IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Use KBUILD_MODNAME instead of hardcoding the filename
Signed-off-by: Vikram Narayanan <vikram186@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
This adds the double bit error detection test cases listed below:
* Prepare data block with double bit error and ECC data without
corruption, and verify that the uncorrectable error is detected by
__nand_correct_data().
* Prepare data block with single bit error and ECC data with single bit
error, and verify that the uncorrectable error is detected.
* Prepare data block without corruption and ECC data with double bit
error, and verify that the uncorrectable error is detected.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This adds the single bit error correction test case listed below:
Prepare data block without corruption and ECC data with single bit error,
and verify that the data block is preserved by __nand_correct_data().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This adds no corruptin test case listed below:
Prepare data block and ECC data with no corruption, and verify that
the data block is preserved by __nand_correct_data()
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This rewrites the entire test routine in order to make it easy to add more
tests by later changes and minimize duplication of each tests as much as
possible.
Now that each test is described by the members of struct nand_ecc_test:
- name: descriptive testname
- prepare: function to prepare data block and ecc with artifical corruption
- verify: function to verify the result of correcting data block
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Currently inject_single_bit_error() is used to inject single bit error
into randomly selected bit position of the 256 or 512 bytes data block.
Later change will add tests which inject bit errors into the ecc code.
Unfortunately, inject_single_bit_error() doesn't work for the ecc code
which is not a multiple of sizeof(unsigned long).
Because bit fliping at random position is done by __change_bit().
For example, flipping bit position 0 by __change_bit(0, addr) modifies
3rd byte (32bit) or 7th byte (64bit) on big-endian systems.
Using little-endian version of bitops can fix this issue. But
little-endian version of __change_bit is not yet available.
So this defines __change_bit_le() locally in a similar fashion to
asm-generic/bitops/le.h and use it.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Currently the data blocks which is used to test single bit error
correction is allocated statically and injecting single bit error is
implemented by using __change_bit() which must operate on the memory
aligned to the size of an "unsigned long". But there is no such
guarantee for statically allocated array.
This fix the issue by allocating the data block dynamically by
kmalloc(). It also allocate the ecc code dynamically instead of
allocating statically on stack.
The reason to allocate the ecc code dynamically is that later change
will add tests which inject bit errors into the ecc code by bitops.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This includes the message related changes:
- Use pr_* instead of printk
- Print hexdump of ECC code if test fails
- Change log level for hexdump of data from KERN_DEBUG to KERN_INFO
- Factor out the hexdump code into a separate function
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Return -EINVAL instead of -1 (-EPERM) when test fails.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Including linux/jiffies.h was required for calling srandom32(jiffies)
that has already been removed.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Return an error code if test fails in order to detect a test case failure
by invoking tests repeatedly like this:
while sudo modprobe mtd_nandecctest; do
sudo modprobe -r mtd_nandecctest
done
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
It is unnecessary for this driver to call srandom32() in module_init.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This module tests NAND ECC functions.
The test is simple.
1. Create a 256 or 512 bytes block of data filled with random bytes (data)
2. Duplicate the data block and inject single bit error (error_data)
3. Try to correct error_data
4. Compare data and error_data
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Vimal Singh <vimalsingh@ti.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>