IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLnyNUACgkQxWXV+ddt
WDt9vA/9HcF+v5EkknyW07tatTap/Hm/ZB86Z5OZi6ikwIEcHsWhp3rUICejm88e
GecDPIluDtCtyD6x4stuqkwOm22aDP5q2T9H6+gyw92ozyb436OV1Z8IrmftzXKY
EpZO70PHZT+E6E/WYvyoTmmoCrjib7YlqCWZZhSLUFpsqqlOInmHEH49PW6KvM4r
acUZ/RxHurKdmI3kNY6ECbAQl6CASvtTdYcVCx8fT2zN0azoLIQxpYa7n/9ca1R6
8WnYilCbLbNGtcUXvO2M3tMZ4/5kvxrwQsUn93ccCJYuiN0ASiDXbLZ2g4LZ+n56
JGu+y5v5oBwjpVf+46cuvnENP5BQ61594WPseiVjrqODWnPjN28XkcVC0XmPsiiZ
lszeHO2cuIrIFoCah8ELMl8usu8+qxfXmPxIXtPu9rEyKsDtOjxVYc8SMXqLp0qQ
qYtBoFm0JcZHqtZRpB+dhQ37/xXtH4ljUi/mI6x8iALVujeR273URs7yO9zgIdeW
uZoFtbwpHFLUk+TL7Ku82/zOXp3fCwtDpNmlYbxeMbea/be3ShjncM4+mYzvHYri
dYON2LFrq+mnRDqtIXTCaAYwX7zU8Y18Ev9QwlNll8dKlKwS89+jpqLoa+eVYy3c
/HitHFza70KxmOj4dvDVZlzDpPvl7kW1UBkmskg4u3jnNWzedkM=
=sS1q
-----END PGP SIGNATURE-----
Merge tag 'for-5.20-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This brings some long awaited changes, the send protocol bump,
otherwise lots of small improvements and fixes. The main core part is
reworking bio handling, cleaning up the submission and endio and
improving error handling.
There are some changes outside of btrfs adding helpers or updating
API, listed at the end of the changelog.
Features:
- sysfs:
- export chunk size, in debug mode add tunable for setting its size
- show zoned among features (was only in debug mode)
- show commit stats (number, last/max/total duration)
- send protocol updated to 2
- new commands:
- ability write larger data chunks than 64K
- send raw compressed extents (uses the encoded data ioctls),
ie. no decompression on send side, no compression needed on
receive side if supported
- send 'otime' (inode creation time) among other timestamps
- send file attributes (a.k.a file flags and xflags)
- this is first version bump, backward compatibility on send and
receive side is provided
- there are still some known and wanted commands that will be
implemented in the near future, another version bump will be
needed, however we want to minimize that to avoid causing
usability issues
- print checksum type and implementation at mount time
- don't print some messages at mount (mentioned as people asked about
it), we want to print messages namely for new features so let's
make some space for that
- big metadata - this has been supported for a long time and is
not a feature that's worth mentioning
- skinny metadata - same reason, set by default by mkfs
Performance improvements:
- reduced amount of reserved metadata for delayed items
- when inserted items can be batched into one leaf
- when deleting batched directory index items
- when deleting delayed items used for deletion
- overall improved count of files/sec, decreased subvolume lock
contention
- metadata item access bounds checker micro-optimized, with a few
percent of improved runtime for metadata-heavy operations
- increase direct io limit for read to 256 sectors, improved
throughput by 3x on sample workload
Notable fixes:
- raid56
- reduce parity writes, skip sectors of stripe when there are no
data updates
- restore reading from on-disk data instead of using stripe cache,
this reduces chances to damage correct data due to RMW cycle
- refuse to replay log with unknown incompat read-only feature bit
set
- zoned
- fix page locking when COW fails in the middle of allocation
- improved tracking of active zones, ZNS drives may limit the
number and there are ENOSPC errors due to that limit and not
actual lack of space
- adjust maximum extent size for zone append so it does not cause
late ENOSPC due to underreservation
- mirror reading error messages show the mirror number
- don't fallback to buffered IO for NOWAIT direct IO writes, we don't
have the NOWAIT semantics for buffered io yet
- send, fix sending link commands for existing file paths when there
are deleted and created hardlinks for same files
- repair all mirrors for profiles with more than 1 copy (raid1c34)
- fix repair of compressed extents, unify where error detection and
repair happen
Core changes:
- bio completion cleanups
- don't double defer compression bios
- simplify endio workqueues
- add more data to btrfs_bio to avoid allocation for read requests
