IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The option DM_LOG_USERSPACE is sub-option of DM_MIRROR, so place it
right after DM_MIRROR. Doing so fixes various other Device mapper
targets/features to be properly nested under "Device mapper support".
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
dm-switch is a new target that maps IO to underlying block devices
efficiently when there is a large number of fixed-sized address regions
but there is no simple pattern to allow for a compact mapping
representation such as dm-stripe.
Though we have developed this target for a specific storage device, Dell
EqualLogic, we have made an effort to keep it as general purpose as
possible in the hope that others may benefit.
Originally developed by Jim Ramsay. Simplified by Mikulas Patocka.
Signed-off-by: Jim Ramsay <jim_ramsay@dell.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Does writethrough and writeback caching, handles unclean shutdown, and
has a bunch of other nifty features motivated by real world usage.
See the wiki at http://bcache.evilpiepirate.org for more.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
mostly little bugfixes.
Only "feature" is a new RAID10 layout which slightly
improves the number of sets of devices that can concurrently
fail, without data loss.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIVAwUAUTPm+znsnt1WYoG5AQLLsw/+PMqr8roC4twgxTWV1NRbU8NtOcRi9Rj9
uvBS63uYAaLdi/D3UBKFYczmNCu9knuXbcp9SgFDxH7LlthQsWN/GYnif06pPo3w
9Agu5M8c062TJEG1vrnX6FhPO6pNgrWFr3h+CKkTiD3179i9DoQpP8LXQToeyMtI
YRMQf/zCkxYtDvWAP0iwsEWtw8cf+q9I/uGPhQ1L+DnZapXYdbtnqWBRz9q6mrDt
orcGrP41aZHvnOHUaTbwmaorCKkf/Ys4SMaGenrSFpnpQMypt7VgNuwHC59LxvJT
5eiFG/26zIsv7Wk0jv/TvFP5qzUPo0/PFkd5ug0ArvbVRiXS2cMJDwQvMdO1toxD
i5Bb+P9DptadvoWhOTgIpxnG77yRH45wJvyJOk+ZfS1/IO87nCRa3d0yiNOU5e2/
o0VdXPZRr72sdKKTK6kQuYfwCPb+Z2Pz6Q8BJdk6GxlmTXyP6sKhIgwUX86534fE
LrOxfK8qV+GetVu3X02RoX2CyJJRQHXyXmbHuSzXuo/JiOYtDigAydwNZChvf+tf
OoMY9K8vgNbhnGsUG6la7XPvZ+6dZMjdnxp2HB99Ml5A3PWZd75i5T6IHHxIQFbD
C3z9PWTWP+hK4k15DEyjlELtsE9WduGTXG4kUcf328xJ/7lj4VIImVugdCz+1B6z
+HlI6BiLwzY=
=YdVD
-----END PGP SIGNATURE-----
Merge tag 'md-3.9' of git://neil.brown.name/md
Pull md updates from NeilBrown:
"Mostly little bugfixes.
Only "feature" is a new RAID10 layout which slightly improves the
number of sets of devices that can concurrently fail, without data
loss."
* tag 'md-3.9' of git://neil.brown.name/md:
md: expedite metadata update when switching read-auto -> active
md: remove CONFIG_MULTICORE_RAID456
md/raid1,raid10: fix deadlock with freeze_array()
md/raid0: improve error message when converting RAID4-with-spares to RAID0
md: raid0: fix error return from create_stripe_zones.
md: fix two bugs when attempting to resize RAID0 array.
DM RAID: Add support for MD's RAID10 "far" and "offset" algorithms
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 2)
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1)
MD RAID10: Minor non-functional code changes
md: raid1,10: Handle REQ_WRITE_SAME flag in write bios
md: protect against crash upon fsync on ro array
A simple cache policy that writes back all data to the origin.
This is used to decommission a dm cache by emptying it.
