct memory reclaim/compaction triggered by slub. This
causes performance issues and add latency. Slub uses high-order
allocation to reduce internal fragmentation and management overhead. But,
direct memory reclaim/compaction has high overhead and the benefit of
high-order allocation can't compensate the overhead of both work.
This patch makes auxiliary high-order allocation atomic. If there is no
memory pressure and memory isn't fragmented, the alloction will still
success, so we don't sacrifice high-order allocation's benefit here. If
the atomic allocation fails, direct memory reclaim/compaction will not be
triggered, allocation fallback to low-order immediately, hence the direct
memory reclaim/compaction overhead is avoided. In the allocation failure
case, kswapd is waken up and trying to make high-order freepages, so
allocation could success next time.
Following is the test to measure effect of this patch.
System: QEMU, CPU 8, 512 MB
Mem: 25% memory is allocated at random position to make fragmentation.
Memory-hogger occupies 150 MB memory.
Workload: hackbench -g 20 -l 1000
Average result by 10 runs (Base va Patched)
elapsed_time(s): 4.3468 vs 2.9838
compact_stall: 461.7 vs 73.6
pgmigrate_success: 28315.9 vs 7256.1
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysfs_slab_add() shouldn't call kobject_put at error path: this puts last
reference of kmem-cache kobject and frees it. Kmem cache will be freed
second time at error path in kmem_cache_create().
For example this happens when slub debug was enabled in runtime and
somebody creates new kmem cache:
# echo 1 | tee /sys/kernel/slab/*/sanity_checks
# modprobe configfs
"configfs_dir_cache" cannot be merged because existing slab have debug and
cannot create new slab because unique name ":t-0000096" already taken.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initializing a new slab can introduce rather large latencies because most
of the initialization runs always with interrupts disabled.
There is no point in doing so. The newly allocated slab is not visible
yet, so there is no reason to protect it against concurrent alloc/free.
Move the expensive parts of the initialization into allocate_slab(), so
for all allocations with GFP_WAIT set, interrupts are enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First piece: acceleration of retrieval of per cpu objects
If we are allocating lots of objects then it is advantageous to disable
interrupts and avoid the this_cpu_cmpxchg() operation to get these objects
faster.
Note that we cannot do the fast operation if debugging is enabled, because
we would have to add extra code to do all the debugging checks. And it
would not be fast anyway.
Note also that the requirement of having interrupts disabled avoids having
to do processor flag operations.
Allocate as many objects as possible in the fast way and then fall back to
the generic implementation for the rest of the objects.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.554 ns
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.432 ns - 48 cycles(tsc) 12.155 ns improved 15.8%
2 - 50 cycles(tsc) 12.746 ns - 37 cycles(tsc) 9.390 ns improved 26.0%
3 - 48 cycles(tsc) 12.180 ns - 33 cycles(tsc) 8.417 ns improved 31.2%
4 - 48 cycles(tsc) 12.015 ns - 32 cycles(tsc) 8.045 ns improved 33.3%
8 - 46 cycles(tsc) 11.526 ns - 30 cycles(tsc) 7.699 ns improved 34.8%
16 - 45 cycles(tsc) 11.418 ns - 32 cycles(tsc) 8.205 ns improved 28.9%
30 - 80 cycles(tsc) 20.246 ns - 73 cycles(tsc) 18.328 ns improved 8.8%
32 - 79 cycles(tsc) 19.946 ns - 72 cycles(tsc) 18.208 ns improved 8.9%
34 - 78 cycles(tsc) 19.659 ns - 71 cycles(tsc) 17.987 ns improved 9.0%
48 - 86 cycles(tsc) 21.516 ns - 82 cycles(tsc) 20.566 ns improved 4.7%
64 - 93 cycles(tsc) 23.423 ns - 89 cycles(tsc) 22.480 ns improved 4.3%
128 - 100 cycles(tsc) 25.170 ns - 99 cycles(tsc) 24.871 ns improved 1.0%
158 - 102 cycles(tsc) 25.549 ns - 101 cycles(tsc) 25.375 ns improved 1.0%
250 - 101 cycles(tsc) 25.344 ns - 100 cycles(tsc) 25.182 ns improved 1.0%
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.
Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed. These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.
Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions. They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patchset the SLUB allocator now has both bulk alloc and free
implemented.
This patchset mostly optimizes the "fastpath" where objects are available
on the per CPU fastpath page. This mostly amortize the less-heavy
none-locked cmpxchg_double used on fastpath.
The "fallback" bulking (e.g __kmem_cache_free_bulk) provides a good basis
for comparison. Measurements[1] of the fallback functions
__kmem_cache_{free,alloc}_bulk have been copied from slab_common.c and
forced "noinline" to force a function call like slab_common.c.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.601 ns
Measurements last-patch with disabled debugging:
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.448 ns - 44 cycles(tsc) 11.236 ns improved 22.8%
2 - 51 cycles(tsc) 12.768 ns - 28 cycles(tsc) 7.019 ns improved 45.1%
3 - 48 cycles(tsc) 12.232 ns - 22 cycles(tsc) 5.526 ns improved 54.2%
4 - 48 cycles(tsc) 12.025 ns - 19 cycles(tsc) 4.786 ns improved 60.4%
8 - 46 cycles(tsc) 11.558 ns - 18 cycles(tsc) 4.572 ns improved 60.9%
16 - 45 cycles(tsc) 11.458 ns - 18 cycles(tsc) 4.658 ns improved 60.0%
30 - 45 cycles(tsc) 11.499 ns - 18 cycles(tsc) 4.568 ns improved 60.0%
32 - 79 cycles(tsc) 19.917 ns - 65 cycles(tsc) 16.454 ns improved 17.7%
34 - 78 cycles(tsc) 19.655 ns - 63 cycles(tsc) 15.932 ns improved 19.2%
48 - 68 cycles(tsc) 17.049 ns - 50 cycles(tsc) 12.506 ns improved 26.5%
64 - 80 cycles(tsc) 20.009 ns - 63 cycles(tsc) 15.929 ns improved 21.3%
128 - 94 cycles(tsc) 23.749 ns - 86 cycles(tsc) 21.583 ns improved 8.5%
158 - 97 cycles(tsc) 24.299 ns - 90 cycles(tsc) 22.552 ns improved 7.2%
250 - 102 cycles(tsc) 25.681 ns - 98 cycles(tsc) 24.589 ns improved 3.9%
Benchmarking shows impressive improvements in the "fastpath" with a small
number of objects in the working set. Once the working set increases,
resulting in activating the "slowpath" (that contains the heavier locked
cmpxchg_double) the improvement decreases.
I'm currently working on also optimizing the "slowpath" (as network stack
use-case hits this), but this patchset should provide a good foundation
for further improvements. Rest of my patch queue in this area needs some
more work, but preliminary results are good. I'm attending Netfilter
Workshop[2] next week, and I'll hopefully return working on further
improvements in this area.
This patch (of 6):
s/succedd/succeed/
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f9126ab924 ("memory-hotplug: fix wrong edge when hot add a new
node") hot-added memory range to memblock, after creating pgdat for new
node.
But there is a problem:
add_memory()
|--> hotadd_new_pgdat()
|--> free_area_init_node()
|--> get_pfn_range_for_nid()
|--> find start_pfn and end_pfn in memblock
|--> ......
|--> memblock_add_node(start, size, nid) -------- Here, just too late.
get_pfn_range_for_nid() will find that start_pfn and end_pfn are both 0.
As a result, when adding memory, dmesg will give the following wrong
message.
Initmem setup node 5 [mem 0x0000000000000000-0xffffffffffffffff]
On node 5 totalpages: 0
Built 5 zonelists in Node order, mobility grouping on. Total pages: 32588823
Policy zone: Normal
init_memory_mapping: [mem 0x60000000000-0x607ffffffff]
The solution is simple, just add the memory range to memblock a little
earlier, before hotadd_new_pgdat().
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.2.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull ext3 removal, quota & udf fixes from Jan Kara:
"The biggest change in the pull is the removal of ext3 filesystem
driver (~28k lines removed). Ext4 driver is a full featured
replacement these days and both RH and SUSE use it for several years
without issues. Also there are some workarounds in VM & block layer
mainly for ext3 which we could eventually get rid of.
Other larger change is addition of proper error handling for
dquot_initialize(). The rest is small fixes and cleanups"
[ I wasn't convinced about the ext3 removal and worried about things
falling through the cracks for legacy users, but ext4 maintainers
piped up and were all unanimously in favor of removal, and maintaining
all legacy ext3 support inside ext4. - Linus ]
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
udf: Don't modify filesystem for read-only mounts
quota: remove an unneeded condition
ext4: memory leak on error in ext4_symlink()
mm/Kconfig: NEED_BOUNCE_POOL: clean-up condition
ext4: Improve ext4 Kconfig test
block: Remove forced page bouncing under IO
fs: Remove ext3 filesystem driver
doc: Update doc about journalling layer
jfs: Handle error from dquot_initialize()
reiserfs: Handle error from dquot_initialize()
ocfs2: Handle error from dquot_initialize()
ext4: Handle error from dquot_initialize()
ext2: Handle error from dquot_initalize()
quota: Propagate error from ->acquire_dquot()
Pull networking updates from David Miller:
"Another merge window, another set of networking changes. I've heard
rumblings that the lightweight tunnels infrastructure has been voted
networking change of the year. But what do I know?
1) Add conntrack support to openvswitch, from Joe Stringer.
2) Initial support for VRF (Virtual Routing and Forwarding), which
allows the segmentation of routing paths without using multiple
devices. There are some semantic kinks to work out still, but
this is a reasonably strong foundation. From David Ahern.
3) Remove spinlock fro act_bpf fast path, from Alexei Starovoitov.
4) Ignore route nexthops with a link down state in ipv6, just like
ipv4. From Andy Gospodarek.
5) Remove spinlock from fast path of act_gact and act_mirred, from
Eric Dumazet.
6) Document the DSA layer, from Florian Fainelli.
7) Add netconsole support to bcmgenet, systemport, and DSA. Also
from Florian Fainelli.
8) Add Mellanox Switch Driver and core infrastructure, from Jiri
Pirko.
9) Add support for "light weight tunnels", which allow for
encapsulation and decapsulation without bearing the overhead of a
full blown netdevice. From Thomas Graf, Jiri Benc, and a cast of
others.
10) Add Identifier Locator Addressing support for ipv6, from Tom
Herbert.
11) Support fragmented SKBs in iwlwifi, from Johannes Berg.
12) Allow perf PMUs to be accessed from eBPF programs, from Kaixu Xia.
13) Add BQL support to 3c59x driver, from Loganaden Velvindron.
14) Stop using a zero TX queue length to mean that a device shouldn't
have a qdisc attached, use an explicit flag instead. From Phil
Sutter.
15) Use generic geneve netdevice infrastructure in openvswitch, from
Pravin B Shelar.
16) Add infrastructure to avoid re-forwarding a packet in software
that was already forwarded by a hardware switch. From Scott
Feldman.
17) Allow AF_PACKET fanout function to be implemented in a bpf
program, from Willem de Bruijn"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1458 commits)
netfilter: nf_conntrack: make nf_ct_zone_dflt built-in
netfilter: nf_dup{4, 6}: fix build error when nf_conntrack disabled
net: fec: clear receive interrupts before processing a packet
ipv6: fix exthdrs offload registration in out_rt path
xen-netback: add support for multicast control
bgmac: Update fixed_phy_register()
sock, diag: fix panic in sock_diag_put_filterinfo
flow_dissector: Use 'const' where possible.
flow_dissector: Fix function argument ordering dependency
ixgbe: Resolve "initialized field overwritten" warnings
ixgbe: Remove bimodal SR-IOV disabling
ixgbe: Add support for reporting 2.5G link speed
ixgbe: fix bounds checking in ixgbe_setup_tc for 82598
ixgbe: support for ethtool set_rxfh
ixgbe: Avoid needless PHY access on copper phys
ixgbe: cleanup to use cached mask value
ixgbe: Remove second instance of lan_id variable
ixgbe: use kzalloc for allocating one thing
flow: Move __get_hash_from_flowi{4,6} into flow_dissector.c
ixgbe: Remove unused PCI bus types
...