- rework bio error handling so it's same what block layer does,
the submission works and errors are consumed in endio
- when asynchronous bio offload fails fall back to synchronous
checksum calculation to avoid errors under writeback or memory
pressure
- new trace points
- raid56 events
- ordered extent operations
- super block log_root_transid deprecated (never used)
- mixed_backref and big_metadata sysfs feature files removed, they've
been default for sufficiently long time, there are no known users
and mixed_backref could be confused with mixed_groups
Non-btrfs changes, API updates:
- minor highmem API update to cover const arguments
- switch all kmap/kmap_atomic to kmap_local
- remove redundant flush_dcache_page()
- address_space_operations::writepage callback removed
- add bdev_max_segments() helper"
* tag 'for-5.20-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (163 commits)
btrfs: don't call btrfs_page_set_checked in finish_compressed_bio_read
btrfs: fix repair of compressed extents
btrfs: remove the start argument to check_data_csum and export
btrfs: pass a btrfs_bio to btrfs_repair_one_sector
btrfs: simplify the pending I/O counting in struct compressed_bio
btrfs: repair all known bad mirrors
btrfs: merge btrfs_dev_stat_print_on_error with its only caller
btrfs: join running log transaction when logging new name
btrfs: simplify error handling in btrfs_lookup_dentry
btrfs: send: always use the rbtree based inode ref management infrastructure
btrfs: send: fix sending link commands for existing file paths
btrfs: send: introduce recorded_ref_alloc and recorded_ref_free
btrfs: zoned: wait until zone is finished when allocation didn't progress
btrfs: zoned: write out partially allocated region
btrfs: zoned: activate necessary block group
btrfs: zoned: activate metadata block group on flush_space
btrfs: zoned: disable metadata overcommit for zoned
btrfs: zoned: introduce space_info->active_total_bytes
btrfs: zoned: finish least available block group on data bg allocation
btrfs: let can_allocate_chunk return error
...
One of the goals is to reduce the overhead of using ->read_iter()
and ->write_iter() instead of ->read()/->write(); new_sync_{read,write}()
has a surprising amount of overhead, in particular inside iocb_flags().
That's why the beginning of the series is in this pile; it's not directly
iov_iter-related, but it's a part of the same work...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCYurGOQAKCRBZ7Krx/gZQ
6ysyAP91lvBfMRepcxpd9kvtuzWkU8A3rfSziZZteEHANB9Q7QEAiPn2a2OjWkcZ
uAyUWfCkHCNx+dSMkEvUgR5okQ0exAM=
=9UCV
-----END PGP SIGNATURE-----
Merge tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs iov_iter updates from Al Viro:
"Part 1 - isolated cleanups and optimizations.
One of the goals is to reduce the overhead of using ->read_iter() and
->write_iter() instead of ->read()/->write().
new_sync_{read,write}() has a surprising amount of overhead, in
particular inside iocb_flags(). That's the explanation for the
beginning of the series is in this pile; it's not directly
iov_iter-related, but it's a part of the same work..."
* tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
first_iovec_segment(): just return address
iov_iter: massage calling conventions for first_{iovec,bvec}_segment()
iov_iter: first_{iovec,bvec}_segment() - simplify a bit
iov_iter: lift dealing with maxpages out of first_{iovec,bvec}_segment()
iov_iter_get_pages{,_alloc}(): cap the maxsize with MAX_RW_COUNT
iov_iter_bvec_advance(): don't bother with bvec_iter
copy_page_{to,from}_iter(): switch iovec variants to generic
keep iocb_flags() result cached in struct file
iocb: delay evaluation of IS_SYNC(...) until we want to check IOCB_DSYNC
struct file: use anonymous union member for rcuhead and llist
btrfs: use IOMAP_DIO_NOSYNC
teach iomap_dio_rw() to suppress dsync
No need of likely/unlikely on calls of check_copy_size()
- Fix an accounting bug that made NR_FILE_DIRTY grow without limit
when running xfstests
- Convert more of mpage to use folios
- Remove add_to_page_cache() and add_to_page_cache_locked()
- Convert find_get_pages_range() to filemap_get_folios()