Signed-off-by: Heinz Mauelshagen <mauelshagen@redhat.com>
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
A cache policy that uses a multiqueue ordered by recent hit
count to select which blocks should be promoted and demoted.
This is meant to be a general purpose policy. It prioritises
reads over writes.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add a target that allows a fast device such as an SSD to be used as a
cache for a slower device such as a disk.
A plug-in architecture was chosen so that the decisions about which data
to migrate and when are delegated to interchangeable tunable policy
modules. The first general purpose module we have developed, called
"mq" (multiqueue), follows in the next patch. Other modules are
under development.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Heinz Mauelshagen <mauelshagen@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This doesn't seem to actually help and we have an alternate
multi-threading approach waiting in the wings, so just get
rid of this config option and associated code.
As a bonus, we remove one use of CONFIG_EXPERIMENTAL
Cc: Dan Williams <djbw@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: NeilBrown <neilb@suse.de>
The bio prison code will be useful to other future DM targets so
move it to a separate module.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This contains a few patches that depend on
plugging changes in the block layer so needs to wait
for those.
It also contains a Kconfig fix for the new RAID10 support
in dm-raid.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIVAwUAUBnKUznsnt1WYoG5AQJOQA/+M7RoVnF63+TbGIqdNDotuF8FxvudCZBl
Ou2yG47EOPtWf/RoqPyfpydDgdjyXsk4T5TfXoc0hsXVr4shCYo51uT9K34TMSDJ
2GzGWuyugRJFyvxW7PBgM+zFWlcVdgUGcwsdmIUMtHRz8Q10TqO5fE22RNLkhwOl
fvGCK1KYnQqlG87DbulHWMo22vyZVic8jBqFSw55CPuuFMSJMxCw0rOPUnvk5Q8v
jWzZzuUqrM8iiOxTDHsbCA0IleCbGl/m0tgk02Vj4tkCvz9N/xzQW2se0H6uECiK
k8odbAiNBOh1q135sa7ASrBzxT+JqSiQ25rLheTEzzNxjFv6/NlntXmYu6HB+lD3
DoHAvRjgMxiLCdisW6TJb10NItitXwE/HSpQOVRxyYtINdzmhIDaCccgfN8ZMkho
nmE/uzO+CAoCFpZC2C/nY8D0BZs5fw4hgDAsci66mvs+88dy+SoA4AbyNEMAusOS
tiL8ZEjnYXvxTh3JFaMIaqQd6PkbahmtEtvorwXsUYUdY0ybkcs2FYVksvkgYdyW
WlejOZVurY2i5biqck3UqjesxeJA5TMAlAUQR7vXu1Fa9fYFXZbqJom/KnPRTfek
xerCWPMbhuzmcyEjUOGfjs6GFEnEmRT6Q6fN3CBaQMS2Q/z+6AkTOXKVl5Fhvoyl
aeu1m8nZLuI=
=ovN2
-----END PGP SIGNATURE-----
Merge tag 'md-3.6' of git://neil.brown.name/md
Pull additional md update from NeilBrown:
"This contains a few patches that depend on plugging changes in the
block layer so needed to wait for those.
It also contains a Kconfig fix for the new RAID10 support in dm-raid."
* tag 'md-3.6' of git://neil.brown.name/md:
md/dm-raid: DM_RAID should select MD_RAID10
md/raid1: submit IO from originating thread instead of md thread.
raid5: raid5d handle stripe in batch way
raid5: make_request use batch stripe release
Now that DM_RAID supports raid10, it needs to select that code
to ensure it is included.
Cc: Jonathan Brassow <jbrassow@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Remove debug space map checker from dm persistent data.
The space map checker is a wrapper for other space maps that double
checks the reference counts are correct. It holds all these reference
counts in memory rather than on disk, so uses a lot of memory and is
thus restricted to small pools.
As yet, this checker hasn't found any issues, but has caused a few of
its own due to people turning it on by default with larger pools.