Pull core block updates from Jens Axboe:
"This first core part of the block IO changes contains:
- Cleanup of the bio IO error signaling from Christoph. We used to
rely on the uptodate bit and passing around of an error, now we
store the error in the bio itself.
- Improvement of the above from myself, by shrinking the bio size
down again to fit in two cachelines on x86-64.
- Revert of the max_hw_sectors cap removal from a revision again,
from Jeff Moyer. This caused performance regressions in various
tests. Reinstate the limit, bump it to a more reasonable size
instead.
- Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
Most devices have huge trim limits, which can cause nasty latencies
when deleting files. Enable the admin to configure the size down.
We will look into having a more sane default instead of UINT_MAX
sectors.
- Improvement of the SGP gaps logic from Keith Busch.
- Enable the block core to handle arbitrarily sized bios, which
enables a nice simplification of bio_add_page() (which is an IO hot
path). From Kent.
- Improvements to the partition io stats accounting, making it
faster. From Ming Lei.
- Also from Ming Lei, a basic fixup for overflow of the sysfs pending
file in blk-mq, as well as a fix for a blk-mq timeout race
condition.
- Ming Lin has been carrying Kents above mentioned patches forward
for a while, and testing them. Ming also did a few fixes around
that.
- Sasha Levin found and fixed a use-after-free problem introduced by
the bio->bi_error changes from Christoph.
- Small blk cgroup cleanup from Viresh Kumar"
* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
blk: Fix bio_io_vec index when checking bvec gaps
block: Replace SG_GAPS with new queue limits mask
block: bump BLK_DEF_MAX_SECTORS to 2560
Revert "block: remove artifical max_hw_sectors cap"
blk-mq: fix race between timeout and freeing request
blk-mq: fix buffer overflow when reading sysfs file of 'pending'
Documentation: update notes in biovecs about arbitrarily sized bios
block: remove bio_get_nr_vecs()
fs: use helper bio_add_page() instead of open coding on bi_io_vec
block: kill merge_bvec_fn() completely
md/raid5: get rid of bio_fits_rdev()
md/raid5: split bio for chunk_aligned_read
block: remove split code in blkdev_issue_{discard,write_same}
btrfs: remove bio splitting and merge_bvec_fn() calls
bcache: remove driver private bio splitting code
block: simplify bio_add_page()
block: make generic_make_request handle arbitrarily sized bios
blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
block: don't access bio->bi_error after bio_put()
block: shrink struct bio down to 2 cache lines again
...
Pull percpu updates from Tejun Heo:
"Minor cleanups"
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: clean up of schunk->map[] assignment in pcpu_setup_first_chunk
percpu: update incorrect comment for this_cpu_*() operations
Pull user namespace updates from Eric Biederman:
"This finishes up the changes to ensure proc and sysfs do not start
implementing executable files, as the there are application today that
are only secure because such files do not exist.
It akso fixes a long standing misfeature of /proc/<pid>/mountinfo that
did not show the proper source for files bind mounted from
/proc/<pid>/ns/*.
It also straightens out the handling of clone flags related to user
namespaces, fixing an unnecessary failure of unshare(CLONE_NEWUSER)
when files such as /proc/<pid>/environ are read while <pid> is calling
unshare. This winds up fixing a minor bug in unshare flag handling
that dates back to the first version of unshare in the kernel.
Finally, this fixes a minor regression caused by the introduction of
sysfs_create_mount_point, which broke someone's in house application,
by restoring the size of /sys/fs/cgroup to 0 bytes. Apparently that
application uses the directory size to determine if a tmpfs is mounted
on /sys/fs/cgroup.
The bind mount escape fixes are present in Al Viros for-next branch.
and I expect them to come from there. The bind mount escape is the
last of the user namespace related security bugs that I am aware of"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
fs: Set the size of empty dirs to 0.
userns,pidns: Force thread group sharing, not signal handler sharing.
unshare: Unsharing a thread does not require unsharing a vm
nsfs: Add a show_path method to fix mountinfo
mnt: fs_fully_visible enforce noexec and nosuid if !SB_I_NOEXEC
vfs: Commit to never having exectuables on proc and sysfs.
To fix build errors:
kernel/built-in.o: In function `bpf_trace_printk':
bpf_trace.c:(.text+0x11a254): undefined reference to `strncpy_from_unsafe'
kernel/built-in.o: In function `fetch_memory_string':
trace_kprobe.c:(.text+0x11acf8): undefined reference to `strncpy_from_unsafe'
move strncpy_from_unsafe() next to probe_kernel_read/write()
which use the same memory access style.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Fixes: 1a6877b9c0 ("lib: introduce strncpy_from_unsafe()")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While pmem is usable as a block device or via DAX mappings to userspace
there are several usage scenarios that can not target pmem due to its
lack of struct page coverage. In preparation for "hot plugging" pmem
into the vmemmap add ZONE_DEVICE as a new zone to tag these pages
separately from the ones that are subject to standard page allocations.
Importantly "device memory" can be removed at will by userspace
unbinding the driver of the device.
Having a separate zone prevents allocation and otherwise marks these
pages that are distinct from typical uniform memory. Device memory has
different lifetime and performance characteristics than RAM. However,
since we have run out of ZONES_SHIFT bits this functionality currently
depends on sacrificing ZONE_DMA.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jerome Glisse <j.glisse@gmail.com>
[hch: various simplifications in the arch interface]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Introduce generic kasan_populate_zero_shadow(shadow_start,
shadow_end). This function maps kasan_zero_page to the
[shadow_start, shadow_end] addresses.
This replaces x86_64 specific populate_zero_shadow() and will
be used for ARM64 in follow on patches.
The main changes from original version are:
* Use p?d_populate*() instead of set_p?d()
* Use memblock allocator directly instead of vmemmap_alloc_block()
* __pa() instead of __pa_nodebug(). __pa() causes troubles
iff we use it before kasan_early_init(). kasan_populate_zero_shadow()
will be used later, so we ok with __pa() here.
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David Keitel <dkeitel@codeaurora.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yury <yury.norov@gmail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1439444244-26057-3-git-send-email-ryabinin.a.a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit c48a11c7ad ("netvm: propagate page->pfmemalloc to skb") added
checks for page->pfmemalloc to __skb_fill_page_desc():
if (page->pfmemalloc && !page->mapping)
skb->pfmemalloc = true;
It assumes page->mapping == NULL implies that page->pfmemalloc can be
trusted. However, __delete_from_page_cache() can set set page->mapping
to NULL and leave page->index value alone. Due to being in union, a
non-zero page->index will be interpreted as true page->pfmemalloc.
So the assumption is invalid if the networking code can see such a page.
And it seems it can. We have encountered this with a NFS over loopback
setup when such a page is attached to a new skbuf. There is no copying
going on in this case so the page confuses __skb_fill_page_desc which
interprets the index as pfmemalloc flag and the network stack drops
packets that have been allocated using the reserves unless they are to
be queued on sockets handling the swapping which is the case here and
that leads to hangs when the nfs client waits for a response from the
server which has been dropped and thus never arrive.
The struct page is already heavily packed so rather than finding another
hole to put it in, let's do a trick instead. We can reuse the index
again but define it to an impossible value (-1UL). This is the page
index so it should never see the value that large. Replace all direct
users of page->pfmemalloc by page_is_pfmemalloc which will hide this
nastiness from unspoiled eyes.
The information will get lost if somebody wants to use page->index
obviously but that was the case before and the original code expected
that the information should be persisted somewhere else if that is
really needed (e.g. what SLAB and SLUB do).
[akpm@linux-foundation.org: fix blooper in slub]
Fixes: c48a11c7ad ("netvm: propagate page->pfmemalloc to skb")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.com>
Debugged-by: Jiri Bohac <jbohac@suse.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While running KernelThreadSanitizer (ktsan) on upstream kernel with
trinity, we got a few reports from SyS_swapon, here is one of them:
Read of size 8 by thread T307 (K7621):
[< inlined >] SyS_swapon+0x3c0/0x1850 SYSC_swapon mm/swapfile.c:2395
[<ffffffff812242c0>] SyS_swapon+0x3c0/0x1850 mm/swapfile.c:2345
[<ffffffff81e97c8a>] ia32_do_call+0x1b/0x25
Looks like the swap_lock should be taken when iterating through the
swap_info array on lines 2392 - 2401: q->swap_file may be reset to
NULL by another thread before it is dereferenced for f_mapping.
But why is that iteration needed at all? Doesn't the claim_swapfile()
which follows do all that is needed to check for a duplicate entry -
FMODE_EXCL on a bdev, testing IS_SWAPFILE under i_mutex on a regfile?
Well, not quite: bd_may_claim() allows the same "holder" to claim the
bdev again, so we do need to use a different holder than "sys_swapon";
and we should not replace appropriate -EBUSY by inappropriate -EINVAL.
Index i was reused in a cpu loop further down: renamed cpu there.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
During early boot as Xen pv domain the kernel needs to map some page
tables supplied by the hypervisor read only. This is needed to be
able to relocate some data structures conflicting with the physical
memory map especially on systems with huge RAM (above 512GB).
Provide the function early_memremap_ro() to provide this read only
mapping.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
blkio interface has become messy over time and is currently the
largest. In addition to the inconsistent naming scheme, it has
multiple stat files which report more or less the same thing, a number
of debug stat files which expose internal details which shouldn't have
been part of the public interface in the first place, recursive and
non-recursive stats and leaf and non-leaf knobs.
Both recursive vs. non-recursive and leaf vs. non-leaf distinctions
don't make any sense on the unified hierarchy as only leaf cgroups can
contain processes. cgroups is going through a major interface
revision with the unified hierarchy involving significant fundamental
usage changes and given that a significant portion of the interface
doesn't make sense anymore, it's a good time to reorganize the
interface.
As the first step, this patch renames the external visible subsystem
name from "blkio" to "io". This is more concise, matches the other
two major subsystem names, "cpu" and "memory", and better suited as
blkcg will be involved in anything writeback related too whether an
actual block device is involved or not.
As the subsystem legacy_name is set to "blkio", the only userland
visible change outside the unified hierarchy is that blkcg is reported
as "io" instead of "blkio" in the subsystem initialized message during
boot. On the unified hierarchy, blkcg now appears as "io".
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
The following tracepoints are updated to report the cgroup used during
cgroup writeback.
* writeback_write_inode[_start]
* writeback_queue
* writeback_exec
* writeback_start
* writeback_written
* writeback_wait
* writeback_nowork
* writeback_wake_background
* wbc_writepage
* writeback_queue_io
* bdi_dirty_ratelimit
* balance_dirty_pages
* writeback_sb_inodes_requeue
* writeback_single_inode[_start]
Note that writeback_bdi_register is separated out from writeback_class
as reporting cgroup doesn't make sense to it. Tracepoints which take
bdi are updated to take bdi_writeback instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
There's a small consistency problem between the inode and writeback
naming. Writeback calls the "for IO" inode queues b_io and
b_more_io, but the inode calls these the "writeback list" or
i_wb_list. This makes it hard to an new "under writeback" list to
the inode, or call it an "under IO" list on the bdi because either
way we'll have writeback on IO and IO on writeback and it'll just be
confusing. I'm getting confused just writing this!
So, rename the inode "for IO" list variable to i_io_list so we can
add a new "writeback list" in a subsequent patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Dave Chinner <dchinner@redhat.com>
Provide new function get_vaddr_frames(). This function maps virtual
addresses from given start and fills given array with page frame numbers of
the corresponding pages. If given start belongs to a normal vma, the function
grabs reference to each of the pages to pin them in memory. If start
belongs to VM_IO | VM_PFNMAP vma, we don't touch page structures. Caller
must make sure pfns aren't reused for anything else while he is using
them.
This function is created for various drivers to simplify handling of
their buffers.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
cma_bitmap_maxno() was marked as static and not static inline, which can
cause warnings about this function not being used if this file is included
in a file that does not call that function, and violates the conventions
used elsewhere. The two options are to move the function implementation
back to mm/cma.c or make it inline here, and it's simple enough for the
latter to make sense.
