IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Since de78a9c42a ("powerpc: Add a framework for Kernel Userspace
Access Protection"), user access helpers call user_{read|write}_access_{begin|end}
when user space access is allowed.
Commit 890274c2dc ("powerpc/64s: Implement KUAP for Radix MMU") made
the mentioned helpers program a AMR special register to allow such
access for a short period of time, most of the time AMR is expected to
block user memory access by the kernel.
Since the code accesses the user space memory, unsafe_get_user() calls
might_fault() which calls arch_local_irq_restore() if either
CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is enabled.
arch_local_irq_restore() then attempts to replay pending soft
interrupts as KUAP regions have hardware interrupts enabled.
If a pending interrupt happens to do user access (performance
interrupts do that), it enables access for a short period of time so
after returning from the replay, the user access state remains blocked
and if a user page fault happens - "Bug: Read fault blocked by AMR!"
appears and SIGSEGV is sent.
An example trace:
Bug: Read fault blocked by AMR!
WARNING: CPU: 0 PID: 1603 at /home/aik/p/kernel/arch/powerpc/include/asm/book3s/64/kup-radix.h:145
CPU: 0 PID: 1603 Comm: amr Not tainted 5.10.0-rc6_v5.10-rc6_a+fstn1 #24
NIP: c00000000009ece8 LR: c00000000009ece4 CTR: 0000000000000000
REGS: c00000000dc63560 TRAP: 0700 Not tainted (5.10.0-rc6_v5.10-rc6_a+fstn1)
MSR: 8000000000021033 <SF,ME,IR,DR,RI,LE> CR: 28002888 XER: 20040000
CFAR: c0000000001fa928 IRQMASK: 1
GPR00: c00000000009ece4 c00000000dc637f0 c000000002397600 000000000000001f
GPR04: c0000000020eb318 0000000000000000 c00000000dc63494 0000000000000027
GPR08: c00000007fe4de68 c00000000dfe9180 0000000000000000 0000000000000001
GPR12: 0000000000002000 c0000000030a0000 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 bfffffffffffffff
GPR20: 0000000000000000 c0000000134a4020 c0000000019c2218 0000000000000fe0
GPR24: 0000000000000000 0000000000000000 c00000000d106200 0000000040000000
GPR28: 0000000000000000 0000000000000300 c00000000dc63910 c000000001946730
NIP __do_page_fault+0xb38/0xde0
LR __do_page_fault+0xb34/0xde0
Call Trace:
__do_page_fault+0xb34/0xde0 (unreliable)
handle_page_fault+0x10/0x2c
--- interrupt: 300 at strncpy_from_user+0x290/0x440
LR = strncpy_from_user+0x284/0x440
strncpy_from_user+0x2f0/0x440 (unreliable)
getname_flags+0x88/0x2c0
do_sys_openat2+0x2d4/0x5f0
do_sys_open+0xcc/0x140
system_call_exception+0x160/0x240
system_call_common+0xf0/0x27c
To fix it save/restore the AMR when replaying interrupts, and also
add a check if AMR was not blocked prior to replaying interrupts.
Originally found by syzkaller.
Fixes: 890274c2dc ("powerpc/64s: Implement KUAP for Radix MMU")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Use normal commit citation format and add full oops log to
change log, move kuap_check_amr() into the restore routine to
avoid warnings about unreconciled IRQ state]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210202091541.36499-1-aik@ozlabs.ru
The allyesconfig ppc64 kernel fails to link with relocations unable to
fit after commit 3a96570ffc ("powerpc: convert interrupt handlers to
use wrappers"), which is due to the interrupt handler functions being
put into the .noinstr.text section, which the linker script places on
the opposite side of the main .text section from the interrupt entry
asm code which calls the handlers.
This results in a lot of linker stubs that overwhelm the 252-byte sized
space we allow for them, or in the case of BE a .opd relocation link
error for some reason.
It's not required to put interrupt handlers in the .noinstr section,
previously they used NOKPROBE_SYMBOL, so take them out and replace
with a NOKPROBE_SYMBOL in the wrapper macro. Remove the explicit
NOKPROBE_SYMBOL macros in the interrupt handler functions. This makes
a number of interrupt handlers nokprobe that were not prior to the
interrupt wrappers commit, but since that commit they were made
nokprobe due to being in .noinstr.text, so this fix does not change
that.
The fixes tag is different to the commit that first exposes the problem
because it is where the wrapper macros were introduced.
Fixes: 8d41fc618a ("powerpc: interrupt handler wrapper functions")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Slightly fix up comment wording]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210211063636.236420-1-npiggin@gmail.com
To avoid include recursion hell move the do_softirq_own_stack() related
content into a generic asm header and include it from all places in arch/
which need the prototype.
This allows architectures to provide an inline implementation of
do_softirq_own_stack() without introducing a lot of #ifdeffery all over the
place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002513.289960691@linutronix.de
This reverts much of commit c01015091a ("KVM: PPC: Book3S HV: Run HPT
guests on POWER9 radix hosts"), which was required to run HPT guests on
RPT hosts on early POWER9 CPUs without support for "mixed mode", which
meant the host could not run with MMU on while guests were running.
This code has some corner case bugs, e.g., when the guest hits a machine
check or HMI the primary locks up waiting for secondaries to switch LPCR
to host, which they never do. This could all be fixed in software, but
most CPUs in production have mixed mode support, and those that don't
are believed to be all in installations that don't use this capability.
So simplify things and remove support.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
KVM code assumes single DAWR everywhere. Add code to support 2nd DAWR.