Removing.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This device-mapper target creates a read-only device that transparently
validates the data on one underlying device against a pre-generated tree
of cryptographic checksums stored on a second device.
Two checksum device formats are supported: version 0 which is already
shipping in Chromium OS and version 1 which incorporates some
improvements.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Signed-off-by: Will Drewry <wad@chromium.org>
Signed-off-by: Elly Jones <ellyjones@chromium.org>
Cc: Milan Broz <mbroz@redhat.com>
Cc: Olof Johansson <olofj@chromium.org>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
The dm raid module (using md) is becoming the preferred way of creating long-lived
mirrors through userspace LVM so remove the EXPERIMENTAL tag.
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Drop EXPERIMENTAL tag from dm-uevent.
It's not changed for a while and some userspace tools are relying upon it.
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Initial EXPERIMENTAL implementation of device-mapper thin provisioning
with snapshot support. The 'thin' target is used to create instances of
the virtual devices that are hosted in the 'thin-pool' target. The
thin-pool target provides data sharing among devices. This sharing is
made possible using the persistent-data library in the previous patch.
The main highlight of this implementation, compared to the previous
implementation of snapshots, is that it allows many virtual devices to
be stored on the same data volume, simplifying administration and
allowing sharing of data between volumes (thus reducing disk usage).
Another big feature is support for arbitrary depth of recursive
snapshots (snapshots of snapshots of snapshots ...). The previous
implementation of snapshots did this by chaining together lookup tables,
and so performance was O(depth). This new implementation uses a single
data structure so we don't get this degradation with depth.
For further information and examples of how to use this, please read
Documentation/device-mapper/thin-provisioning.txt
Signed-off-by: Joe Thornber <thornber@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
The dm-bufio interface allows you to do cached I/O on devices,
holding recently-read blocks in memory and performing delayed writes.
We don't use buffer cache or page cache already present in the kernel, because:
* we need to handle block sizes larger than a page
* we can't allocate memory to perform reads or we'd have deadlocks
Currently, when a cache is required, we limit its size to a fraction of
available memory. Usage can be viewed and changed in
/sys/module/dm_bufio/parameters/ .
The first user is thin provisioning, but more dm users are planned.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add the ability to parse and use metadata devices to dm-raid. Although
not strictly required, without the metadata devices, many features of
RAID are unavailable. They are used to store a superblock and bitmap.
The role, or position in the array, of each device must be recorded in
its superblock. This is to help with fault handling, array reshaping,
and sanity checks. RAID 4/5/6 devices must be loaded in a specific order:
in this way, the 'array_position' field helps validate the correctness
of the mapping when it is loaded. It can be used during reshaping to
identify which devices are added/removed. Fault handling is impossible
without this field. For example, when a device fails it is recorded in
the superblock. If this is a RAID1 device and the offending device is
removed from the array, there must be a way during subsequent array
assembly to determine that the failed device was the one removed. This
is done by correlating the 'array_position' field and the bit-field
variable 'failed_devices'.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This target is the same as the linear target except that it returns I/O
errors periodically. It's been found useful in simulating failing
devices for testing purposes.
I needed a dm target to do some failure testing on btrfs's raid code, and
Mike pointed me at this.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch is the skeleton for the DM target that will be
the bridge from DM to MD (initially RAID456 and later RAID1). It
provides a way to use device-mapper interfaces to the MD RAID456
drivers.
As with all device-mapper targets, the nominal public interfaces are the
constructor (CTR) tables and the status outputs (both STATUSTYPE_INFO
and STATUSTYPE_TABLE). The CTR table looks like the following:
1: <s> <l> raid \
2: <raid_type> <#raid_params> <raid_params> \
3: <#raid_devs> <meta_dev1> <dev1> .. <meta_devN> <devN>
Line 1 contains the standard first three arguments to any device-mapper
target - the start, length, and target type fields. The target type in
this case is "raid".