Signed-off-by: Gregory Fong <gregory.0xf0@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we add a new node, the edge of memory may be wrong.
e.g. system has 4 nodes, and node3 is movable, node3 mem:[24G-32G],
1. hotremove the node3,
2. then hotadd node3 with a part of memory, mem:[26G-30G],
3. call hotadd_new_pgdat()
free_area_init_node()
get_pfn_range_for_nid()
4. it will return wrong start_pfn and end_pfn, because we have not
update the memblock.
This patch also fixes a BUG_ON during hot-addition, please see
http://marc.info/?l=linux-kernel&m=142961156129456&w=2
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug:
------------[ cut here ]------------
kernel BUG at mm/huge_memory.c:1957!
invalid opcode: 0000 [#1] SMP
Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 snd_hda_codec_realtek snd_hda_codec_generic nfsv4 dns_re
CPU: 2 PID: 2576 Comm: test_huge Not tainted 4.2.0-rc5-mm1+ #27
Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015
task: ffff880204e3d600 ti: ffff8800db16c000 task.ti: ffff8800db16c000
RIP: split_huge_page_to_list+0xdb/0x120
Call Trace:
memory_failure+0x32e/0x7c0
madvise_hwpoison+0x8b/0x160
SyS_madvise+0x40/0x240
? do_page_fault+0x37/0x90
entry_SYSCALL_64_fastpath+0x12/0x71
Code: ff f0 41 ff 4c 24 30 74 0d 31 c0 48 83 c4 08 5b 41 5c 41 5d c9 c3 4c 89 e7 e8 e2 58 fd ff 48 83 c4 08 31 c0
RIP split_huge_page_to_list+0xdb/0x120
RSP <ffff8800db16fde8>
---[ end trace aee7ce0df8e44076 ]---
Testcase:
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#define MB 1024*1024
int main(void)
{
char *mem;
posix_memalign((void **)&mem, 2 * MB, 200 * MB);
madvise(mem, 200 * MB, MADV_HWPOISON);
free(mem);
return 0;
}
Huge zero page is allocated if page fault w/o FAULT_FLAG_WRITE flag.
The get_user_pages_fast() which called in madvise_hwpoison() will get
huge zero page if the page is not allocated before. Huge zero page is a
tranparent huge page, however, it is not an anonymous page.
memory_failure will split the huge zero page and trigger
BUG_ON(is_huge_zero_page(page));
After commit 98ed2b0052 ("mm/memory-failure: give up error handling
for non-tail-refcounted thp"), memory_failure will not catch non anon
thp from madvise_hwpoison path and this bug occur.
Fix it by catching non anon thp in memory_failure in order to not split
huge zero page in madvise_hwpoison path.
After this patch:
Injecting memory failure for page 0x202800 at 0x7fd8ae800000
MCE: 0x202800: non anonymous thp
[...]
[akpm@linux-foundation.org: remove second split, per Wanpeng]
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugetlbfs pages will get a refcount in get_any_page() or
madvise_hwpoison() if soft offlining through madvise. The refcount which
is held by the soft offline path should be released if we fail to isolate
hugetlbfs pages.
Fix it by reducing the refcount for both isolation success and failure.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [3.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After trying to drain pages from pagevec/pageset, we try to get reference
count of the page again, however, the reference count of the page is not
reduced if the page is still not on LRU list.
Fix it by adding the put_page() to drop the page reference which is from
__get_any_page().
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [3.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Call pre-defined helper bio_add_page() instead of open coding for
iterating through bi_io_vec[]. Doing that, it's possible to make some
parts in filesystems and mm/page_io.c simpler than before.
Acked-by: Dave Kleikamp <shaggy@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[dpark: add more description in commit message]
Signed-off-by: Dongsu Park <dpark@posteo.net>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Looks like the word "contiguous" is often mistyped.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Jiri Kosina <jkosina@suse.com>
The initial value of global_wb_domain.dirty_limit set by
writeback_set_ratelimit() is zeroed out by the memset in
wb_domain_init().
Signed-off-by: Rabin Vincent <rabin.vincent@axis.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now page freeing code doesn't consider PageHWPoison as a bad page, so by
setting it before completing the page containment, we can prevent the
error page from being reused just after successful page migration.
I added TTU_IGNORE_HWPOISON for try_to_unmap() to make sure that the
page table entry is transformed into migration entry, not to hwpoison
entry.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The race condition addressed in commit add05cecef ("mm: soft-offline:
don't free target page in successful page migration") was not closed
completely, because that can happen not only for soft-offline, but also
for hard-offline. Consider that a slab page is about to be freed into
buddy pool, and then an uncorrected memory error hits the page just
after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags &
PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not
necessary because the data on the affected page is not consumed.
To solve it, this patch drops __PG_HWPOISON from page flag checks at
allocation/free time. I think it's justified because __PG_HWPOISON
flags is defined to prevent the page from being reused, and setting it
outside the page's alloc-free cycle is a designed behavior (not a bug.)
For recent months, I was annoyed about BUG_ON when soft-offlined page
remains on lru cache list for a while, which is avoided by calling
put_page() instead of putback_lru_page() in page migration's success
path. This means that this patch reverts a major change from commit
add05cecef about the new refcounting rule of soft-offlined pages, so
"reuse window" revives. This will be closed by a subsequent patch.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"non anonymous thp" case is still racy with freeing thp, which causes
panic due to put_page() for refcount-0 page. It seems that closing up
this race might be hard (and/or not worth doing,) so let's give up the
error handling for this case.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory_failure() is called on a page which are just freed after
page migration from soft offlining, the counter num_poisoned_pages is
raised twi= ce. So let's fix it with using TestSetPageHWPoison.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently I addressed a few of hwpoison race problems and the patches are
merged on v4.2-rc1. It made progress, but unfortunately some problems
still remain due to less coverage of my testing. So I'm trying to fix
or avoid them in this series.
One point I'm expecting to discuss is that patch 4/5 changes the page
flag set to be checked on free time. In current behavior, __PG_HWPOISON
is not supposed to be set when the page is freed. I think that there is
no strong reason for this behavior, and it causes a problem hard to fix
only in error handler side (because __PG_HWPOISON could be set at
arbitrary timing.) So I suggest to change it.
With this patchset, hwpoison stress testing in official mce-test
testsuite (which previously failed) passes.
This patch (of 5):
In "just unpoisoned" path, we do put_page and then unlock_page, which is
a wrong order and causes "freeing locked page" bug. So let's fix it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shm implementation internally uses shmem or hugetlbfs inodes for shm
segments. As these inodes are never directly exposed to userspace and
only accessed through the shm operations which are already hooked by
security modules, mark the inodes with the S_PRIVATE flag so that inode
security initialization and permission checking is skipped.
This was motivated by the following lockdep warning:
======================================================
[ INFO: possible circular locking dependency detected ]
4.2.0-0.rc3.git0.1.fc24.x86_64+debug #1 Tainted: G W
-------------------------------------------------------
httpd/1597 is trying to acquire lock:
(&ids->rwsem){+++++.}, at: shm_close+0x34/0x130
but task is already holding lock:
(&mm->mmap_sem){++++++}, at: SyS_shmdt+0x4b/0x180
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&mm->mmap_sem){++++++}:
lock_acquire+0xc7/0x270
__might_fault+0x7a/0xa0
filldir+0x9e/0x130
xfs_dir2_block_getdents.isra.12+0x198/0x1c0 [xfs]
xfs_readdir+0x1b4/0x330 [xfs]
xfs_file_readdir+0x2b/0x30 [xfs]
iterate_dir+0x97/0x130
SyS_getdents+0x91/0x120
entry_SYSCALL_64_fastpath+0x12/0x76
-> #2 (&xfs_dir_ilock_class){++++.+}:
lock_acquire+0xc7/0x270
down_read_nested+0x57/0xa0
xfs_ilock+0x167/0x350 [xfs]
xfs_ilock_attr_map_shared+0x38/0x50 [xfs]
xfs_attr_get+0xbd/0x190 [xfs]
xfs_xattr_get+0x3d/0x70 [xfs]
generic_getxattr+0x4f/0x70
inode_doinit_with_dentry+0x162/0x670
sb_finish_set_opts+0xd9/0x230
selinux_set_mnt_opts+0x35c/0x660
superblock_doinit+0x77/0xf0
delayed_superblock_init+0x10/0x20
iterate_supers+0xb3/0x110
selinux_complete_init+0x2f/0x40
security_load_policy+0x103/0x600
sel_write_load+0xc1/0x750
__vfs_write+0x37/0x100
vfs_write+0xa9/0x1a0
SyS_write+0x58/0xd0
entry_SYSCALL_64_fastpath+0x12/0x76
...
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Reported-by: Morten Stevens <mstevens@fedoraproject.org>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 92923ca3aa ("mm: meminit: only set page reserved in the
memblock region") broke memory hotplug which expects the memmap for
newly added sections to be reserved until onlined by
online_pages_range(). This patch marks hotplugged pages as reserved
when adding new zones.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: David Vrabel <david.vrabel@citrix.com>
Tested-by: David Vrabel <david.vrabel@citrix.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes creation of new kmem-caches after enabling
sanity_checks for existing mergeable kmem-caches in runtime: before that
patch creation fails because unique name in sysfs already taken by
existing kmem-cache.
Unlike other debug options this doesn't change object layout and could
be enabled and disabled at any time.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Hansen reported the following;
My laptop has been behaving strangely with 4.2-rc2. Once I log
in to my X session, I start getting all kinds of strange errors
from applications and see this in my dmesg:
VFS: file-max limit 8192 reached
The problem is that the file-max is calculated before memory is fully
initialised and miscalculates how much memory the kernel is using. This
patch recalculates file-max after deferred memory initialisation. Note
that using memory hotplug infrastructure would not have avoided this
problem as the value is not recalculated after memory hot-add.
4.1: files_stat.max_files = 6582781
4.2-rc2: files_stat.max_files = 8192
4.2-rc2 patched: files_stat.max_files = 6562467
Small differences with the patch applied and 4.1 but not enough to matter.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Hansen <dave.hansen@intel.com>
Cc: Nicolai Stange <nicstange@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Alex Ng <alexng@microsoft.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0e1cc95b4c ("mm: meminit: finish initialisation of struct pages
before basic setup") introduced a rwsem to signal completion of the
initialization workers.
Lockdep complains about possible recursive locking:
=============================================
[ INFO: possible recursive locking detected ]
4.1.0-12802-g1dc51b8 #3 Not tainted
---------------------------------------------
swapper/0/1 is trying to acquire lock:
(pgdat_init_rwsem){++++.+},
at: [<ffffffff8424c7fb>] page_alloc_init_late+0xc7/0xe6
but task is already holding lock:
(pgdat_init_rwsem){++++.+},
at: [<ffffffff8424c772>] page_alloc_init_late+0x3e/0xe6
Replace the rwsem by a completion together with an atomic
"outstanding work counter".
[peterz@infradead.org: Barrier removal on the grounds of being pointless]
[mgorman@suse.de: Applied review feedback]
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Alex Ng <alexng@microsoft.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_pfn_to_nid() historically was inherently not SMP safe but only
used during boot which is inherently single threaded or during hotplug
which is protected by a giant mutex.