- Improvements to the read_cache_page() family of functions
- Remove a few unnecessary checks of PageError
- Some straightforward filesystem conversions to use folios
- Split PageMovable users out from address_space_operations into their
own movable_operations
- Convert aops->migratepage to aops->migrate_folio
- Remove nobh support (Christoph Hellwig)
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmLpViQACgkQDpNsjXcp
gj5pBgf/f3+K7Hi3qw7aYQCYJQ7IA/bLyE/DLWI59kuiao6wDSve40B9YH9X++Ha
mRLp55bkQS+bwS2xa4jlqrIDJzAfNoWlXaXZHUXGL1C/52ChTF6jaH2cvO9PVlDS
7fLv1hy2LwiIdzpKJkUW7T+kcQGj3QLKqtQ4x8zD0LGMg055yvt/qndHSUi41nWT
/58+6W8Sk4vvRgkpeChFzF1lGLy00+FGT8y5V2kM9uRliFQ7XPCwqB2a3e5jbW6z
C1NXQmRnopCrnOT1TFIhK3DyX6MDIWV5qcikNAmCKFb9fQFPmjDLPt9iSoMGjw2M
Z+UVhJCaU3ISccd0DG5Ra/vzs9/O9Q==
=DgUi
-----END PGP SIGNATURE-----
Merge tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache
Pull folio updates from Matthew Wilcox:
- Fix an accounting bug that made NR_FILE_DIRTY grow without limit
when running xfstests
- Convert more of mpage to use folios
- Remove add_to_page_cache() and add_to_page_cache_locked()
- Convert find_get_pages_range() to filemap_get_folios()
- Improvements to the read_cache_page() family of functions
- Remove a few unnecessary checks of PageError
- Some straightforward filesystem conversions to use folios
- Split PageMovable users out from address_space_operations into
their own movable_operations
- Convert aops->migratepage to aops->migrate_folio
- Remove nobh support (Christoph Hellwig)
* tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache: (78 commits)
fs: remove the NULL get_block case in mpage_writepages
fs: don't call ->writepage from __mpage_writepage
fs: remove the nobh helpers
jfs: stop using the nobh helper
ext2: remove nobh support
ntfs3: refactor ntfs_writepages
mm/folio-compat: Remove migration compatibility functions
fs: Remove aops->migratepage()
secretmem: Convert to migrate_folio
hugetlb: Convert to migrate_folio
aio: Convert to migrate_folio
f2fs: Convert to filemap_migrate_folio()
ubifs: Convert to filemap_migrate_folio()
btrfs: Convert btrfs_migratepage to migrate_folio
mm/migrate: Add filemap_migrate_folio()
mm/migrate: Convert migrate_page() to migrate_folio()
nfs: Convert to migrate_folio
btrfs: Convert btree_migratepage to migrate_folio
mm/migrate: Convert expected_page_refs() to folio_expected_refs()
mm/migrate: Convert buffer_migrate_page() to buffer_migrate_folio()
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLko3gQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmQaD/90NKFj4v8I456TUQyg1jimXEsL+e84E6o2
ALWVb6JzQvlPVQXNLnK5YKIunMWOTtTMz0nyB8sVRwVJVJO0P5d7QopAkZM8fkyU
MK5OCzoryENw4DTc2wJS4in6cSbGylIuN74wMzlf7+M67JTImfoZQhbTMcjwzZfn
b3OlL6sID7zMXwGcuOJPZyUJICCpDhzdSF9JXqKma5PQuG2SBmQyvFxJAcsoFBPc
YetnoRIOIN6yBvsIZaPaYq7XI9MIvF0e67EQtyCEHj4tHpyVnyDWkeObVFULsISU
gGEKbkYPvNUzRAU5Q1NBBHh1tTfkf/MaUxTuZwoEwZ/s04IGBGMmrZGyfvdfzYo6
M7NwSEg/TrUSNfTwn65mQi7uOXu1pGkJrqz84Flm8u9Qid9Vd7LExLG5p/ggnWdH
5th93MDEmtEg29e9DXpEAuS5d0t3TtSvosflaKpyfNNfr+P0rWCN6GM/uW62VUTK
ls69SQh/AQJRbg64jU4xper6WhaYtSXK7TKEnxJycoEn9gYNyCcdot2uekth0xRH
ChHGmRlteiqe/y4uFWn/2dcxWjoleiHbFjTaiRL75WVl8wIDEjw02LGuoZ61Ss9H
WOV+MT7KqNjBGe6lreUY+O/PO02dzmoR6heJXN19p8zr/pBuLCTGX7UpO7rzgaBR
4N1HEozvIw==
=celk
-----END PGP SIGNATURE-----
Merge tag 'for-5.20/block-2022-07-29' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Improve the type checking of request flags (Bart)
- Ensure queue mapping for a single queues always picks the right queue
(Bart)
- Sanitize the io priority handling (Jan)
- rq-qos race fix (Jinke)
- Reserved tags handling improvements (John)
- Separate memory alignment from file/disk offset aligment for O_DIRECT
(Keith)
- Add new ublk driver, userspace block driver using io_uring for
communication with the userspace backend (Ming)
- Use try_cmpxchg() to cleanup the code in various spots (Uros)
- Finally remove bdevname() (Christoph)
- Clean up the zoned device handling (Christoph)
- Clean up independent access range support (Christoph)
- Clean up and improve block sysfs handling (Christoph)
- Clean up and improve teardown of block devices.