Line 2 contains the arguments that define the particular raid
type/personality/level, the required arguments for that raid type, and
any optional arguments. Possible raid types include: raid4, raid5_la,
raid5_ls, raid5_rs, raid6_zr, raid6_nr, and raid6_nc. (again, raid1 is
planned for the future.) The list of required and optional parameters
is the same for all the current raid types. The required parameters are
positional, while the optional parameters are given as key/value pairs.
The possible parameters are as follows:
<chunk_size> Chunk size in sectors.
[[no]sync] Force/Prevent RAID initialization
[rebuild <idx>] Rebuild the drive indicated by the index
[daemon_sleep <ms>] Time between bitmap daemon work to clear bits
[min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_write_behind <value>] See '-write-behind=' (man mdadm)
[stripe_cache <sectors>] Stripe cache size for higher RAIDs
Line 3 contains the list of devices that compose the array in
metadata/data device pairs. If the metadata is stored separately, a '-'
is given for the metadata device position. If a drive has failed or is
missing at creation time, a '-' can be given for both the metadata and
data drives for a given position.
Examples:
# RAID4 - 4 data drives, 1 parity
# No metadata devices specified to hold superblock/bitmap info
# Chunk size of 1MiB
# (Lines separated for easy reading)
0 1960893648 raid \
raid4 1 2048 \
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
# RAID4 - 4 data drives, 1 parity (no metadata devices)
# Chunk size of 1MiB, force RAID initialization,
# min recovery rate at 20 kiB/sec/disk
0 1960893648 raid \
raid4 4 2048 min_recovery_rate 20 sync\
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
Performing a 'dmsetup table' should display the CTR table used to
construct the mapping (with possible reordering of optional
parameters).
Performing a 'dmsetup status' will yield information on the state and
health of the array. The output is as follows:
1: <s> <l> raid \
2: <raid_type> <#devices> <1 health char for each dev> <resync_ratio>
Line 1 is standard DM output. Line 2 is best shown by example:
0 1960893648 raid raid4 5 AAAAA 2/490221568
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with recovery.
Cc: linux-raid@vger.kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
RAID10 has been available for quite a while now and is quite well
tested, so we can remove the EXPERIMENTAL designation.
Reported-by: Eric MSP Veith <eveith@wwweb-library.net>
Signed-off-by: NeilBrown <neilb@suse.de>
Make it clear in the config message that MD_MULTIPATH is not under
active development.
Cc: Oren Held <orenhe@il.ibm.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Now that the resources to handle stripe_head operations are allocated
percpu it is possible for raid5d to distribute stripe handling over
multiple cores. This conversion also adds a call to cond_resched() in
the non-multicore case to prevent one core from getting monopolized for
raid operations.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
[ Based on an original patch by Yuri Tikhonov ]
The raid_run_ops routine uses the asynchronous offload api and
the stripe_operations member of a stripe_head to carry out xor+pq+copy
operations asynchronously, outside the lock.
The operations performed by RAID-6 are the same as in the RAID-5 case
except for no support of STRIPE_OP_PREXOR operations. All the others
are supported:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate missing blocks (1 or 2) in the cache from the other blocks
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_RECONSTRUCT
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
The flow is the same as in the RAID-5 case, and reuses some routines, namely:
1/ ops_complete_postxor (renamed to ops_complete_reconstruct)
2/ ops_complete_compute (updated to set up to 2 targets uptodate)
3/ ops_run_check (renamed to ops_run_check_p for xor parity checks)
[neilb@suse.de: fixes to get it to pass mdadm regression suite]
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Port drivers/md/raid6test/test.c to use the async raid6 recovery
routines. This is meant as a unit test for raid6 acceleration drivers. In
addition to the 16-drive test case this implements tests for the 4-disk and
5-disk special cases (dma devices can not generically handle less than 2
sources), and adds a test for the D+Q case.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch contains a device-mapper mirror log module that forwards
requests to userspace for processing.