With deferred memory initialisation there was a thread-safe version
introduced and the early_pfn_to_nid would trigger a BUG_ON if used
unsafely. Memory hotplug hit that check. This patch makes
early_pfn_to_nid introduces a lock to make it safe to use during
hotplug.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Alex Ng <alexng@microsoft.com>
Tested-by: Alex Ng <alexng@microsoft.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Nicolai Stange <nicstange@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nikolay has reported a hang when a memcg reclaim got stuck with the
following backtrace:
PID: 18308 TASK: ffff883d7c9b0a30 CPU: 1 COMMAND: "rsync"
#0 __schedule at ffffffff815ab152
#1 schedule at ffffffff815ab76e
#2 schedule_timeout at ffffffff815ae5e5
#3 io_schedule_timeout at ffffffff815aad6a
#4 bit_wait_io at ffffffff815abfc6
#5 __wait_on_bit at ffffffff815abda5
#6 wait_on_page_bit at ffffffff8111fd4f
#7 shrink_page_list at ffffffff81135445
#8 shrink_inactive_list at ffffffff81135845
#9 shrink_lruvec at ffffffff81135ead
#10 shrink_zone at ffffffff811360c3
#11 shrink_zones at ffffffff81136eff
#12 do_try_to_free_pages at ffffffff8113712f
#13 try_to_free_mem_cgroup_pages at ffffffff811372be
#14 try_charge at ffffffff81189423
#15 mem_cgroup_try_charge at ffffffff8118c6f5
#16 __add_to_page_cache_locked at ffffffff8112137d
#17 add_to_page_cache_lru at ffffffff81121618
#18 pagecache_get_page at ffffffff8112170b
#19 grow_dev_page at ffffffff811c8297
#20 __getblk_slow at ffffffff811c91d6
#21 __getblk_gfp at ffffffff811c92c1
#22 ext4_ext_grow_indepth at ffffffff8124565c
#23 ext4_ext_create_new_leaf at ffffffff81246ca8
#24 ext4_ext_insert_extent at ffffffff81246f09
#25 ext4_ext_map_blocks at ffffffff8124a848
#26 ext4_map_blocks at ffffffff8121a5b7
#27 mpage_map_one_extent at ffffffff8121b1fa
#28 mpage_map_and_submit_extent at ffffffff8121f07b
#29 ext4_writepages at ffffffff8121f6d5
#30 do_writepages at ffffffff8112c490
#31 __filemap_fdatawrite_range at ffffffff81120199
#32 filemap_flush at ffffffff8112041c
#33 ext4_alloc_da_blocks at ffffffff81219da1
#34 ext4_rename at ffffffff81229b91
#35 ext4_rename2 at ffffffff81229e32
#36 vfs_rename at ffffffff811a08a5
#37 SYSC_renameat2 at ffffffff811a3ffc
#38 sys_renameat2 at ffffffff811a408e
#39 sys_rename at ffffffff8119e51e
#40 system_call_fastpath at ffffffff815afa89
Dave Chinner has properly pointed out that this is a deadlock in the
reclaim code because ext4 doesn't submit pages which are marked by
PG_writeback right away.
The heuristic was introduced by commit e62e384e9d ("memcg: prevent OOM
with too many dirty pages") and it was applied only when may_enter_fs
was specified. The code has been changed by c3b94f44fc ("memcg:
further prevent OOM with too many dirty pages") which has removed the
__GFP_FS restriction with a reasoning that we do not get into the fs
code. But this is not sufficient apparently because the fs doesn't
necessarily submit pages marked PG_writeback for IO right away.
ext4_bio_write_page calls io_submit_add_bh but that doesn't necessarily
submit the bio. Instead it tries to map more pages into the bio and
mpage_map_one_extent might trigger memcg charge which might end up
waiting on a page which is marked PG_writeback but hasn't been submitted
yet so we would end up waiting for something that never finishes.
Fix this issue by replacing __GFP_IO by may_enter_fs check (for case 2)
before we go to wait on the writeback. The page fault path, which is
the only path that triggers memcg oom killer since 3.12, shouldn't
require GFP_NOFS and so we shouldn't reintroduce the premature OOM
killer issue which was originally addressed by the heuristic.
As per David Chinner the xfs is doing similar thing since 2.6.15 already
so ext4 is not the only affected filesystem. Moreover he notes:
: For example: IO completion might require unwritten extent conversion
: which executes filesystem transactions and GFP_NOFS allocations. The
: writeback flag on the pages can not be cleared until unwritten
: extent conversion completes. Hence memory reclaim cannot wait on
: page writeback to complete in GFP_NOFS context because it is not
: safe to do so, memcg reclaim or otherwise.
Cc: stable@vger.kernel.org # 3.9+
[tytso@mit.edu: corrected the control flow]
Fixes: c3b94f44fc ("memcg: further prevent OOM with too many dirty pages")
Reported-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The original assignment is a little redundent.
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In CMA, 1 bit in bitmap means 1 << order_per_bits pages so size of
bitmap is cma->count >> order_per_bits rather than just cma->count.
This patch fixes it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Stefan Strogin <stefan.strogin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CMA has alloc/free interface for debugging. It is intended that
alloc/free occurs in specific CMA region, but, currently, alloc/free
interface is on root dir due to the bug so we can't select CMA region
where alloc/free happens.
This patch fixes this problem by making alloc/free interface per CMA
region.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Stefan Strogin <stefan.strogin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we set wrong gfp_mask to page_owner info in case of isolated
freepage by compaction and split page. It causes incorrect mixed
pageblock report that we can get from '/proc/pagetypeinfo'. This metric
is really useful to measure fragmentation effect so should be accurate.
This patch fixes it by setting correct information.
Without this patch, after kernel build workload is finished, number of
mixed pageblock is 112 among roughly 210 movable pageblocks.
But, with this fix, output shows that mixed pageblock is just 57.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I tested my new patches, I found that page pointer which is used
for setting page_owner information is changed. This is because page
pointer is used to set new migratetype in loop. After this work, page
pointer could be out of bound. If this wrong pointer is used for
page_owner, access violation happens. Below is error message that I
got.
BUG: unable to handle kernel paging request at 0000000000b00018
IP: [<ffffffff81025f30>] save_stack_address+0x30/0x40
PGD 1af2d067 PUD 166e0067 PMD 0
Oops: 0002 [#1] SMP
...snip...
Call Trace:
print_context_stack+0xcf/0x100
dump_trace+0x15f/0x320
save_stack_trace+0x2f/0x50
__set_page_owner+0x46/0x70
__isolate_free_page+0x1f7/0x210
split_free_page+0x21/0xb0
isolate_freepages_block+0x1e2/0x410
compaction_alloc+0x22d/0x2d0
migrate_pages+0x289/0x8b0
compact_zone+0x409/0x880
compact_zone_order+0x6d/0x90
try_to_compact_pages+0x110/0x210
__alloc_pages_direct_compact+0x3d/0xe6
__alloc_pages_nodemask+0x6cd/0x9a0
alloc_pages_current+0x91/0x100
runtest_store+0x296/0xa50
simple_attr_write+0xbd/0xe0
__vfs_write+0x28/0xf0
vfs_write+0xa9/0x1b0
SyS_write+0x46/0xb0
system_call_fastpath+0x16/0x75
This patch fixes this error by moving up set_page_owner().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kbuild test robot reported the following
tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master
head: 14a6f1989d
commit: 3b242c66cc x86: mm: enable deferred struct page initialisation on x86-64
date: 3 days ago
config: x86_64-randconfig-x006-201527 (attached as .config)
reproduce:
git checkout 3b242c66cc
# save the attached .config to linux build tree
make ARCH=x86_64
All warnings (new ones prefixed by >>):
mm/page_alloc.c: In function 'early_page_uninitialised':
>> mm/page_alloc.c:247:6: warning: unused variable 'nid' [-Wunused-variable]
int nid = early_pfn_to_nid(pfn);
It's due to the NODE_DATA macro ignoring the nid parameter on !NUMA
configurations. This patch avoids the warning by not declaring nid.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Today proc and sysfs do not contain any executable files. Several
applications today mount proc or sysfs without noexec and nosuid and
then depend on there being no exectuables files on proc or sysfs.
Having any executable files show on proc or sysfs would cause
a user space visible regression, and most likely security problems.
Therefore commit to never allowing executables on proc and sysfs by
adding a new flag to mark them as filesystems without executables and
enforce that flag.
Test the flag where MNT_NOEXEC is tested today, so that the only user
visible effect will be that exectuables will be treated as if the
execute bit is cleared.
The filesystems proc and sysfs do not currently incoporate any
executable files so this does not result in any user visible effects.
This makes it unnecessary to vet changes to proc and sysfs tightly for
adding exectuable files or changes to chattr that would modify
existing files, as no matter what the individual file say they will
not be treated as exectuable files by the vfs.
Not having to vet changes to closely is important as without this we
are only one proc_create call (or another goof up in the
implementation of notify_change) from having problematic executables
on proc. Those mistakes are all too easy to make and would create
a situation where there are security issues or the assumptions of
some program having to be broken (and cause userspace regressions).
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reading page fault handler code I've noticed that under right
circumstances kernel would map anonymous pages into file mappings: if
the VMA doesn't have vm_ops->fault() and the VMA wasn't fully populated
on ->mmap(), kernel would handle page fault to not populated pte with
do_anonymous_page().
Let's change page fault handler to use do_anonymous_page() only on
anonymous VMA (->vm_ops == NULL) and make sure that the VMA is not
shared.
For file mappings without vm_ops->fault() or shred VMA without vm_ops,
page fault on pte_none() entry would lead to SIGBUS.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
Pull block fixes from Jens Axboe:
"Mainly sending this off now for the writeback fixes, since they fix a
real regression introduced with the cgroup writeback changes. The
NVMe fix could wait for next pull for this series, but it's simple
enough that we might as well include it.
This contains:
- two cgroup writeback fixes from Tejun, fixing a user reported issue
with luks crypt devices hanging when being closed.
- NVMe error cleanup fix from Jon Derrick, fixing a case where we'd
attempt to free an unregistered IRQ"
* 'for-linus' of git://git.kernel.dk/linux-block:
NVMe: Fix irq freeing when queue_request_irq fails
writeback: don't drain bdi_writeback_congested on bdi destruction
writeback: don't embed root bdi_writeback_congested in bdi_writeback
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO6nAAoJEOvOhAQsB9HWpHMP/Aknc+lmX2dZeIn96gdkP+UK
1qL24C5oq2sm/9yTZLdoXbyApLaaTbAJHS9O4kolaOU6uOs3JrgtXqL1697PVp1R
qV4f4DOzXmmEHaE2oO21afAri3tXIVQNqA2NQl2TmKfwz0Atu01Vj5RJPu/ZOBPl
dONXcFnE6nO2p7AEFRP/GfDZwkng4xALyZPhwL7tJDAeGaBpqG/n2hCuq+Szn9g8
wjTFACBdad/mRrYsL6YsWZ1e+LKI8vsArQbdPTam+jPaEUlK7yjFReFKCJVzL2JP
xfQoTcCgFztzTUV0JTGR9sqeYA3WH9AkJOFDxNE/eIili4xiTh789WbEpHLVECSX
1LsW025I3DkRWBPT4L+9ZP805ha71kNXDFc5N3XJkzrCYaFvD2BgsUzxi6FXj7aC
9lEVKt6xO04FFG5SwTKnO0f8PEhPemZH3BDnVvjBDWQYLjUcPSNz7bfyHUhif0G5
ulOGVB0ncJJF9iP8PyZs1RA/F8kKxXWnhYMIHzvl0f0vLUA7rAKsACnhBgq8s9ZQ
uM5YjzU91Z/4pe5C2E5MmQIZ84b79ZPsee1lF0GJdjK5W3PDvnCjIdXfQ5M/f3S8
76cssXWNhS78/P+19YqirLeb0u7Zw0jf73m9t9ywRgcByWfY5ZUDm0DFpQnWKkoR
QY/aFO/yHKTO3VHj8Ril
=KDJO
-----END PGP SIGNATURE-----
Merge tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part two from Paul Gortmaker:
"Replace module_init with appropriate alternate initcall in non
modules.
This series converts non-modular code that is using the module_init()
call to hook itself into the system to instead use one of our
alternate priority initcalls.
Unlike the previous series that used device_initcall and hence was a
runtime no-op, these commits change to one of the alternate initcalls,
because (a) we have them and (b) it seems like the right thing to do.
For example, it would seem logical to use arch_initcall for arch
specific setup code and fs_initcall for filesystem setup code.
This does mean however, that changes in the init ordering will be
taking place, and so there is a small risk that some kind of implicit
init ordering issue may lie uncovered. But I think it is still better
to give these ones sensible priorities than to just assign them all to
device_initcall in order to exactly preserve the old ordering.
