IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There are a lot of common parts in traversing functions, but there are
also a little of uncommon parts in it. By assigning proper function
pointer on each rmap_walker_control, we can handle these difference
correctly.
Following are differences we should handle.
1. difference of lock function in anon mapping case
2. nonlinear handling in file mapping case
3. prechecked condition:
checking memcg in page_referenced(),
checking VM_SHARE in page_mkclean()
checking temporary vma in try_to_unmap()
4. exit condition:
checking page_mapped() in try_to_unmap()
So, in this patch, I introduce 4 function pointers to handle above
differences.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In each rmap traverse case, there is some difference so that we need
function pointers and arguments to them in order to handle these
For this purpose, struct rmap_walk_control is introduced in this patch,
and will be extended in following patch. Introducing and extending are
separate, because it clarify changes.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we traverse anon_vma, we need to take a read-side anon_lock. But
there is subtle difference in the situation so that we can't use same
method to take a lock in each cases. Therefore, we need to make
rmap_walk_anon() taking difference lock function.
This patch is the first step, factoring lock function for anon_lock out
of rmap_walk_anon(). It will be used in case of removing migration
entry and in default of rmap_walk_anon().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To merge all kinds of rmap traverse functions, try_to_unmap(),
try_to_munlock(), page_referenced() and page_mkclean(), we need to
extract common parts and separate out non-common parts.
Nonlinear handling is handled just in try_to_unmap_file() and other rmap
traverse functions doesn't care of it. Therfore it is better to factor
nonlinear handling out of try_to_unmap_file() in order to merge all
kinds of rmap traverse functions easily.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rmap traversing is used in five different cases, try_to_unmap(),
try_to_munlock(), page_referenced(), page_mkclean() and
remove_migration_ptes(). Each one implements its own traversing
functions for the cases, anon, file, ksm, respectively. These cause
lots of duplications and cause maintenance overhead. They also make
codes being hard to understand and error-prone. One example is hugepage
handling. There is a code to compute hugepage offset correctly in
try_to_unmap_file(), but, there isn't a code to compute hugepage offset
in rmap_walk_file(). These are used pairwise in migration context, but
we missed to modify pairwise.
To overcome these drawbacks, we should unify these through one unified
function. I decide rmap_walk() as main function since it has no
unnecessity. And to control behavior of rmap_walk(), I introduce struct
rmap_walk_control having some function pointers. These makes
rmap_walk() working for their specific needs.
This patchset remove a lot of duplicated code as you can see in below
short-stat and kernel text size also decrease slightly.
text data bss dec hex filename
10640 1 16 10657 29a1 mm/rmap.o
10047 1 16 10064 2750 mm/rmap.o
13823 705 8288 22816 5920 mm/ksm.o
13199 705 8288 22192 56b0 mm/ksm.o
This patch (of 9):
We have to recompute pgoff if the given page is huge, since result based
on HPAGE_SIZE is not approapriate for scanning the vma interval tree, as
shown by commit 36e4f20af8 ("hugetlb: do not use
vma_hugecache_offset() for vma_prio_tree_foreach") and commit 369a713e
("rmap: recompute pgoff for unmapping huge page").
To handle both the cases, normal page for page cache and hugetlb page,
by same way, we can use compound_page(). It returns 0 on non-compound
page and it also returns proper value on compound page.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is not used outside of memcontrol.c so make it static.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should start kmem accounting for a memory cgroup only after both its
kmem limit is set (KMEM_ACCOUNTED_ACTIVE) and related call sites are
patched (KMEM_ACCOUNTED_ACTIVATED). Currently memcg_can_account_kmem()
allows kmem accounting even if only one of the conditions is true. Fix
it.
This means that a page might get charged by memcg_kmem_newpage_charge
which would see its static key patched already but
memcg_kmem_commit_charge would still see it unpatched and so the charge
won't be committed. The result would be charge inconsistency
(page_cgroup not marked as PageCgroupUsed) and the charge would leak
because __memcg_kmem_uncharge_pages would ignore it.
[mhocko@suse.cz: augment changelog]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If users specify the original movablecore=nn@ss boot option, the kernel
will arrange [ss, ss+nn) as ZONE_MOVABLE. The kernelcore=nn@ss boot
option is similar except it specifies ZONE_NORMAL ranges.