The structures used for communication between kernel and userspace are
located in include/linux/dm-log-userspace.h. Due to the frequency,
diversity, and 2-way communication nature of the exchanges between
kernel and userspace, 'connector' was chosen as the interface for
communication.
The first log implementations written in userspace - "clustered-disk"
and "clustered-core" - support clustered shared storage. A userspace
daemon (in the LVM2 source code repository) uses openAIS/corosync to
process requests in an ordered fashion with the rest of the nodes in the
cluster so as to prevent log state corruption. Other implementations
with no association to LVM or openAIS/corosync, are certainly possible.
(Imagine if two machines are writing to the same region of a mirror.
They would both mark the region dirty, but you need a cluster-aware
entity that can handle properly marking the region clean when they are
done. Otherwise, you might clear the region when the first machine is
done, not the second.)
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch adds a service time oriented dynamic load balancer,
dm-service-time, which selects the path with the shortest estimated
service time for the incoming I/O.
The service time is estimated by dividing the in-flight I/O size
by a performance value of each path.
The performance value can be given as a table argument at the table
loading time. If no performance value is given, all paths are
considered equal.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch adds a dynamic load balancer, dm-queue-length, which
balances the number of in-flight I/Os across the paths.
The code is based on the patch posted by Stefan Bader:
https://www.redhat.com/archives/dm-devel/2005-October/msg00050.html
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This was only needed when the code was experimental. Most of it
is well tested now, so the option is no longer useful.
Signed-off-by: NeilBrown <neilb@suse.de>
Move the raid6 data processing routines into a standalone module
(raid6_pq) to prepare them to be called from async_tx wrappers and other
non-md drivers/modules. This precludes a circular dependency of raid456
needing the async modules for data processing while those modules in
turn depend on raid456 for the base level synchronous raid6 routines.
To support this move:
1/ The exportable definitions in raid6.h move to include/linux/raid/pq.h
2/ The raid6_call, recovery calls, and table symbols are exported
3/ Extra #ifdef __KERNEL__ statements to enable the userspace raid6test to
compile
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
RAID autodetect has the side effect of requiring synchronisation
of all device drivers, which can make the boot several seconds longer
(I've measured 7 on one of my laptops).... even for systems that don't
have RAID setup for the root filesystem (the only FS where this matters).
This patch makes the default for autodetect a config option; either way
the user can always override via the kernel command line.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: NeilBrown <neilb@suse.de>
Do not automatically "select" SCSI_DH for dm-multipath. If SCSI_DH
doesn't exist,just do not allow hardware handlers to be used.
Handle SCSI_DH being a module also. Make sure it doesn't allow DM_MULTIPATH
to be compiled in when SCSI_DH is a module.
[jejb: added comment for Kconfig syntax]
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
This patch removes the 3 hardware handlers that currently exist
under dm as the functionality is moved to SCSI layer in the earlier
patches.
[jejb: removed more makefile hunks and rejection fixes]
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
This patch converts dm-mpath to use scsi device handlers instead of
dm's hardware handlers.
This patch does not add any new functionality. Old behaviors remain and
userspace tools work as is except that arguments supplied with hardware
handler are ignored.
One behavioral exception is: Activation of a path is synchronous in this
patch, opposed to the older behavior of being asynchronous (changed in
patch 07: scsi_dh: Add a single threaded workqueue for initializing a path)
Note: There is no need to get a reference for the device handler module
(as it was done in the dm hardware handler case) here as the reference
is held when the device was first found. Instead we check and make sure
that support for the specified device is present at table load time.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Mike Christie <michaelc@cs.wisc.edu>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Drop the EXPERIMENTAL tag from well-established device-mapper targets, so
the newer ones stand out better.
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
With CONFIG_SCSI=n __scsi_print_sense() is never linked in.
drivers/built-in.o: In function `hp_sw_end_io':
dm-mpath-hp-sw.c:(.text+0x914f8): undefined reference to `__scsi_print_sense'
Caught with a randconfig on current git.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch adds a uevent skeleton to device-mapper.