Thad said, we have already made similar changes in core kernel code in
commit c96d6660dc ("kernel: audit/fix non-modular users of
module_init in core code") without any regressions reported, so this
type of change isn't without precedent. It has also got the same
local testing and linux-next coverage as all the other pull requests
that I'm sending for this merge window have got.
Once again, there is an unused module_exit function removal that shows
up as an outlier upon casual inspection of the diffstat"
* tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
x86: perf_event_intel_pt.c: use arch_initcall to hook in enabling
x86: perf_event_intel_bts.c: use arch_initcall to hook in enabling
mm/page_owner.c: use late_initcall to hook in enabling
lib/list_sort: use late_initcall to hook in self tests
arm: use subsys_initcall in non-modular pl320 IPC code
powerpc: don't use module_init for non-modular core hugetlb code
powerpc: use subsys_initcall for Freescale Local Bus
x86: don't use module_init for non-modular core bootflag code
netfilter: don't use module_init/exit in core IPV4 code
fs/notify: don't use module_init for non-modular inotify_user code
mm: replace module_init usages with subsys_initcall in nommu.c
52ebea749a ("writeback: make backing_dev_info host cgroup-specific
bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's
(bdi_writeback's). As the congested state needs to be per-wb and
referenced from blkcg side and multiple wbs, the patch made all
non-root cong's (bdi_writeback_congested's) reference counted and
indexed on bdi.
When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all
non-root cong's; however, this can hang indefinitely because wb's can
also be referenced from blkcg_gq's which are destroyed after bdi
destruction is complete.
This patch fixes the bug by updating bdi destruction to not wait for
cong's to drain. A cong is unlinked from bdi->cgwb_congested_tree on
bdi destuction regardless of its reference count as the bdi may go
away any point after destruction. wb_congested_put() checks whether
the cong is already unlinked on release.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jon Christopherson <jon@jons.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681
Fixes: 52ebea749a ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks")
Tested-by: Jon Christopherson <jon@jons.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
52ebea749a ("writeback: make backing_dev_info host cgroup-specific
bdi_writebacks") made bdi (backing_dev_info) host per-cgroup wb's
(bdi_writeback's). As the congested state needs to be per-wb and
referenced from blkcg side and multiple wbs, the patch made all
non-root cong's (bdi_writeback_congested's) reference counted and
indexed on bdi.
When a bdi is destroyed, cgwb_bdi_destroy() tries to drain all
non-root cong's; however, this can hang indefinitely because wb's can
also be referenced from blkcg_gq's which are destroyed after bdi
destruction is complete.
To fix the bug, bdi destruction will be updated to not wait for cong's
to drain, which naturally means that cong's may outlive the associated
bdi. This is fine for non-root cong's but is problematic for the root
cong's which are embedded in their bdi's as they may end up getting
dereferenced after the containing bdi's are freed.
This patch makes root cong's behave the same as non-root cong's. They
are no longer embedded in their bdi's but allocated separately during
bdi initialization, indexed and reference counted the same way.
* As cong handling is the same for all wb's, wb->congested
initialization is moved into wb_init().
* When !CONFIG_CGROUP_WRITEBACK, there was no indexing or refcnting.
bdi->wb_congested is now a pointer pointing to the root cong
allocated during bdi init and minimal refcnting operations are
implemented.
* The above makes root wb init paths diverge depending on
CONFIG_CGROUP_WRITEBACK. root wb init is moved to cgwb_bdi_init().
This patch in itself shouldn't cause any consequential behavior
differences but prepares for the actual fix.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jon Christopherson <jon@jons.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=100681
Tested-by: Jon Christopherson <jon@jons.org>
Added <linux/slab.h> include to backing-dev.h for kfree() definition.
Signed-off-by: Jens Axboe <axboe@fb.com>
Merge third patchbomb from Andrew Morton:
- the rest of MM
- scripts/gdb updates
- ipc/ updates
- lib/ updates
- MAINTAINERS updates
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (67 commits)
genalloc: rename of_get_named_gen_pool() to of_gen_pool_get()
genalloc: rename dev_get_gen_pool() to gen_pool_get()
x86: opt into HAVE_COPY_THREAD_TLS, for both 32-bit and 64-bit
MAINTAINERS: add zpool
MAINTAINERS: BCACHE: Kent Overstreet has changed email address
MAINTAINERS: move Jens Osterkamp to CREDITS
MAINTAINERS: remove unused nbd.h pattern
MAINTAINERS: update brcm gpio filename pattern
MAINTAINERS: update brcm dts pattern
MAINTAINERS: update sound soc intel patterns
MAINTAINERS: remove website for paride
MAINTAINERS: update Emulex ocrdma email addresses
bcache: use kvfree() in various places
libcxgbi: use kvfree() in cxgbi_free_big_mem()
target: use kvfree() in session alloc and free
IB/ehca: use kvfree() in ipz_queue_{cd}tor()
drm/nouveau/gem: use kvfree() in u_free()
drm: use kvfree() in drm_free_large()
cxgb4: use kvfree() in t4_free_mem()
cxgb3: use kvfree() in cxgb_free_mem()
...
Avoid the warning:
WARNING: mm/built-in.o(.text.unlikely+0xc22): Section mismatch in reference from the function .new_kmalloc_cache() to the variable .init.rodata:kmalloc_info
The function .new_kmalloc_cache() references
the variable __initconst kmalloc_info.
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Waiman Long reported that 24TB machines hit OOM during basic setup when
struct page initialisation was deferred. One approach is to initialise
memory on demand but it interferes with page allocator paths. This patch
creates dedicated threads to initialise memory before basic setup. It
then blocks on a rw_semaphore until completion as a wait_queue and counter
is overkill. This may be slower to boot but it's simplier overall and
also gets rid of a section mangling which existed so kswapd could do the
initialisation.
[akpm@linux-foundation.org: include rwsem.h, use DECLARE_RWSEM, fix comment, remove unneeded cast]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Waiman Long <waiman.long@hp.com
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Scott Norton <scott.norton@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mminit_verify_page_links() is an extremely paranoid check that was
introduced when memory initialisation was being heavily reworked.
Profiles indicated that up to 10% of parallel memory initialisation was
spent on checking this for every page. The cost could be reduced but in
practice this check only found problems very early during the
initialisation rewrite and has found nothing since. This patch removes an
expensive unnecessary check.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During parallel sturct page initialisation, ranges are checked for every
PFN unnecessarily which increases boot times. This patch alters when the
ranges are checked.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Parallel struct page frees pages one at a time. Try free pages as single
large pages where possible.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deferred struct page initialisation is using pfn_to_page() on every PFN
unnecessarily. This patch minimises the number of lookups and scheduler
checks.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only a subset of struct pages are initialised at the moment. When this
patch is applied kswapd initialise the remaining struct pages in parallel.
This should boot faster by spreading the work to multiple CPUs and
initialising data that is local to the CPU. The user-visible effect on
large machines is that free memory will appear to rapidly increase early
in the lifetime of the system until kswapd reports that all memory is
initialised in the kernel log. Once initialised there should be no other
user-visibile effects.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch initalises all low memory struct pages and 2G of the highest
zone on each node during memory initialisation if
CONFIG_DEFERRED_STRUCT_PAGE_INIT is set. That config option cannot be set
but will be available in a later patch. Parallel initialisation of struct
page depends on some features from memory hotplug and it is necessary to
alter alter section annotations.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_pfn_in_nid() and meminit_pfn_in_nid() are small functions that are
unnecessarily visible outside memory initialisation. As well as
unnecessary visibility, it's unnecessary function call overhead when
initialising pages. This patch moves the helpers inline.
[akpm@linux-foundation.org: fix build]
[mhocko@suse.cz: fix build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__early_pfn_to_nid() use static variables to cache recent lookups as
memblock lookups are very expensive but it assumes that memory
initialisation is single-threaded. Parallel initialisation of struct
pages will break that assumption so this patch makes __early_pfn_to_nid()
SMP-safe by requiring the caller to cache recent search information.
early_pfn_to_nid() keeps the same interface but is only safe to use early
in boot due to the use of a global static variable. meminit_pfn_in_nid()
is an SMP-safe version that callers must maintain their own state for.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_bootmem prepares a page for release to the buddy allocator
and assumes that the struct page is initialised. Parallel initialisation
of struct pages defers initialisation and __free_pages_bootmem can be
called for struct pages that cannot yet map struct page to PFN. This
patch passes PFN to __free_pages_bootmem with no other functional change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently each page struct is set as reserved upon initialization. This
patch leaves the reserved bit clear and only sets the reserved bit when it
is known the memory was allocated by the bootmem allocator. This makes it
easier to distinguish between uninitialised struct pages and reserved
struct pages in later patches.
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memmap_init_zone() has all the smarts for initializing a single
page. A subset of this is required for parallel page initialisation and
so this patch breaks up the monolithic function in preparation.
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Struct page initialisation had been identified as one of the reasons why
large machines take a long time to boot. Patches were posted a long time ago
to defer initialisation until they were first used. This was rejected on
the grounds it should not be necessary to hurt the fast paths. This series
reuses much of the work from that time but defers the initialisation of
memory to kswapd so that one thread per node initialises memory local to
that node.
After applying the series and setting the appropriate Kconfig variable I
see this in the boot log on a 64G machine
[ 7.383764] kswapd 0 initialised deferred memory in 188ms
[ 7.404253] kswapd 1 initialised deferred memory in 208ms
[ 7.411044] kswapd 3 initialised deferred memory in 216ms
[ 7.411551] kswapd 2 initialised deferred memory in 216ms
On a 1TB machine, I see
[ 8.406511] kswapd 3 initialised deferred memory in 1116ms
[ 8.428518] kswapd 1 initialised deferred memory in 1140ms
[ 8.435977] kswapd 0 initialised deferred memory in 1148ms
[ 8.437416] kswapd 2 initialised deferred memory in 1148ms
Once booted the machine appears to work as normal. Boot times were measured
from the time shutdown was called until ssh was available again. In the
64G case, the boot time savings are negligible. On the 1TB machine, the
savings were 16 seconds.
Nate Zimmer said:
: On an older 8 TB box with lots and lots of cpus the boot time, as
: measure from grub to login prompt, the boot time improved from 1484
: seconds to exactly 1000 seconds.
Waiman Long said:
: I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From
: grub menu to ssh login, the bootup time was 453s before the patch and 265s
: after the patch - a saving of 188s (42%).
Daniel Blueman said:
: On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing
: stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with
: this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350)
: drops this to 1045s.
This patch (of 13):
As part of initializing struct page's in 2MiB chunks, we noticed that at
the end of free_all_bootmem(), there was nothing which had forced the
reserved/allocated 4KiB pages to be initialized.
This helper function will be used for that expansion.
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Nate Zimmer <nzimmer@sgi.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch restores the slab creation sequence that was broken by commit
4066c33d03 and also reverts the portions that introduced the
KMALLOC_LOOP_XXX macros. Those can never really work since the slab creation
is much more complex than just going from a minimum to a maximum number.
The latest upstream kernel boots cleanly on my machine with a 64 bit x86
configuration under KVM using either SLAB or SLUB.
Fixes: 4066c33d03 ("support the slub_debug boot option")
Reported-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"monitonic raw". Also some enhancements to make the ring buffer even
faster. But the biggest and most noticeable change is the renaming of
the ftrace* files, structures and variables that have to deal with
trace events.