This turns the usual two step process into something that is simpler
to implement and handle in block drivers (Christoph)
- Clean up chunk size handling (Christoph)
- Misc cleanups and fixes (Bart, Bo, Dan, GuoYong, Jason, Keith, Liu,
Ming, Sebastian, Yang, Ying)
* tag 'for-5.20/block-2022-07-29' of git://git.kernel.dk/linux-block: (178 commits)
ublk_drv: fix double shift bug
ublk_drv: make sure that correct flags(features) returned to userspace
ublk_drv: fix error handling of ublk_add_dev
ublk_drv: fix lockdep warning
block: remove __blk_get_queue
block: call blk_mq_exit_queue from disk_release for never added disks
blk-mq: fix error handling in __blk_mq_alloc_disk
ublk: defer disk allocation
ublk: rewrite ublk_ctrl_get_queue_affinity to not rely on hctx->cpumask
ublk: fold __ublk_create_dev into ublk_ctrl_add_dev
ublk: cleanup ublk_ctrl_uring_cmd
ublk: simplify ublk_ch_open and ublk_ch_release
ublk: remove the empty open and release block device operations
ublk: remove UBLK_IO_F_PREFLUSH
ublk: add a MAINTAINERS entry
block: don't allow the same type rq_qos add more than once
mmc: fix disk/queue leak in case of adding disk failure
ublk_drv: fix an IS_ERR() vs NULL check
ublk: remove UBLK_IO_F_INTEGRITY
ublk_drv: remove unneeded semicolon
...
Use filemap_migrate_folio() to do the bulk of the work, and then copy
the ordered flag across if needed.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Convert all callers to pass a folio. Most have the folio
already available. Switch all users from aops->migratepage to
aops->migrate_folio. Also turn the documentation into kerneldoc.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Use a folio throughout this function. migrate_page() will be converted
later.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
This flag was used to communicate that the low-level compression code
already did verify the checksum to the high-level I/O completion code.
But it has been unused for a long time as the upper btrfs_bio for the
decompressed data had a NULL csum pointer basically since that pointer
existed and the code already checks for that a little later.
Note that this does not affect the other use of the checked flag, which
is only used for the COW fixup worker.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the checksum of compressed extents is verified based on the
compressed data and the lower btrfs_bio, but the actual repair process
is driven by end_bio_extent_readpage on the upper btrfs_bio for the
decompressed data.
This has a bunch of issues, including not being able to properly
communicate the failed mirror up in case that the I/O submission got
preempted, a general loss of if an error was an I/O error or a checksum
verification failure, but most importantly that this design causes
btrfs_clean_io_failure to eventually write back the uncompressed good
data onto the disk sectors that are supposed to contain compressed data.
Fix this by moving the repair to the lower btrfs_bio. To do so, a fair
amount of code has to be reshuffled:
a) the lower btrfs_bio now needs a valid csum pointer. The easiest way
to achieve that is to pass NULL btrfs_lookup_bio_sums and just use
the btrfs_bio management of csums. For a compressed_bio that is
split into multiple btrfs_bios this means additional memory
allocations, but the code becomes a lot more regular.
b) checksum verification now runs directly on the lower btrfs_bio instead
of the compressed_bio. This actually nicely simplifies the end I/O
processing.
c) btrfs_repair_one_sector can't just look up the logical address for
the file offset any more, as there is no corresponding relative
offsets that apply to the file offset and the logic address for
compressed extents. Instead require that the saved bvec_iter in the
btrfs_bio is filled out for all read bios and use that, which again
removes a fair amount of code.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Derive the value of start from the btrfs_bio now that ->file_offset is
always valid. Also export and rename the function so it's available
outside of inode.c as we'll need that soon.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the btrfs_bio instead of the plain bio to btrfs_repair_one_sector,
and remove the start and failed_mirror arguments in favor of deriving
them from the btrfs_bio. For this to work ensure that the file_offset
field is also initialized for buffered I/O.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of counting the sectors just count the bios, with an extra
reference held during submission. This significantly simplifies the
submission side error handling.
This slightly changes completion and error handling of
btrfs_submit_compressed_{read,write} because with the old code the
compressed_bio could have been completed in
submit_compressed_{read,write} only if there was an error during
submission for one of the lower bio, whilst with the new code there is a
chance for this to happen even for successful submission if the all the
lower bios complete before the end of the function is reached.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
When there is more than a single level of redundancy there can also be
multiple bad mirrors, and the current read repair code only repairs the
last bad one.