Now, if users specify "movable_node" in kernel commandline, the kernel
will arrange hotpluggable memory in SRAT as ZONE_MOVABLE. And if users
do this, all the other movablecore=nn@ss and kernelcore=nn@ss options
should be ignored.
For those who don't want this, just specify nothing. The kernel will
act as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux kernel cannot migrate pages used by the kernel. As a result,
hotpluggable memory used by the kernel won't be able to be hot-removed.
To solve this problem, the basic idea is to prevent memblock from
allocating hotpluggable memory for the kernel at early time, and arrange
all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as
ZONE_MOVABLE when initializing zones.
In the previous patches, we have marked hotpluggable memory regions with
MEMBLOCK_HOTPLUG flag in memblock.memory.
In this patch, we make memblock skip these hotpluggable memory regions
in the default top-down allocation function if movable_node boot option
is specified.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At very early time, the kernel have to use some memory such as loading
the kernel image. We cannot prevent this anyway. So any node the
kernel resides in should be un-hotpluggable.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In find_hotpluggable_memory, once we find out a memory region which is
hotpluggable, we want to mark them in memblock.memory. So that we could
control memblock allocator not to allocte hotpluggable memory for the
kernel later.
To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the
hotpluggable memory regions in memblock and a function
memblock_mark_hotplug() to mark hotpluggable memory if we find one.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no flag in memblock to describe what type the memory is.
Sometimes, we may use memblock to reserve some memory for special usage.
And we want to know what kind of memory it is. So we need a way to
In hotplug environment, we want to reserve hotpluggable memory so the
kernel won't be able to use it. And when the system is up, we have to
free these hotpluggable memory to buddy. So we need to mark these
memory first.
In order to do so, we need to mark out these special memory in memblock.
In this patch, we introduce a new "flags" member into memblock_region:
struct memblock_region {
phys_addr_t base;
phys_addr_t size;
unsigned long flags; /* This is new. */
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
};
This patch does the following things:
1) Add "flags" member to memblock_region.
2) Modify the following APIs' prototype:
memblock_add_region()
memblock_insert_region()
3) Add memblock_reserve_region() to support reserve memory with flags, and keep
memblock_reserve()'s prototype unmodified.
4) Modify other APIs to support flags, but keep their prototype unmodified.
The idea is from Wen Congyang <wency@cn.fujitsu.com> and Liu Jiang <jiang.liu@huawei.com>.
Suggested-by: Wen Congyang <wency@cn.fujitsu.com>
Suggested-by: Liu Jiang <jiang.liu@huawei.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current memblock APIs don't work on 32 PAE or LPAE extension arches
where the physical memory start address beyond 4GB. The problem was
discussed here [3] where Tejun, Yinghai(thanks) proposed a way forward
with memblock interfaces. Based on the proposal, this series adds
necessary memblock interfaces and convert the core kernel code to use
them. Architectures already converted to NO_BOOTMEM use these new
interfaces and other which still uses bootmem, these new interfaces just
fallback to exiting bootmem APIs.
So no functional change in behavior. In long run, once all the
architectures moves to NO_BOOTMEM, we can get rid of bootmem layer
completely. This is one step to remove the core code dependency with
bootmem and also gives path for architectures to move away from bootmem.
Testing is done on ARM architecture with 32 bit ARM LAPE machines with
normal as well sparse(faked) memory model.
This patch (of 23):
When debugging is enabled (cmdline has "memblock=debug") the memblock
will display upper memory boundary per each allocated/freed memory range
wrongly. For example:
memblock_reserve: [0x0000009e7e8000-0x0000009e7ed000] _memblock_early_alloc_try_nid_nopanic+0xfc/0x12c
The 0x0000009e7ed000 is displayed instead of 0x0000009e7ecfff
Hence, correct this by changing formula used to calculate upper memory
boundary to (u64)base + size - 1 instead of (u64)base + size everywhere
in the debug messages.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All mlock related syscalls prepare lock limits, lengths and start
parameters with the mmap_sem held. Move this logic outside of the
critical region. For the case of mlock, continue incrementing the
amount already locked by mm->locked_vm with the rwsem taken.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both do_brk and do_mmap_pgoff verify that we are actually capable of
locking future pages if the corresponding VM_LOCKED flags are used.
Encapsulate this logic into a single mlock_future_check() helper
function.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some applications that run on HPC clusters are designed around the
availability of RAM and the overcommit ratio is fine tuned to get the
maximum usage of memory without swapping. With growing memory, the
1%-of-all-RAM grain provided by overcommit_ratio has become too coarse
for these workload (on a 2TB machine it represents no less than 20GB).