Over the years I've had several developers tell me about their confusion
with what ftrace is compared to events. Technically, "ftrace" is the
infrastructure to do the function hooks, which include tracing and also
helps with live kernel patching. But the trace events are a separate
entity altogether, and the files that affect the trace events should
not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled()-> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not heard
a single complaint about this rename breaking anything. Mostly because
these functions, variables and structures are mostly internal to the
tracing system and are seldom (if ever) used by anything external to that.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJViYhVAAoJEEjnJuOKh9ldcJ0IAI+mytwoMAN/CWDE8pXrTrgs
aHlcr1zorSzZ0Lq6lKsWP+V0VGVhP8KWO16vl35HaM5ZB9U+cDzWiGobI8JTHi/3
eeTAPTjQdgrr/L+ZO1ApzS1jYPhN3Xi5L7xublcYMJjKfzU+bcYXg/x8gRt0QbG3
S9QN/kBt0JIIjT7McN64m5JVk2OiU36LxXxwHgCqJvVCPHUrriAdIX7Z5KRpEv13
zxgCN4d7Jiec/FsMW8dkO0vRlVAvudZWLL7oDmdsvNhnLy8nE79UOeHos2c1qifQ
LV4DeQ+2Hlu7w9wxixHuoOgNXDUEiQPJXzPc/CuCahiTL9N/urQSGQDoOVMltR4=
=hkdz
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This patch series contains several clean ups and even a new trace
clock "monitonic raw". Also some enhancements to make the ring buffer
even faster. But the biggest and most noticeable change is the
renaming of the ftrace* files, structures and variables that have to
deal with trace events.
Over the years I've had several developers tell me about their
confusion with what ftrace is compared to events. Technically,
"ftrace" is the infrastructure to do the function hooks, which include
tracing and also helps with live kernel patching. But the trace
events are a separate entity altogether, and the files that affect the
trace events should not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled() -> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not
heard a single complaint about this rename breaking anything. Mostly
because these functions, variables and structures are mostly internal
to the tracing system and are seldom (if ever) used by anything
external to that"
* tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
ring_buffer: Allow to exit the ring buffer benchmark immediately
ring-buffer-benchmark: Fix the wrong type
ring-buffer-benchmark: Fix the wrong param in module_param
ring-buffer: Add enum names for the context levels
ring-buffer: Remove useless unused tracing_off_permanent()
ring-buffer: Give NMIs a chance to lock the reader_lock
ring-buffer: Add trace_recursive checks to ring_buffer_write()
ring-buffer: Allways do the trace_recursive checks
ring-buffer: Move recursive check to per_cpu descriptor
ring-buffer: Add unlikelys to make fast path the default
tracing: Rename ftrace_get_offsets_##call() to trace_event_get_offsets_##call()
tracing: Rename ftrace_define_fields_##call() to trace_event_define_fields_##call()
tracing: Rename ftrace_event_type_funcs_##call to trace_event_type_funcs_##call
tracing: Rename ftrace_data_offset_##call to trace_event_data_offset_##call
tracing: Rename ftrace_raw_##call event structures to trace_event_raw_##call
tracing: Rename ftrace_trigger_soft_disabled() to trace_trigger_soft_disabled()
tracing: Rename FTRACE_EVENT_FL_* flags to EVENT_FILE_FL_*
tracing: Rename struct ftrace_subsystem_dir to trace_subsystem_dir
tracing: Rename ftrace_event_name() to trace_event_name()
tracing: Rename FTRACE_MAX_EVENT to TRACE_EVENT_TYPE_MAX
...
Merge second patchbomb from Andrew Morton:
- most of the rest of MM
- lots of misc things
- procfs updates
- printk feature work
- updates to get_maintainer, MAINTAINERS, checkpatch
- lib/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (96 commits)
exit,stats: /* obey this comment */
coredump: add __printf attribute to cn_*printf functions
coredump: use from_kuid/kgid when formatting corename
fs/reiserfs: remove unneeded cast
NILFS2: support NFSv2 export
fs/befs/btree.c: remove unneeded initializations
fs/minix: remove unneeded cast
init/do_mounts.c: add create_dev() failure log
kasan: remove duplicate definition of the macro KASAN_FREE_PAGE
fs/efs: femove unneeded cast
checkpatch: emit "NOTE: <types>" message only once after multiple files
checkpatch: emit an error when there's a diff in a changelog
checkpatch: validate MODULE_LICENSE content
checkpatch: add multi-line handling for PREFER_ETHER_ADDR_COPY
checkpatch: suggest using eth_zero_addr() and eth_broadcast_addr()
checkpatch: fix processing of MEMSET issues
checkpatch: suggest using ether_addr_equal*()
checkpatch: avoid NOT_UNIFIED_DIFF errors on cover-letter.patch files
checkpatch: remove local from codespell path
checkpatch: add --showfile to allow input via pipe to show filenames
...
Remove duplicate definition of the macro KASAN_FREE_PAGE in
mm/kasan/kasan.h
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove zpool_evict() helper function. As zbud is currently the only
zpool implementation that supports eviction, add zpool and zpool_ops
references to struct zbud_pool and directly call zpool_ops->evict(zpool,
handle) on eviction.
Currently zpool provides the zpool_evict helper which locks the zpool
list lock and searches through all pools to find the specific one
matching the caller, and call the corresponding zpool_ops->evict
function. However, this is unnecessary, as the zbud pool can simply
keep a reference to the zpool that created it, as well as the zpool_ops,
and directly call the zpool_ops->evict function, when it needs to evict
a page. This avoids a spinlock and list search in zpool for each
eviction.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the pr_info() calls to pr_debug(). There's no need for the extra
verbosity in the log. Also change the msg formats to be consistent.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ganesh Mahendran <opensource.ganesh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the "enabled" parameter to be configurable at runtime. Remove the
enabled check from init(), and move it to the frontswap store() function;
when enabled, pages will be stored, and when disabled, pages won't be
stored.
This is almost identical to Seth's patch from 2 years ago:
http://lkml.iu.edu/hypermail/linux/kernel/1307.2/04289.html
[akpm@linux-foundation.org: tweak documentation]
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Suggested-by: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The DEBUG define in zsmalloc is useless, there is no usage of it at all.
Signed-off-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With s390 dropping support for emulated hugepages, the last user of
arch_prepare_hugepage and arch_release_hugepage is gone.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
Pull core block IO update from Jens Axboe:
"Nothing really major in here, mostly a collection of smaller
optimizations and cleanups, mixed with various fixes. In more detail,
this contains:
- Addition of policy specific data to blkcg for block cgroups. From
Arianna Avanzini.
- Various cleanups around command types from Christoph.
- Cleanup of the suspend block I/O path from Christoph.
- Plugging updates from Shaohua and Jeff Moyer, for blk-mq.
- Eliminating atomic inc/dec of both remaining IO count and reference
count in a bio. From me.
- Fixes for SG gap and chunk size support for data-less (discards)
IO, so we can merge these better. From me.
- Small restructuring of blk-mq shared tag support, freeing drivers
from iterating hardware queues. From Keith Busch.
- A few cfq-iosched tweaks, from Tahsin Erdogan and me. Makes the
IOPS mode the default for non-rotational storage"
* 'for-4.2/core' of git://git.kernel.dk/linux-block: (35 commits)
cfq-iosched: fix other locations where blkcg_to_cfqgd() can return NULL
cfq-iosched: fix sysfs oops when attempting to read unconfigured weights
cfq-iosched: move group scheduling functions under ifdef
cfq-iosched: fix the setting of IOPS mode on SSDs
blktrace: Add blktrace.c to BLOCK LAYER in MAINTAINERS file
block, cgroup: implement policy-specific per-blkcg data
block: Make CFQ default to IOPS mode on SSDs
block: add blk_set_queue_dying() to blkdev.h
blk-mq: Shared tag enhancements
block: don't honor chunk sizes for data-less IO
block: only honor SG gap prevention for merges that contain data
block: fix returnvar.cocci warnings
block, dm: don't copy bios for request clones
block: remove management of bi_remaining when restoring original bi_end_io
block: replace trylock with mutex_lock in blkdev_reread_part()
block: export blkdev_reread_part() and __blkdev_reread_part()
suspend: simplify block I/O handling
block: collapse bio bit space
block: remove unused BIO_RW_BLOCK and BIO_EOF flags
block: remove BIO_EOPNOTSUPP
...
Merge first patchbomb from Andrew Morton:
- a few misc things
- ocfs2 udpates
- kernel/watchdog.c feature work (took ages to get right)
- most of MM. A few tricky bits are held up and probably won't make 4.2.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (91 commits)
mm: kmemleak_alloc_percpu() should follow the gfp from per_alloc()
mm, thp: respect MPOL_PREFERRED policy with non-local node
tmpfs: truncate prealloc blocks past i_size
mm/memory hotplug: print the last vmemmap region at the end of hot add memory
mm/mmap.c: optimization of do_mmap_pgoff function
mm: kmemleak: optimise kmemleak_lock acquiring during kmemleak_scan
mm: kmemleak: avoid deadlock on the kmemleak object insertion error path
mm: kmemleak: do not acquire scan_mutex in kmemleak_do_cleanup()
mm: kmemleak: fix delete_object_*() race when called on the same memory block
mm: kmemleak: allow safe memory scanning during kmemleak disabling
memcg: convert mem_cgroup->under_oom from atomic_t to int
memcg: remove unused mem_cgroup->oom_wakeups
frontswap: allow multiple backends
x86, mirror: x86 enabling - find mirrored memory ranges
mm/memblock: allocate boot time data structures from mirrored memory
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute
mm: do not ignore mapping_gfp_mask in page cache allocation paths
mm/cma.c: fix typos in comments
mm/oom_kill.c: print points as unsigned int
mm/hugetlb: handle races in alloc_huge_page and hugetlb_reserve_pages
...
Beginning at commit d52d3997f8 ("ipv6: Create percpu rt6_info"), the
following INFO splat is logged:
===============================
[ INFO: suspicious RCU usage. ]
4.1.0-rc7-next-20150612 #1 Not tainted
-------------------------------
kernel/sched/core.c:7318 Illegal context switch in RCU-bh read-side critical section!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
3 locks held by systemd/1:
#0: (rtnl_mutex){+.+.+.}, at: [<ffffffff815f0c8f>] rtnetlink_rcv+0x1f/0x40
#1: (rcu_read_lock_bh){......}, at: [<ffffffff816a34e2>] ipv6_add_addr+0x62/0x540
#2: (addrconf_hash_lock){+...+.}, at: [<ffffffff816a3604>] ipv6_add_addr+0x184/0x540
stack backtrace:
CPU: 0 PID: 1 Comm: systemd Not tainted 4.1.0-rc7-next-20150612 #1
Hardware name: TOSHIBA TECRA A50-A/TECRA A50-A, BIOS Version 4.20 04/17/2014
Call Trace:
dump_stack+0x4c/0x6e
lockdep_rcu_suspicious+0xe7/0x120
___might_sleep+0x1d5/0x1f0
__might_sleep+0x4d/0x90
kmem_cache_alloc+0x47/0x250
create_object+0x39/0x2e0
kmemleak_alloc_percpu+0x61/0xe0
pcpu_alloc+0x370/0x630
Additional backtrace lines are truncated. In addition, the above splat
is followed by several "BUG: sleeping function called from invalid
context at mm/slub.c:1268" outputs. As suggested by Martin KaFai Lau,
these are the clue to the fix. Routine kmemleak_alloc_percpu() always
uses GFP_KERNEL for its allocations, whereas it should follow the gfp
from its callers.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 077fcf116c ("mm/thp: allocate transparent hugepages on
local node"), we handle THP allocations on page fault in a special way -
for non-interleave memory policies, the allocation is only attempted on
the node local to the current CPU, if the policy's nodemask allows the
node.
This is motivated by the assumption that THP benefits cannot offset the
cost of remote accesses, so it's better to fallback to base pages on the
local node (which might still be available, while huge pages are not due
to fragmentation) than to allocate huge pages on a remote node.
The nodemask check prevents us from violating e.g. MPOL_BIND policies
where the local node is not among the allowed nodes. However, the
current implementation can still give surprising results for the
MPOL_PREFERRED policy when the preferred node is different than the
current CPU's local node.
In such case we should honor the preferred node and not use the local
node, which is what this patch does. If hugepage allocation on the
preferred node fails, we fall back to base pages and don't try other
nodes, with the same motivation as is done for the local node hugepage
allocations. The patch also moves the MPOL_INTERLEAVE check around to
simplify the hugepage specific test.
The difference can be demonstrated using in-tree transhuge-stress test
on the following 2-node machine where half memory on one node was
occupied to show the difference.
> numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 7878 MB
node 0 free: 3623 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47
node 1 size: 8045 MB
node 1 free: 7818 MB
node distances:
node 0 1
0: 10 21
1: 21 10
Before the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.197 s/loop, 0.276 ms/page, 7249.168 MiB/s 7962 succeed, 0 failed, 1786 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.962 s/loop, 0.372 ms/page, 5376.172 MiB/s 7962 succeed, 0 failed, 3873 different pages
Number of successful THP allocations corresponds to free memory on node 0 in
the first case and node 1 in the second case, i.e. -p parameter is ignored and
cpu binding "wins".
After the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.183 s/loop, 0.274 ms/page, 7295.516 MiB/s 7962 succeed, 0 failed, 1760 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.878 s/loop, 0.361 ms/page, 5533.638 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -p1 -C0 ./transhuge-stress
transhuge-stress: 4.628 s/loop, 0.581 ms/page, 3440.893 MiB/s 7962 succeed, 0 failed, 3918 different pages
The -p parameter is respected regardless of cpu binding.
> numactl -C0 ./transhuge-stress
transhuge-stress: 2.202 s/loop, 0.277 ms/page, 7230.003 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -C12 ./transhuge-stress
transhuge-stress: 3.020 s/loop, 0.379 ms/page, 5273.324 MiB/s 7962 succeed, 0 failed, 3916 different pages
Without -p parameter, hugepage restriction to CPU-local node works as before.
Fixes: 077fcf116c ("mm/thp: allocate transparent hugepages on local node")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the rocksdb people noticed that when you do something like this
fallocate(fd, FALLOC_FL_KEEP_SIZE, 0, 10M)
pwrite(fd, buf, 5M, 0)
ftruncate(5M)
on tmpfs, the file would still take up 10M: which led to super fun
issues because we were getting ENOSPC before we thought we should be
getting ENOSPC. This patch fixes the problem, and mirrors what all the
other fs'es do (and was agreed to be the correct behaviour at LSF).
I tested it locally to make sure it worked properly with the following
xfs_io -f -c "falloc -k 0 10M" -c "pwrite 0 5M" -c "truncate 5M" file
Without the patch we have "Blocks: 20480", with the patch we have the
correct value of "Blocks: 10240".
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hot add two nodes continuously, we found the vmemmap region info is
a bit messed. The last region of node 2 is printed when node 3 hot
added, like the following:
Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff]
On node 2 totalpages: 0
Built 2 zonelists in Node order, mobility grouping on. Total pages: 16090539
Policy zone: Normal
init_memory_mapping: [mem 0x40000000000-0x407ffffffff]
[mem 0x40000000000-0x407ffffffff] page 1G
[ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2
[ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2
...
[ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2
[ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2
Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff]
On node 3 totalpages: 0
Built 3 zonelists in Node order, mobility grouping on. Total pages: 16090539
Policy zone: Normal
init_memory_mapping: [mem 0x60000000000-0x607ffffffff]
[mem 0x60000000000-0x607ffffffff] page 1G
[ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ???
[ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3
[ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3
[ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3
...
The cause is the last region was missed at the and of hot add memory,
and p_start, p_end, node_start were not reset, so when hot add memory to
a new node, it will consider they are not contiguous blocks and print
the previous one. So we print the last vmemmap region at the end of hot
add memory to avoid the confusion.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The simple check for zero length memory mapping may be performed
earlier. So that in case of zero length memory mapping some unnecessary
code is not executed at all. It does not make the code less readable
and saves some CPU cycles.
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kmemleak memory scanning uses finer grained object->lock spinlocks
primarily to avoid races with the memory block freeing. However, the
pointer lookup in the rb tree requires the kmemleak_lock to be held.
This is currently done in the find_and_get_object() function for each
pointer-like location read during scanning. While this allows a low
latency on kmemleak_*() callbacks on other CPUs, the memory scanning is
slower.
This patch moves the kmemleak_lock outside the scan_block() loop,
acquiring/releasing it only once per scanned memory block. The
allow_resched logic is moved outside scan_block() and a new
scan_large_block() function is implemented which splits large blocks in
MAX_SCAN_SIZE chunks with cond_resched() calls in-between. A redundant
(object->flags & OBJECT_NO_SCAN) check is also removed from
scan_object().
With this patch, the kmemleak scanning performance is significantly
improved: at least 50% with lock debugging disabled and over an order of
magnitude with lock proving enabled (on an arm64 system).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While very unlikely (usually kmemleak or sl*b bug), the create_object()
function in mm/kmemleak.c may fail to insert a newly allocated object into
the rb tree. When this happens, kmemleak disables itself and prints
additional information about the object already found in the rb tree.
Such printing is done with the parent->lock acquired, however the
kmemleak_lock is already held. This is a potential race with the scanning
thread which acquires object->lock and kmemleak_lock in a
This patch removes the locking around the 'parent' object information
printing. Such object cannot be freed or removed from object_tree_root
and object_list since kmemleak_lock is already held. There is a very
small risk that some of the object data is being modified on another CPU
but the only downside is inconsistent information printing.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kmemleak_do_cleanup() work thread already waits for the kmemleak_scan
thread to finish via kthread_stop(). Waiting in kthread_stop() while
scan_mutex is held may lead to deadlock if kmemleak_scan_thread() also
waits to acquire for scan_mutex.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling delete_object_*() on the same pointer is not a standard use case
(unless there is a bug in the code calling kmemleak_free()). However,
during kmemleak disabling (error or user triggered via /sys), there is a
potential race between kmemleak_free() calls on a CPU and
__kmemleak_do_cleanup() on a different CPU.
The current delete_object_*() implementation first performs a look-up
holding kmemleak_lock, increments the object->use_count and then
re-acquires kmemleak_lock to remove the object from object_tree_root and
object_list.
This patch simplifies the delete_object_*() mechanism to both look up
and remove an object from the object_tree_root and object_list
atomically (guarded by kmemleak_lock). This allows safe concurrent
calls to delete_object_*() on the same pointer without additional
locking for synchronising the kmemleak_free_enabled flag.
A side effect is a slight improvement in the delete_object_*() performance
by avoiding acquiring kmemleak_lock twice and incrementing/decrementing
object->use_count.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kmemleak scanning thread can run for minutes. Callbacks like
kmemleak_free() are allowed during this time, the race being taken care
of by the object->lock spinlock. Such lock also prevents a memory block
from being freed or unmapped while it is being scanned by blocking the
kmemleak_free() -> ... -> __delete_object() function until the lock is
released in scan_object().
When a kmemleak error occurs (e.g. it fails to allocate its metadata),
kmemleak_enabled is set and __delete_object() is no longer called on
freed objects. If kmemleak_scan is running at the same time,
kmemleak_free() no longer waits for the object scanning to complete,
allowing the corresponding memory block to be freed or unmapped (in the
case of vfree()). This leads to kmemleak_scan potentially triggering a
page fault.
This patch separates the kmemleak_free() enabling/disabling from the
overall kmemleak_enabled nob so that we can defer the disabling of the
object freeing tracking until the scanning thread completed. The
kmemleak_free_part() is deliberately ignored by this patch since this is
only called during boot before the scanning thread started.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org>
Tested-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg->under_oom tracks whether the memcg is under OOM conditions and is
an atomic_t counter managed with mem_cgroup_[un]mark_under_oom(). While
atomic_t appears to be simple synchronization-wise, when used as a
synchronization construct like here, it's trickier and more error-prone
due to weak memory ordering rules, especially around atomic_read(), and
false sense of security.
For example, both non-trivial read sites of memcg->under_oom are a bit
problematic although not being actually broken.
* mem_cgroup_oom_register_event()
It isn't explicit what guarantees the memory ordering between event
addition and memcg->under_oom check. This isn't broken only because
memcg_oom_lock is used for both event list and memcg->oom_lock.
* memcg_oom_recover()
The lockless test doesn't have any explanation why this would be
safe.
mem_cgroup_[un]mark_under_oom() are very cold paths and there's no point
in avoiding locking memcg_oom_lock there. This patch converts
memcg->under_oom from atomic_t to int, puts their modifications under
memcg_oom_lock and documents why the lockless test in
memcg_oom_recover() is safe.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 4942642080 ("mm: memcg: handle non-error OOM situations
more gracefully"), nobody uses mem_cgroup->oom_wakeups. Remove it.
While at it, also fold memcg_wakeup_oom() into memcg_oom_recover() which
is its only user. This cleanup was suggested by Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change frontswap single pointer to a singly linked list of frontswap
implementations. Update Xen tmem implementation as register no longer
returns anything.
Frontswap only keeps track of a single implementation; any
implementation that registers second (or later) will replace the
previously registered implementation, and gets a pointer to the previous
implementation that the new implementation is expected to pass all
frontswap functions to if it can't handle the function itself. However
that method doesn't really make much sense, as passing that work on to
every implementation adds unnecessary work to implementations; instead,
frontswap should simply keep a list of all registered implementations
and try each implementation for any function. Most importantly, neither
of the two currently existing frontswap implementations in the kernel
actually do anything with any previous frontswap implementation that
they replace when registering.
This allows frontswap to successfully manage multiple implementations by
keeping a list of them all.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Try to allocate all boot time kernel data structures from mirrored
memory.
If we run out of mirrored memory print warnings, but fall back to using
non-mirrored memory to make sure that we still boot.
By number of bytes, most of what we allocate at boot time is the page
structures. 64 bytes per 4K page on x86_64 ... or about 1.5% of total
system memory. For workloads where the bulk of memory is allocated to
applications this may represent a useful improvement to system
availability since 1.5% of total memory might be a third of the memory
allocated to the kernel.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some high end Intel Xeon systems report uncorrectable memory errors as a
recoverable machine check. Linux has included code for some time to
process these and just signal the affected processes (or even recover
completely if the error was in a read only page that can be replaced by
reading from disk).
But we have no recovery path for errors encountered during kernel code
execution. Except for some very specific cases were are unlikely to ever
be able to recover.
Enter memory mirroring. Actually 3rd generation of memory mirroing.
Gen1: All memory is mirrored
Pro: No s/w enabling - h/w just gets good data from other side of the
mirror
Con: Halves effective memory capacity available to OS/applications
Gen2: Partial memory mirror - just mirror memory begind some memory controllers
Pro: Keep more of the capacity
Con: Nightmare to enable. Have to choose between allocating from
mirrored memory for safety vs. NUMA local memory for performance
Gen3: Address range partial memory mirror - some mirror on each memory
controller
Pro: Can tune the amount of mirror and keep NUMA performance
Con: I have to write memory management code to implement
The current plan is just to use mirrored memory for kernel allocations.
This has been broken into two phases:
1) This patch series - find the mirrored memory, use it for boot time
allocations
2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the
unused mirrored memory from mm/memblock.c and only give it out to
select kernel allocations (this is still being scoped because
page_alloc.c is scary).
This patch (of 3):
Add extra "flags" to memblock to allow selection of memory based on
attribute. No functional changes
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_cache_read, do_generic_file_read, __generic_file_splice_read and
__ntfs_grab_cache_pages currently ignore mapping_gfp_mask when calling
add_to_page_cache_lru which might cause recursion into fs down in the
direct reclaim path if the mapping really relies on GFP_NOFS semantic.
This doesn't seem to be the case now because page_cache_read (page fault
path) doesn't seem to suffer from the reclaim recursion issues and
do_generic_file_read and __generic_file_splice_read also shouldn't be
called under fs locks which would deadlock in the reclaim path. Anyway it
is better to obey mapping gfp mask and prevent from later breakage.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In oom_kill_process(), the variable 'points' is unsigned int. Print it as
such.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_huge_page and hugetlb_reserve_pages use region_chg to calculate the
number of pages which will be added to the reserve map. Subpool and
global reserve counts are adjusted based on the output of region_chg.
Before the pages are actually added to the reserve map, these routines
could race and add fewer pages than expected. If this happens, the
subpool and global reserve counts are not correct.