Restructure btrfs_repair_one_sector so that it records the originally
failed mirror and the number of copies, and then repair all known bad
copies until we reach the originally failed copy in clean_io_failure.
Note that this also means the read repair reads will always start from
the next bad mirror and not mirror 0.
This fixes btrfs/265 in xfstests.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fold it into the only caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a new name, in case of a rename, we pin the log before
changing it. We then either delete a directory entry from the log or
insert a key range item to mark the old name for deletion on log replay.
However when doing one of those log changes we may have another task that
started writing out the log (at btrfs_sync_log()) and it started before
we pinned the log root. So we may end up changing a log tree while its
writeback is being started by another task syncing the log. This can lead
to inconsistencies in a log tree and other unexpected results during log
replay, because we can get some committed node pointing to a node/leaf
that ends up not getting written to disk before the next log commit.
The problem, conceptually, started to happen in commit 88d2beec7e53fc
("btrfs: avoid logging all directory changes during renames"), because
there we started to update the log without joining its current transaction
first.
However the problem only became visible with commit 259c4b96d78dda
("btrfs: stop doing unnecessary log updates during a rename"), and that is
because we used to pin the log at btrfs_rename() and then before entering
btrfs_log_new_name(), when unlinking the old dentry, we ended up at
btrfs_del_inode_ref_in_log() and btrfs_del_dir_entries_in_log(). Both
of them join the current log transaction, effectively waiting for any log
transaction writeout (due to acquiring the root's log_mutex). This made it
safe even after leaving the current log transaction, because we remained
with the log pinned when we called btrfs_log_new_name().
Then in commit 259c4b96d78dda ("btrfs: stop doing unnecessary log updates
during a rename"), we removed the log pinning from btrfs_rename() and
stopped calling btrfs_del_inode_ref_in_log() and
btrfs_del_dir_entries_in_log() during the rename, and started to do all
the needed work at btrfs_log_new_name(), but without joining the current
log transaction, only pinning the log, which is racy because another task
may have started writeout of the log tree right before we pinned the log.
Both commits landed in kernel 5.18, so it doesn't make any practical
difference which should be blamed, but I'm blaming the second commit only
because with the first one, by chance, the problem did not happen due to
the fact we joined the log transaction after pinning the log and unpinned
it only after calling btrfs_log_new_name().
So make btrfs_log_new_name() join the current log transaction instead of
pinning it, so that we never do log updates if it's writeout is starting.
Fixes: 259c4b96d78dda ("btrfs: stop doing unnecessary log updates during a rename")
CC: stable@vger.kernel.org # 5.18+
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Tested-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_lookup_dentry releasing the reference of the sub_root and the
running orphan cleanup should only happen if the dentry found actually
represents a subvolume. This can only be true in the 'else' branch as
otherwise either fixup_tree_root_location returned an ENOENT error, in
which case sub_root wouldn't have been changed or if we got a different
errno this means btrfs_get_fs_root couldn't have executed successfully
again meaning sub_root will equal to root. So simplify all the branches
by moving the code into the 'else'.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the patch "btrfs: send: fix sending link commands for existing file
paths", we now have two infrastructures to detect and eliminate duplicated
inode references (due to names that got removed and re-added between the
send and parent snapshots):
1) One that works on a single inode ref/extref item;
2) A new one that works acrosss all ref/extref items for an inode, and
it's also more efficient because even in the single ref/extref item
case, it does not do a linear search for all the names encoded in the
ref/extref item, it uses red black trees to speedup up the search.
There's no good reason to keep both infrastructures, we can use the new
one everywhere, and it's always more efficient.
So remove the old infrastructure and change all sites that are using it
to use the new one.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a bug sending link commands for existing file paths. When we're
processing an inode, we go over all references. All the new file paths are
added to the "new_refs" list. And all the deleted file paths are added to
the "deleted_refs" list. In the end, when we finish processing the inode,
we iterate over all the items in the "new_refs" list and send link commands
for those file paths. After that, we go over all the items in the
"deleted_refs" list and send unlink commands for them. If there are
duplicated file paths in both lists, we will try to create them before we
remove them. Then the receiver gets an -EEXIST error when trying the link
operations.