This patch adds the new overcommit_kbytes sysctl variable that allow a
much finer grain.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4b59e6c473 ("mm, show_mem: suppress page counts in
non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to
suppress PFN walks on large memory machines. Commit c78e93630d ("mm:
do not walk all of system memory during show_mem") avoided a PFN walk in
the generic show_mem helper which removes the requirement for
SHOW_MEM_FILTER_PAGE_COUNT in that case.
This patch removes PFN walkers from the arch-specific implementations
that report on a per-node or per-zone granularity. ARM and unicore32
still do a PFN walk as they report memory usage on each bank which is a
much finer granularity where the debugging information may still be of
use. As the remaining arches doing PFN walks have relatively small
amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT.
[akpm@linux-foundation.org: fix parisc]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Bottomley <jejb@parisc-linux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are implementing vmalloc_to_pfn() as a wrapper around
vmalloc_to_page(), which is implemented as follow:
1. walks the page talbes to generates the corresponding pfn,
2. then converts the pfn to struct page,
3. returns it.
And vmalloc_to_pfn() re-wraps vmalloc_to_page() to get the pfn.
This seems too circuitous, so this patch reverses the way: implement
vmalloc_to_page() as a wrapper around vmalloc_to_pfn(). This makes
vmalloc_to_pfn() and vmalloc_to_page() slightly more efficient.
No functional change.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mempolicies only exist for CONFIG_NUMA configurations. Therefore, a
certain class of functions are unneeded in configurations where
CONFIG_NUMA is disabled such as functions that duplicate existing
mempolicies, lookup existing policies, set certain mempolicy traits, or
test mempolicies for certain attributes.
Remove the unneeded functions so that any future callers get a compile-
time error and protect their code with CONFIG_NUMA as required.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When copy_hugetlb_page_range() is called to copy a range of hugetlb
mappings, the secondary MMUs are not notified if there is a protection
downgrade, which breaks COW semantics in KVM.
This patch adds the necessary MMU notifier calls.
Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
Acked-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
To make sure that it really works this time, some numbers from my test
machine (just booted, no load):
Before:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
kmalloc-96 31987 32190 128 30 1 : tunables 120 60 8 : slabdata 1073 1073 92
After:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
page->ptl 27516 28143 72 53 1 : tunables 120 60 8 : slabdata 531 531 9
kmalloc-96 3853 5280 128 30 1 : tunables 120 60 8 : slabdata 176 176 0
Note that the patch is useful not only for debug case, but also for
PREEMPT_RT, where spinlock_t is always bloated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yasuaki Ishimatsu reported memory hot-add spent more than 5 _hours_ on
9TB memory machine since onlining memory sections is too slow. And we
found out setup_zone_migrate_reserve spent >90% of the time.
The problem is, setup_zone_migrate_reserve scans all pageblocks
unconditionally, but it is only necessary if the number of reserved
block was reduced (i.e. memory hot remove).
Moreover, maximum MIGRATE_RESERVE per zone is currently 2. It means
that the number of reserved pageblocks is almost always unchanged.
This patch adds zone->nr_migrate_reserve_block to maintain the number of
MIGRATE_RESERVE pageblocks and it reduces the overhead of
setup_zone_migrate_reserve dramatically. The following table shows time
of onlining a memory section.
Amount of memory | 128GB | 192GB | 256GB|
---------------------------------------------
linux-3.12 | 23.9 | 31.4 | 44.5 |
This patch | 8.3 | 8.3 | 8.6 |
Mel's proposal patch | 10.9 | 19.2 | 31.3 |
---------------------------------------------
(millisecond)
128GB : 4 nodes and each node has 32GB of memory
192GB : 6 nodes and each node has 32GB of memory
256GB : 8 nodes and each node has 32GB of memory
(*1) Mel proposed his idea by the following threads.
https://lkml.org/lkml/2013/10/30/272
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reported-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many load balancing and workload placing programs check /proc/meminfo to
estimate how much free memory is available. They generally do this by
adding up "free" and "cached", which was fine ten years ago, but is
pretty much guaranteed to be wrong today.
It is wrong because Cached includes memory that is not freeable as page
cache, for example shared memory segments, tmpfs, and ramfs, and it does
not include reclaimable slab memory, which can take up a large fraction
of system memory on mostly idle systems with lots of files.