Signed-off-by: Mike Anderson <andmike@linux.vnet.ibm.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch adds the most basic dm-multipath hardware support for the
HP active/passive arrays.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Mike Christie <michaelc@cs.wisc.edu>
Acked-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
DM_MULTIPATH_RDAC uses SCSI API(s) and is for a SCSI device,
so add SCSI to its depends on to prevent build errors.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
[ Tested and Verified by Chandra Seetharaman ]
Acked-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change Kconfig objects from "menu, config" into "menuconfig" so
that the user can disable the whole feature without having to
enter the menu first.
Signed-off-by: Jan Engelhardt <jengelh@gmx.de>
Acked-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'ioat-md-accel-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop: (28 commits)
ioatdma: add the unisys "i/oat" pci vendor/device id
ARM: Add drivers/dma to arch/arm/Kconfig
iop3xx: surface the iop3xx DMA and AAU units to the iop-adma driver
iop13xx: surface the iop13xx adma units to the iop-adma driver
dmaengine: driver for the iop32x, iop33x, and iop13xx raid engines
md: remove raid5 compute_block and compute_parity5
md: handle_stripe5 - request io processing in raid5_run_ops
md: handle_stripe5 - add request/completion logic for async expand ops
md: handle_stripe5 - add request/completion logic for async read ops
md: handle_stripe5 - add request/completion logic for async check ops
md: handle_stripe5 - add request/completion logic for async compute ops
md: handle_stripe5 - add request/completion logic for async write ops
md: common infrastructure for running operations with raid5_run_ops
md: raid5_run_ops - run stripe operations outside sh->lock
raid5: replace custom debug PRINTKs with standard pr_debug
raid5: refactor handle_stripe5 and handle_stripe6 (v3)
async_tx: add the async_tx api
xor: make 'xor_blocks' a library routine for use with async_tx
dmaengine: make clients responsible for managing channels
dmaengine: refactor dmaengine around dma_async_tx_descriptor
...
The async_tx api provides methods for describing a chain of asynchronous
bulk memory transfers/transforms with support for inter-transactional
dependencies. It is implemented as a dmaengine client that smooths over
the details of different hardware offload engine implementations. Code
that is written to the api can optimize for asynchronous operation and the
api will fit the chain of operations to the available offload resources.
I imagine that any piece of ADMA hardware would register with the
'async_*' subsystem, and a call to async_X would be routed as
appropriate, or be run in-line. - Neil Brown
async_tx exploits the capabilities of struct dma_async_tx_descriptor to
provide an api of the following general format:
struct dma_async_tx_descriptor *
async_<operation>(..., struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
struct dma_chan *chan = async_tx_find_channel(depend_tx, <operation>);
struct dma_device *device = chan ? chan->device : NULL;
int int_en = cb_fn ? 1 : 0;
struct dma_async_tx_descriptor *tx = device ?
device->device_prep_dma_<operation>(chan, len, int_en) : NULL;
if (tx) { /* run <operation> asynchronously */
...
tx->tx_set_dest(addr, tx, index);
...
tx->tx_set_src(addr, tx, index);
...
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else { /* run <operation> synchronously */
...
<operation>
...
async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
}
return tx;
}
async_tx_find_channel() returns a capable channel from its pool. The
channel pool is organized as a per-cpu array of channel pointers. The
async_tx_rebalance() routine is tasked with managing these arrays. In the
uniprocessor case async_tx_rebalance() tries to spread responsibility
evenly over channels of similar capabilities. For example if there are two
copy+xor channels, one will handle copy operations and the other will
handle xor. In the SMP case async_tx_rebalance() attempts to spread the
operations evenly over the cpus, e.g. cpu0 gets copy channel0 and xor
channel0 while cpu1 gets copy channel 1 and xor channel 1. When a
dependency is specified async_tx_find_channel defaults to keeping the
operation on the same channel. A xor->copy->xor chain will stay on one
channel if it supports both operation types, otherwise the transaction will
transition between a copy and a xor resource.