Example for having duplicated file paths in both list:
$ btrfs subvolume create vol
# create a file and 2000 hard links to the same inode
$ touch vol/foo
$ for i in {1..2000}; do link vol/foo vol/$i ; done
# take a snapshot for a parent snapshot
$ btrfs subvolume snapshot -r vol snap1
# remove 2000 hard links and re-create the last 1000 links
$ for i in {1..2000}; do rm vol/$i; done;
$ for i in {1001..2000}; do link vol/foo vol/$i; done
# take another one for a send snapshot
$ btrfs subvolume snapshot -r vol snap2
$ mkdir receive_dir
$ btrfs send snap2 -p snap1 | btrfs receive receive_dir/
At subvol snap2
link 1238 -> foo
ERROR: link 1238 -> foo failed: File exists
In this case, we will have the same file paths added to both lists. In the
parent snapshot, reference paths {1..1237} are stored in inode references,
but reference paths {1238..2000} are stored in inode extended references.
In the send snapshot, all reference paths {1001..2000} are stored in inode
references. During the incremental send, we process their inode references
first. In record_changed_ref(), we iterate all its inode references in the
send/parent snapshot. For every inode reference, we also use find_iref() to
check whether the same file path also appears in the parent/send snapshot
or not. Inode references {1238..2000} which appear in the send snapshot but
not in the parent snapshot are added to the "new_refs" list. On the other
hand, Inode references {1..1000} which appear in the parent snapshot but
not in the send snapshot are added to the "deleted_refs" list. Next, when
we process their inode extended references, reference paths {1238..2000}
are added to the "deleted_refs" list because all of them only appear in the
parent snapshot. Now two lists contain items as below:
"new_refs" list: {1238..2000}
"deleted_refs" list: {1..1000}, {1238..2000}
Reference paths {1238..2000} appear in both lists. And as the processing
order mentioned about before, the receiver gets an -EEXIST error when trying
the link operations.
To fix the bug, the idea is to process the "deleted_refs" list before
the "new_refs" list. However, it's not easy to reshuffle the processing
order. For one reason, if we do so, we may unlink all the existing paths
first, there's no valid path anymore for links. And it's inefficient
because we do a bunch of unlinks followed by links for the same paths.
Moreover, it makes less sense to have duplications in both lists. A
reference path cannot not only be regarded as new but also has been seen in
the past, or we won't call it a new path. However, it's also not a good
idea to make find_iref() check a reference against all inode references
and all inode extended references because it may result in large disk
reads.
So we introduce two rbtrees to make the references easier for lookups.
And we also introduce record_new_ref_if_needed() and
record_deleted_ref_if_needed() for changed_ref() to check and remove
duplicated references early.
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce wrappers to allocate and free recorded_ref structures.
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the allocated position doesn't progress, we cannot submit IOs to
finish a block group, but there should be ongoing IOs that will finish a
block group. So, in that case, we wait for a zone to be finished and retry
the allocation after that.
Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to
indicate we need a zone finish to have proceeded. The flag is set when the
allocator detected it cannot activate a new block group. And, it is cleared
once a zone is finished.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
cow_file_range() works in an all-or-nothing way: if it fails to allocate an
extent for a part of the given region, it gives up all the region including
the successfully allocated parts. On cow_file_range(), run_delalloc_zoned()
writes data for the region only when it successfully allocate all the
region.
This all-or-nothing allocation and write-out are problematic when available
space in all the block groups are get tight with the active zone
restriction. btrfs_reserve_extent() try hard to utilize the left space in
the active block groups and gives up finally and fails with
-ENOSPC. However, if we send IOs for the successfully allocated region, we
can finish a zone and can continue on the rest of the allocation on a newly
allocated block group.
This patch implements the partial write-out for run_delalloc_zoned(). With
this patch applied, cow_file_range() returns -EAGAIN to tell the caller to
do something to progress the further allocation, and tells the successfully
allocated region with done_offset. Furthermore, the zoned extent allocator
returns -EAGAIN to tell cow_file_range() going back to the caller side.
Actually, we still need to wait for an IO to complete to continue the
allocation. The next patch implements that part.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places where allocating a chunk is not enough. These two
places are trying to ensure the space by allocating a chunk. To meet the
condition for active_total_bytes, we also need to activate a block group
there.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For metadata space on zoned filesystem, reaching ALLOC_CHUNK{,_FORCE}
means we don't have enough space left in the active_total_bytes. Before
allocating a new chunk, we can try to activate an existing block group
in this case.
Also, allocating a chunk is not enough to grant a ticket for metadata
space on zoned filesystem we need to activate the block group to
increase the active_total_bytes.
btrfs_zoned_activate_one_bg() implements the activation feature. It will
activate a block group by (maybe) finishing a block group. It will give up
activating a block group if it cannot finish any block group.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The metadata overcommit makes the space reservation flexible but it is also
harmful to active zone tracking. Since we cannot finish a block group from
the metadata allocation context, we might not activate a new block group
and might not be able to actually write out the overcommit reservations.