Currently, the amount of memory that is available for a new workload,
without pushing the system into swap, can be estimated from MemFree,
Active(file), Inactive(file), and SReclaimable, as well as the "low"
watermarks from /proc/zoneinfo.
However, this may change in the future, and user space really should not
be expected to know kernel internals to come up with an estimate for the
amount of free memory.
It is more convenient to provide such an estimate in /proc/meminfo. If
things change in the future, we only have to change it in one place.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Erik Mouw <erik.mouw_2@nxp.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_huge_page_tail()->compound_head() looks confusing. Every caller
must check PageTail(page), otherwise atomic_inc(&page->_mapcount) is
simply wrong if this page is compound-trans-head.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail()
to avoid the code duplication.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No actual need of it. So keep it internal.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tweak it so save a tab stop, make code layout slightly less nutty.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This skips the _mapcount mangling for slab and hugetlbfs pages.
The main trouble in doing this is to guarantee that PageSlab and
PageHeadHuge remains constant for all get_page/put_page run on the tail
of slab or hugetlbfs compound pages. Otherwise if they're set during
get_page but not set during put_page, the _mapcount of the tail page
would underflow.
PageHeadHuge will remain true until the compound page is released and
enters the buddy allocator so it won't risk to change even if the tail
page is the last reference left on the page.
PG_slab instead is cleared before the slab frees the head page with
put_page, so if the tail pin is released after the slab freed the page,
we would have a problem. But in the slab case the tail pin cannot be
the last reference left on the page. This is because the slab code is
free to reuse the compound page after a kfree/kmem_cache_free without
having to check if there's any tail pin left. In turn all tail pins
must be always released while the head is still pinned by the slab code
and so we know PG_slab will be still set too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we don't clobber page_tail->first_page during split_huge_page,
so compound_trans_head can be set to compound_head without adverse
effects, and this mostly optimizes away a smp_rmb.
It looks worthwhile to keep around the implementation that doesn't relay
on page_tail->first_page not to be clobbered, because it would be
necessary if we'll decide to enforce page->private to zero at all times
whenever PG_private is not set, also for anonymous pages. For anonymous
pages enforcing such an invariant doesn't matter as anonymous pages
don't use page->private so we can get away with this microoptimization.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't actually need a reference on the head page in the slab and
hugetlbfs paths, as long as we add a smp_rmb() which should be faster
than get_page_unless_zero.
[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_page_foll() is more optimal and is always safe to use under the PT
lock. More so for hugetlbfs as there's no risk of race conditions with
split_huge_page regardless of the PT lock.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Jiang reported that he was seeing oopses when running NUMA systems
and default_hugepagesz=1G. I traced the issue down to
migrate_page_copy() trying to use the same code for hugetlb pages and
transparent hugepages. It should not have been trying to pass thp pages
in there.
So, add some VM_BUG_ON()s for the next hapless VM developer that tries
the same thing.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
{,set}page_address() are macros if WANT_PAGE_VIRTUAL. If
!WANT_PAGE_VIRTUAL, they're plain C functions.
If someone calls them with a void *, this pointer is auto-converted to
struct page * if !WANT_PAGE_VIRTUAL, but causes a build failure on
architectures using WANT_PAGE_VIRTUAL (arc, m68k and sparc64):
drivers/md/bcache/bset.c: In function `__btree_sort':
drivers/md/bcache/bset.c:1190: warning: dereferencing `void *' pointer
drivers/md/bcache/bset.c:1190: error: request for member `virtual' in something not a structure or union
Convert them to static inline functions to fix this. There are already
plenty of users of struct page members inside <linux/mm.h>, so there's
no reason to keep them as macros.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ramfs is always built in. It will never be modular, so using
module_init as an alias for __initcall is rather misleading.
Fix this up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of fs_initcall (which makes sense for fs code)
will thus change this registration from level 6-device to level 5-fs
(i.e. slightly earlier). However no observable impact of that small
difference has been observed during testing, or is expected.
Also note that this change uncovers a missing semicolon bug in the
registration of the initcall.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On fail path alloc_super() calls destroy_super(), which issues a warning
if the sb's s_mounts list is not empty, in particular if it has not been
initialized. That said s_mounts must be initialized in alloc_super()
before any possible failure, but currently it is initialized close to
the end of the function leading to a useless warning dumped to log if
either percpu_counter_init() or list_lru_init() fails. Let's fix this.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compat_do_readv_writev() function was doing a verify_area on the
incoming iov, but the nr_segs value is not checked. If someone passes
in a -1 for nr_segs, for instance, the function should return an EINVAL.