Compare the number of pages actually added (region_add) to those expected
to added (region_chg). If fewer pages are actually added, this indicates
a race and adjust counters accordingly.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify region_add() to keep track of regions(pages) added to the reserve
map and return this value. The return value can be compared to the return
value of region_chg() to determine if the map was modified between calls.
Make vma_commit_reservation() also pass along the return value of
region_add(). In the normal case, we want vma_commit_reservation to
return the same value as the preceding call to vma_needs_reservation.
Create a common __vma_reservation_common routine to help keep the special
case return values in sync
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While working on hugetlbfs fallocate support, I noticed the following race
in the existing code. It is unlikely that this race is hit very often in
the current code. However, if more functionality to add and remove pages
to hugetlbfs mappings (such as fallocate) is added the likelihood of
hitting this race will increase.
alloc_huge_page and hugetlb_reserve_pages use information from the reserve
map to determine if there are enough available huge pages to complete the
operation, as well as adjust global reserve and subpool usage counts. The
order of operations is as follows:
- call region_chg() to determine the expected change based on reserve map
- determine if enough resources are available for this operation
- adjust global counts based on the expected change
- call region_add() to update the reserve map
The issue is that reserve map could change between the call to region_chg
and region_add. In this case, the counters which were adjusted based on
the output of region_chg will not be correct.
In order to hit this race today, there must be an existing shared hugetlb
mmap created with the MAP_NORESERVE flag. A page fault to allocate a huge
page via this mapping must occur at the same another task is mapping the
same region without the MAP_NORESERVE flag.
The patch set does not prevent the race from happening. Rather, it adds
simple functionality to detect when the race has occurred. If a race is
detected, then the incorrect counts are adjusted.
Review comments pointed out the need for documentation of the existing
region/reserve map routines. This patch set also adds documentation in
this area.
This patch (of 3):
This is a documentation only patch and does not modify any code.
Descriptions of the routines used for reserve map/region tracking are
added.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kenter/kleave/kdebug are wrapper macros to print functions flow and debug
information. This set was written before pr_devel() was introduced, so it
was controlled by "#if 0" construction. It is questionable if anyone is
using them [1] now.
This patch removes these macros, converts numerous printk(KERN_WARNING,
...) to use general pr_warn(...) and removes debug print line from
validate_mmap_request() function.
Signed-off-by: Leon Romanovsky <leon@leon.nu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Also move the pmd_trans_huge check to generic code.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 [1] need to do special things while clearing pmd
before a collapse. For them this operation is largely different from a
normal hugepage pte clear. Hence add a separate function to clear pmd
before collapse. After this patch pmdp_* functions operate only on
hugepage pte, and not on regular pmd_t values pointing to page table.
[1] ppc64 needs to invalidate all the normal page pte mappings we already
have inserted in the hardware hash page table. But before doing that we
need to make sure there are no parallel hash page table insert going on.
So we need to do a kick_all_cpus_sync() before flushing the older hash
table entries. By moving this to a separate function we capture these
details and mention how it is different from a hugepage pte clear.
This patch is a cleanup and only does code movement for clarity. There
should not be any change in functionality.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RAS user space tools like rasdaemon which base on trace event, could
receive mce error event, but no memory recovery result event. So, I want
to add this event to make this scenario complete.
This patch add a event at ras group for memory-failure.
The output like below:
# tracer: nop
#
# entries-in-buffer/entries-written: 2/2 #P:24
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
mce-inject-13150 [001] .... 277.019359: memory_failure_event: pfn 0x19869: recovery action for free buddy page: Delayed
[xiexiuqi@huawei.com: fix build error]
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change type of action_result's param 3 to enum for type consistency,
and rename mf_outcome to mf_result for clearly.
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export 'outcome' and 'action_page_type' to mm.h, so we could use
this emnus outside.
This patch is preparation for adding trace events for memory-failure
recovery action.
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Historically memcg overhead was high even if memcg was unused. This has
improved a lot but it still showed up in a profile summary as being a
problem.
/usr/src/linux-4.0-vanilla/mm/memcontrol.c 6.6441 395842
mem_cgroup_try_charge 2.950% 175781
__mem_cgroup_count_vm_event 1.431% 85239
mem_cgroup_page_lruvec 0.456% 27156
mem_cgroup_commit_charge 0.392% 23342
uncharge_list 0.323% 19256
mem_cgroup_update_lru_size 0.278% 16538
memcg_check_events 0.216% 12858
mem_cgroup_charge_statistics.isra.22 0.188% 11172
try_charge 0.150% 8928
commit_charge 0.141% 8388
get_mem_cgroup_from_mm 0.121% 7184
That is showing that 6.64% of system CPU cycles were in memcontrol.c and
dominated by mem_cgroup_try_charge. The annotation shows that the bulk
of the cost was checking PageSwapCache which is expected to be cache hot
but is very expensive. The problem appears to be that __SetPageUptodate
is called just before the check which is a write barrier. It is
required to make sure struct page and page data is written before the
PTE is updated and the data visible to userspace. memcg charging does
not require or need the barrier but gets unfairly hit with the cost so
this patch attempts the charging before the barrier. Aside from the
accidental cost to memcg there is the added benefit that the barrier is
avoided if the page cannot be charged. When applied the relevant
profile summary is as follows.
/usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c 3.7907 223277
__mem_cgroup_count_vm_event 1.143% 67312
mem_cgroup_page_lruvec 0.465% 27403
mem_cgroup_commit_charge 0.381% 22452
uncharge_list 0.332% 19543
mem_cgroup_update_lru_size 0.284% 16704
get_mem_cgroup_from_mm 0.271% 15952
mem_cgroup_try_charge 0.237% 13982
memcg_check_events 0.222% 13058
mem_cgroup_charge_statistics.isra.22 0.185% 10920
commit_charge 0.140% 8235
try_charge 0.131% 7716
That brings the overhead down to 3.79% and leaves the memcg fault
accounting to the root cgroup but it's an improvement. The difference
in headline performance of the page fault microbench is marginal as
memcg is such a small component of it.
pft faults
4.0.0 4.0.0
vanilla chargefirst
Hmean faults/cpu-1 1443258.1051 ( 0.00%) 1509075.7561 ( 4.56%)
Hmean faults/cpu-3 1340385.9270 ( 0.00%) 1339160.7113 ( -0.09%)
Hmean faults/cpu-5 875599.0222 ( 0.00%) 874174.1255 ( -0.16%)
Hmean faults/cpu-7 601146.6726 ( 0.00%) 601370.9977 ( 0.04%)
Hmean faults/cpu-8 510728.2754 ( 0.00%) 510598.8214 ( -0.03%)
Hmean faults/sec-1 1432084.7845 ( 0.00%) 1497935.5274 ( 4.60%)
Hmean faults/sec-3 3943818.1437 ( 0.00%) 3941920.1520 ( -0.05%)
Hmean faults/sec-5 3877573.5867 ( 0.00%) 3869385.7553 ( -0.21%)
Hmean faults/sec-7 3991832.0418 ( 0.00%) 3992181.4189 ( 0.01%)
Hmean faults/sec-8 3987189.8167 ( 0.00%) 3986452.2204 ( -0.02%)
It's only visible at single threaded. The overhead is there for higher
threads but other factors dominate.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb pages uses add_to_page_cache to track shared mappings. This is
OK from the data structure point of view but it is less so from the
NR_FILE_PAGES accounting:
- huge pages are accounted as 4k which is clearly wrong
- this counter is used as the amount of the reclaimable page
cache which is incorrect as well because hugetlb pages are
special and not reclaimable
- the counter is then exported to userspace via /proc/meminfo
(in Cached:), /proc/vmstat and /proc/zoneinfo as
nr_file_pages which is confusing at least:
Cached: 8883504 kB
HugePages_Free: 8348
...
Cached: 8916048 kB
HugePages_Free: 156
...
thats 8192 huge pages allocated which is ~16G accounted as 32M
There are usually not that many huge pages in the system for this to
make any visible difference e.g. by fooling __vm_enough_memory or
zone_pagecache_reclaimable.
Fix this by special casing huge pages in both __delete_from_page_cache
and __add_to_page_cache_locked. replace_page_cache_page is currently
only used by fuse and that shouldn't touch hugetlb pages AFAICS but it
is more robust to check for special casing there as well.
Hugetlb pages shouldn't get to any other paths where we do accounting:
- migration - we have a special handling via
hugetlbfs_migrate_page
- shmem - doesn't handle hugetlb pages directly even for
SHM_HUGETLB resp. MAP_HUGETLB
- swapcache - hugetlb is not swapable
This has a user visible effect but I believe it is reasonable because the
previously exported number is simply bogus.
An alternative would be to account hugetlb pages with their real size and
treat them similar to shmem. But this has some drawbacks.
First we would have to special case in kernel users of NR_FILE_PAGES and
considering how hugetlb is special we would have to do it everywhere. We
do not want Cached exported by /proc/meminfo to include it because the
value would be even more misleading.
__vm_enough_memory and zone_pagecache_reclaimable would have to do the
same thing because those pages are simply not reclaimable. The correction
is even not trivial because we would have to consider all active hugetlb
page sizes properly. Users of the counter outside of the kernel would
have to do the same.
So the question is why to account something that needs to be basically
excluded for each reasonable usage. This doesn't make much sense to me.
It seems that this has been broken since hugetlb was introduced but I
haven't checked the whole history.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The should_alloc_retry() function was meant to encapsulate retry
conditions of the allocator slowpath, but there are still checks
remaining in the main function, and much of how the retrying is
performed also depends on the OOM killer progress. The physical
separation of those conditions make the code hard to follow.
Inline the should_alloc_retry() checks. Notes:
- The __GFP_NOFAIL check is already done in __alloc_pages_may_oom(),
replace it with looping on OOM killer progress
- The pm_suspended_storage() check is meant to skip the OOM killer
when reclaim has no IO available, move to __alloc_pages_may_oom()
- The order <= PAGE_ALLOC_COSTLY order is re-united with its original
counterpart of checking whether reclaim actually made any progress
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The zonelist locking and the oom_sem are two overlapping locks that are
used to serialize global OOM killing against different things.
The historical zonelist locking serializes OOM kills from allocations with
overlapping zonelists against each other to prevent killing more tasks
than necessary in the same memory domain. Only when neither tasklists nor
zonelists from two concurrent OOM kills overlap (tasks in separate memcgs
bound to separate nodes) are OOM kills allowed to execute in parallel.
The younger oom_sem is a read-write lock to serialize OOM killing against
the PM code trying to disable the OOM killer altogether.
However, the OOM killer is a fairly cold error path, there is really no
reason to optimize for highly performant and concurrent OOM kills. And
the oom_sem is just flat-out redundant.
Replace both locking schemes with a single global mutex serializing OOM
kills regardless of context.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Disabling the OOM killer needs to exclude allocators from entering, not
existing victims from exiting.
Right now the only waiter is suspend code, which achieves quiescence by
disabling the OOM killer. But later on we want to add waits that hold
the lock instead to stop new victims from showing up.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that the mechanism to wait for exiting OOM victims is less
generic than it looks: it won't issue wakeups unless the OOM killer is
disabled.
The reason this check was added was the thought that, since only the OOM
disabling code would wait on this queue, wakeup operations could be
saved when that specific consumer is known to be absent.
However, this is quite the handgrenade. Later attempts to reuse the
waitqueue for other purposes will lead to completely unexpected bugs and
the failure mode will appear seemingly illogical. Generally, providers
shouldn't make unnecessary assumptions about consumers.
This could have been replaced with waitqueue_active(), but it only saves
a few instructions in one of the coldest paths in the kernel. Simply
remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
exit_oom_victim() already knows that TIF_MEMDIE is set, and nobody else
can clear it concurrently. Use clear_thread_flag() directly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename unmark_oom_victim() to exit_oom_victim(). Marking and unmarking
are related in functionality, but the interface is not symmetrical at
all: one is an internal OOM killer function used during the killing, the
other is for an OOM victim to signal its own death on exit later on.
This has locking implications, see follow-up changes.
While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which
is easier on the eye.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting oom_killer_disabled to false is atomic, there is no need for
further synchronization with ongoing allocations trying to OOM-kill.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>