So, disable metadata overcommit for zoned filesystems. We will ensure
the reservations are under active_total_bytes in the following patches.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The active_total_bytes, like the total_bytes, accounts for the total bytes
of active block groups in the space_info.
With an introduction of active_total_bytes, we can check if the reserved
bytes can be written to the block groups without activating a new block
group. The check is necessary for metadata allocation on zoned
filesystem. We cannot finish a block group, which may require waiting
for the current transaction, from the metadata allocation context.
Instead, we need to ensure the ongoing allocation (reserved bytes) fits
in active block groups.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we run out of active zones and no sufficient space is left in any
block groups, we need to finish one block group to make room to activate a
new block group.
However, we cannot do this for metadata block groups because we can cause a
deadlock by waiting for a running transaction commit. So, do that only for
a data block group.
Furthermore, the block group to be finished has two requirements. First,
the block group must not have reserved bytes left. Having reserved bytes
means we have an allocated region but did not yet send bios for it. If that
region is allocated by the thread calling btrfs_zone_finish(), it results
in a deadlock.
Second, the block group to be finished must not be a SYSTEM block
group. Finishing a SYSTEM block group easily breaks further chunk
allocation by nullifying the SYSTEM free space.
In a certain case, we cannot find any zone finish candidate or
btrfs_zone_finish() may fail. In that case, we fall back to split the
allocation bytes and fill the last spaces left in the block groups.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the later patch, convert the return type from bool to int and return
errors. No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use fs_info->max_extent_size also in get_extent_max_capacity() for the
completeness. This is only used for defrag and not really necessary to fix
the metadata reservation size. But, it still suppresses unnecessary defrag
operations.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If count_max_extents() uses BTRFS_MAX_EXTENT_SIZE to calculate the number
of extents needed, btrfs release the metadata reservation too much on its
way to write out the data.
Now that BTRFS_MAX_EXTENT_SIZE is replaced with fs_info->max_extent_size,
convert count_max_extents() to use it instead, and fix the calculation of
the metadata reservation.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f39 ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu_read_lock_sched_held+0x16/0x80
[75721.969111] ? lock_acquire+0x41b/0x4c0
[75721.974982] finish_ordered_fn+0x15/0x20 [btrfs]
[75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs]
[75721.988184] ? _raw_spin_unlock_irq+0x28/0x50
[75721.994643] process_one_work+0x815/0x1460
[75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250
[75722.006643] ? do_raw_spin_trylock+0xbb/0x190
[75722.013086] worker_thread+0x59a/0xeb0
[75722.018511] kthread+0x2ac/0x360
[75722.023428] ? process_one_work+0x1460/0x1460
[75722.029431] ? kthread_complete_and_exit+0x30/0x30
[75722.036044] ret_from_fork+0x22/0x30
[75722.041255] </TASK>
[75722.045047] irq event stamp: 0
[75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0
[75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0
[75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0
[75722.085335] ---[ end trace 0000000000000000 ]---
To fix the estimation, we need to introduce fs_info->max_extent_size to
replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for
regular vs zoned filesystem.
Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned
filesystem, it is set to fs_info->max_zone_append_size.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f39 ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch is basically a revert of commit 5a80d1c6a270 ("btrfs: zoned:
remove max_zone_append_size logic"), but without unnecessary ASSERT and
check. The max_zone_append_size will be used as a hint to estimate the
number of extents to cover delalloc/writeback region in the later commits.
The size of a ZONE APPEND bio is also limited by queue_max_segments(), so
this commit considers it to calculate max_zone_append_size. Technically, a
bio can be larger than queue_max_segments() * PAGE_SIZE if the pages are
contiguous. But, it is safe to consider "queue_max_segments() * PAGE_SIZE"
as an upper limit of an extent size to calculate the number of extents
needed to write data.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_ino() tries to use first the objectid of the inode's
location key. This is to avoid truncation of the inode number on 32 bits
platforms because the i_ino field of struct inode has the unsigned long
type, while the objectid is a 64 bits unsigned type (u64) on every system.
This logic was added in commit 33345d01522f81 ("Btrfs: Always use 64bit
inode number").
However if we are running on a 64 bits system, we can always directly
return the i_ino value from struct inode, which eliminates the need for
he special if statement that tests for a location key type of
BTRFS_ROOT_ITEM_KEY - in which case i_ino may not have the same value as
the objectid in the inode's location objectid, it may have a value of
BTRFS_EMPTY_SUBVOL_DIR_OBJECTID, for the case of snapshots of trees with
subvolumes/snapshots inside them.
So add a special version for 64 bits system that directly returns i_ino
of struct inode. This eliminates one branch and reduces the overall code
size, since btrfs_ino() is an inline function that is extensively used.