However, it returns a EFAULT because the verify_area fails because it is
checking an array of size MAX_UINT. The check is bogus, anyway, because
the next check, compat_rw_copy_check_uvector(), will do all the
necessary checking, anyway. The non-compat do_readv_writev() function
doesn't do this check, so I think it's safe to just remove the code.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cap "nmsgs" at I2C_RDRW_IOCTL_MAX_MSGS (42) but the current code
allows negative values. It's harmless but it makes my static checker
upset so I've made nsmgs unsigned.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uninline vast tracts of nested inline functions in
include/linux/posix_acl.h.
This reduces the text+data+bss size of x86_64 allyesconfig vmlinux by
8026 bytes.
The patch also regularises the positioning of the EXPORT_SYMBOLs in
posix_acl.c.
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Tested-by: Benny Halevy <bhalevy@primarydata.com>
Cc: Benny Halevy <bhalevy@panasas.com>
Cc: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch/sh/kernel/kgdb.c: In function 'sleeping_thread_to_gdb_regs':
arch/sh/kernel/kgdb.c:225:32: error: implicit declaration of function 'task_stack_page' [-Werror=implicit-function-declaration]
arch/sh/kernel/kgdb.c:242:23: error: dereferencing pointer to incomplete type
arch/sh/kernel/kgdb.c:243:22: error: dereferencing pointer to incomplete type
arch/sh/kernel/kgdb.c: In function 'singlestep_trap_handler':
arch/sh/kernel/kgdb.c:310:27: error: 'SIGTRAP' undeclared (first use in this function)
arch/sh/kernel/kgdb.c:310:27: note: each undeclared identifier is reported only once for each function it appears in
This was introduced by commit 16559ae48c ("kgdb: remove #include
<linux/serial_8250.h> from kgdb.h").
[geert@linux-m68k.org: reworded and reformatted]
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@linux-m68k.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2 nodes cluster, say Node A and Node B, mount the same ocfs2 volume, and
create a file 1.
Node A Node B
open 1, get open lock
rm 1, and then add 1 to orphan_dir
storage link down,
o2hb_write_timeout
->o2quo_disk_timeout
->emergency_restart
at the moment, Node B dismount and do
ocfs2rec simultaneously
1) ocfs2_dismount_volume
->ocfs2_recovery_exit
->wait_event(osb->recovery_event)
->flush_workqueue(ocfs2_wq)
2) ocfs2rec
->queue_work(&journal->j_recovery_work)
->ocfs2_recover_orphans
->ocfs2_commit_truncate
->queue_delayed_work(&osb->osb_truncate_log_wq)
In ocfs2_recovery_exit, it flushes workqueue and then releases system
inodes. When doing ocfs2rec, it will call ocfs2_flush_truncate_log
which will try to get sys_root_inode, and NULL pointer dereference
occurs.
Signed-off-by: Yiwen Jiang <jiangyiwen@huawei.com>
Signed-off-by: joyce <xuejiufei@huawei.com>
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An unreserve space ioctl OCFS2_IOC_UNRESVSP/64 should reject a negative
length.
Orabug:14789508
Signed-off-by: Tariq Saseed <tariq.x.saeed@oracle.com>
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes the following sparse warning:
fs/ocfs2/stack_user.c:930:32: warning:
symbol 'ocfs2_ls_ops' was not declared. Should it be static?
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust minlen with discard_granularity for FITRIM ioctl(2) if the given
minimum size in bytes is less than it because, discard granularity is
used to tell us that the minimum size of extent that can be discarded by
the storage device.
This is inspired by ext4 commit 5c2ed62fd4 ("ext4: Adjust minlen with
discard_granularity in the FITRIM ioctl") from Lukas Czerner.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For FITRIM ioctl(2), we should not keep silence if the given range
length ls less than a block size as there is no data blocks would be
discareded. Hence it should return EINVAL instead. This issue can be
verified via xfstests/generic/288 which is used for FITRIM argument
handling tests.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For FITRIM ioctl(2), we should return EOPNOTSUPP to inform the user that
the storage device does not support discard if it is, otherwise return
success would confuse the user even though there is no free blocks were
trimmed at all.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>