Currently the raid5 implementation in the MD raid456 driver has been
converted to the async_tx api. A driver for the offload engines on the
Intel Xscale series of I/O processors, iop-adma, is provided in a later
commit. With the iop-adma driver and async_tx, raid456 is able to offload
copy, xor, and xor-zero-sum operations to hardware engines.
On iop342 tiobench showed higher throughput for sequential writes (20 - 30%
improvement) and sequential reads to a degraded array (40 - 55%
improvement). For the other cases performance was roughly equal, +/- a few
percentage points. On a x86-smp platform the performance of the async_tx
implementation (in synchronous mode) was also +/- a few percentage points
of the original implementation. According to 'top' on iop342 CPU
utilization drops from ~50% to ~15% during a 'resync' while the speed
according to /proc/mdstat doubles from ~25 MB/s to ~50 MB/s.
The tiobench command line used for testing was: tiobench --size 2048
--block 4096 --block 131072 --dir /mnt/raid --numruns 5
* iop342 had 1GB of memory available
Details:
* if CONFIG_DMA_ENGINE=n the asynchronous path is compiled away by making
async_tx_find_channel a static inline routine that always returns NULL
* when a callback is specified for a given transaction an interrupt will
fire at operation completion time and the callback will occur in a
tasklet. if the the channel does not support interrupts then a live
polling wait will be performed
* the api is written as a dmaengine client that requests all available
channels
* In support of dependencies the api implicitly schedules channel-switch
interrupts. The interrupt triggers the cleanup tasklet which causes
pending operations to be scheduled on the next channel
* Xor engines treat an xor destination address differently than a software
xor routine. To the software routine the destination address is an implied
source, whereas engines treat it as a write-only destination. This patch
modifies the xor_blocks routine to take a an explicit destination address
to mirror the hardware.
Changelog:
* fixed a leftover debug print
* don't allow callbacks in async_interrupt_cond
* fixed xor_block changes
* fixed usage of ASYNC_TX_XOR_DROP_DEST
* drop dma mapping methods, suggested by Chris Leech
* printk warning fixups from Andrew Morton
* don't use inline in C files, Adrian Bunk
* select the API when MD is enabled
* BUG_ON xor source counts <= 1
* implicitly handle hardware concerns like channel switching and
interrupts, Neil Brown
* remove the per operation type list, and distribute operation capabilities
evenly amongst the available channels
* simplify async_tx_find_channel to optimize the fast path
* introduce the channel_table_initialized flag to prevent early calls to
the api
* reorganize the code to mimic crypto
* include mm.h as not all archs include it in dma-mapping.h
* make the Kconfig options non-user visible, Adrian Bunk
* move async_tx under crypto since it is meant as 'core' functionality, and
the two may share algorithms in the future
* move large inline functions into c files
* checkpatch.pl fixes
* gpl v2 only correction
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
The async_tx api tries to use a dma engine for an operation, but will fall
back to an optimized software routine otherwise. Xor support is
implemented using the raid5 xor routines. For organizational purposes this
routine is moved to a common area.
The following fixes are also made:
* rename xor_block => xor_blocks, suggested by Adrian Bunk
* ensure that xor.o initializes before md.o in the built-in case
* checkpatch.pl fixes
* mark calibrate_xor_blocks __init, Adrian Bunk
Cc: Adrian Bunk <bunk@stusta.de>
Cc: NeilBrown <neilb@suse.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch supports LSI/Engenio devices in RDAC mode. Like dm-emc
it requires userspace support. In your multipath.conf file you must have:
path_checker rdac
hardware_handler "1 rdac"
prio_callout "/sbin/mpath_prio_tpc /dev/%n"
And you also then must have a updated multipath tools release which
has rdac support.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Mike Christie <michaelc@cs.wisc.edu>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>