Before:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko
After:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1612028 189180 29032 1830240 1bed60 fs/btrfs/btrfs.ko
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently don't use the location key of the btree inode, its content
is set to zeroes, as it's a special inode that is not persisted (it has
no inode item stored in any btree).
At btrfs_ino(), an inline function used extensively in btrfs, we have
this special check if the given inode's location objectid is 0, and if it
is, we return the value stored in the VFS' inode i_ino field instead
(which is BTRFS_BTREE_INODE_OBJECTID for the btree inode).
To reduce the code at btrfs_ino(), we can simply set the objectid of the
btree inode to the value BTRFS_BTREE_INODE_OBJECTID. This eliminates the
need to check for the special case of the objectid being zero, with the
side effect of reducing the overall code size and having less code to
execute, as btrfs_ino() is an inline function.
Before:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko
After:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
kmap_atomic() is being deprecated in favor of kmap_local_page() where it
is feasible. With kmap_local_page() mappings are per thread, CPU local,
and not globally visible.
The last use of kmap_atomic is in inode.c where the context is atomic [1]
and can be safely replaced by kmap_local_page.
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB RAM and booting a
kernel with HIGHMEM64GB enabled.
[1] https://lore.kernel.org/linux-btrfs/20220601132545.GM20633@twin.jikos.cz/
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_decompress_bio()
because in this function the mappings are per thread and are not visible
in other contexts.
Tested with xfstests on QEMU + KVM 32-bits VM with 4GB of RAM and
HIGHMEM64G enabled. This patch passes 26/26 tests of group "compress".
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_compress_pages()
because in this function the mappings are per thread and are not visible
in other contexts. Furthermore, drop the mappings of "out_page" which is
allocated within zlib_compress_pages() with alloc_page(GFP_NOFS) and use
page_address().
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB of RAM booting
a kernel with HIGHMEM64G enabled. This patch passes 26/26 tests of group
"compress".
CC: Qu Wenruo <wqu@suse.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zstd.c because in this
file the mappings are per thread and are not visible in other contexts. In
the meanwhile use plain page_address() on output pages allocated with
the GFP_NOFS flag instead of calling kmap*() on them (since they are
always allocated from ZONE_NORMAL).
Tested with xfstests on QEMU + KVM 32 bits VM with 4GB of RAM, booting a
kernel with HIGHMEM64G enabled.
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, for a direct IO write, if we need to fallback to buffered IO,
either to satisfy the whole write operation or just a part of it, we do
it in the current context even if it's a NOWAIT context. This is not ideal
because we currently don't have support for NOWAIT semantics in the
buffered IO path (we can block for several reasons), so we should instead
return -EAGAIN to the caller, so that it knows it should retry (the whole
operation or what's left of it) in a context where blocking is acceptable.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The number of block group reserve types BTRFS_BLOCK_RSV_* is small and
fits to u8 and there's enough left in case we want to add more.
For type safety use the enum but make it 8 bits in the structure to save
space.
The structure size is now 48 on release build, making a slight
improvement in structures where it's embedded, like btrfs_fs_info or
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use simple bool type for the block reserve failfast status, there's
short to save space as there used to be int but there's no reason for
that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use simple bool type for the block reserve full status, there's short to
save space as there used to be int but there's no reason for that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission and the other btrfs bio submission handlers do
and avoids any confusion on who needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_wq_submit_bio is used for writeback under memory pressure.
Instead of failing the I/O when we can't allocate the async_submit_bio,
just punt back to the synchronous submission path.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_data_write_bio special cases the reloc root because the
checksums are preloaded, but only does so for the !sync case. The sync
case can't happen for data relocation, but just handling it more generally
significantly simplifies the logic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Transfer the bio counter reference acquired by btrfs_submit_bio to
raid56_parity_write and raid56_parity_recovery together with the bio
that the reference was acquired for instead of acquiring another
reference in those helpers and dropping the original one in
btrfs_submit_bio.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Also use the proper bool type for the generic_io argument.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches
what the block layer submission does and avoids any confusion on who
needs to handle errors.
As this requires touching all the callers, rename the function to
btrfs_submit_bio, which describes the functionality much better.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
For profiles other than RAID56, __btrfs_map_block() returns @map_length
as min(stripe_end, logical + *length), which is also the same result
from btrfs_get_io_geometry().
But for RAID56, __btrfs_map_block() returns @map_length as stripe_len.
This strange behavior is going to hurt incoming bio split at
btrfs_map_bio() time, as we will use @map_length as bio split size.
Fix this behavior by returning @map_length by the same calculation as
for other profiles.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>