DAWR is a hypervisor resource and thus H_SET_MODE hcall is used to set/
unset it. Introduce new case H_SET_MODE_RESOURCE_SET_DAWR1 for 2nd DAWR.
Also, KVM will support 2nd DAWR only if CPU_FTR_DAWR1 is set.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Power10 is introducing a second DAWR (Data Address Watchpoint
Register). Use real register names (with suffix 0) from ISA for
current macros and variables used by kvm. One exception is
KVM_REG_PPC_DAWR. Keep it as it is because it's uapi so changing it
will break userspace.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There's a short window during boot where although the kernel is
running little endian, any exceptions will cause the CPU to switch
back to big endian. This situation persists until we call
configure_exceptions(), which calls either the hypervisor or OPAL to
configure the CPU so that exceptions will be taken in little
endian (via HID0[HILE]).
We don't intend to take exceptions during early boot, but one way we
sometimes do is via a WARN/BUG etc. Those all boil down to a trap
instruction, which will cause a program check exception.
The first instruction of the program check handler is an mtsprg, which
when executed in the wrong endian is an lhzu with a ~3GB displacement
from r3. The content of r3 is random, so that becomes a load from some
random location, and depending on the system (installed RAM etc.) can
easily lead to a checkstop, or an infinitely recursive page fault.
That prevents whatever the WARN/BUG was complaining about being
printed to the console, and the user just sees a dead system.
We can fix it by having a trampoline at the beginning of the program
check handler that detects we are in the wrong endian, and flips us
back to the correct endian.
We can't flip MSR[LE] using mtmsr (alas), so we have to use rfid. That
requires backing up SRR0/1 as well as a GPR. To do that we use
SPRG0/2/3 (SPRG1 is already used for the paca). SPRG3 is user
readable, but this trampoline is only active very early in boot, and
SPRG3 will be reinitialised in vdso_getcpu_init() before userspace
starts.
With this trampoline in place we can survive a WARN early in boot and
print a stack trace, which is eventually printed to the console once
the console is up, eg:
[83565.758545] kexec_core: Starting new kernel
[ 0.000000] ------------[ cut here ]------------
[ 0.000000] static_key_enable_cpuslocked(): static key '0xc000000000ea6160' used before call to jump_label_init()
[ 0.000000] WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.10.0-gcc-8.2.0-dirty #618
[ 0.000000] NIP: c0000000002fd46c LR: c0000000002fd468 CTR: c000000000170660
[ 0.000000] REGS: c000000001227940 TRAP: 0700 Not tainted (5.10.0-gcc-8.2.0-dirty)
[ 0.000000] MSR: 9000000002823003 <SF,HV,VEC,VSX,FP,ME,RI,LE> CR: 24882422 XER: 20040000
[ 0.000000] CFAR: 0000000000000730 IRQMASK: 1
[ 0.000000] GPR00: c0000000002fd468 c000000001227bd0 c000000001228300 0000000000000065
[ 0.000000] GPR04: 0000000000000001 0000000000000065 c0000000010cf970 000000000000000d
[ 0.000000] GPR08: 0000000000000000 0000000000000000 0000000000000000 c00000000122763f
[ 0.000000] GPR12: 0000000000002000 c000000000f8a980 0000000000000000 0000000000000000
[ 0.000000] GPR16: 0000000000000000 0000000000000000 c000000000f88c8e c000000000f88c9a
[ 0.000000] GPR20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[ 0.000000] GPR24: 0000000000000000 c000000000dea3a8 0000000000000000 c000000000f35114
[ 0.000000] GPR28: 0000002800000000 c000000000f88c9a c000000000f88c8e c000000000ea6160
[ 0.000000] NIP [c0000000002fd46c] static_key_enable_cpuslocked+0xfc/0x120
[ 0.000000] LR [c0000000002fd468] static_key_enable_cpuslocked+0xf8/0x120
[ 0.000000] Call Trace:
[ 0.000000] [c000000001227bd0] [c0000000002fd468] static_key_enable_cpuslocked+0xf8/0x120 (unreliable)
[ 0.000000] [c000000001227c40] [c0000000002fd4c0] static_key_enable+0x30/0x50
[ 0.000000] [c000000001227c70] [c000000000f6629c] early_page_poison_param+0x58/0x9c
[ 0.000000] [c000000001227cb0] [c000000000f351b8] do_early_param+0xa4/0x10c
[ 0.000000] [c000000001227d30] [c00000000011e020] parse_args+0x270/0x5e0
[ 0.000000] [c000000001227e20] [c000000000f35864] parse_early_options+0x48/0x5c
[ 0.000000] [c000000001227e40] [c000000000f358d0] parse_early_param+0x58/0x84
[ 0.000000] [c000000001227e70] [c000000000f3a368] early_init_devtree+0xc4/0x490
[ 0.000000] [c000000001227f10] [c000000000f3bca0] early_setup+0xc8/0x1c8
[ 0.000000] [c000000001227f90] [000000000000c320] 0xc320
[ 0.000000] Instruction dump:
[ 0.000000] 4bfffddd 7c2004ac 39200001 913f0000 4bffffb8 7c651b78 3c82ffac 3c62ffc0
[ 0.000000] 38841b00 3863f310 4bdf03a5 60000000 <0fe00000> 4bffff38 60000000 60000000
[ 0.000000] random: get_random_bytes called from print_oops_end_marker+0x40/0x80 with crng_init=0
[ 0.000000] ---[ end trace 0000000000000000 ]---
[ 0.000000] dt-cpu-ftrs: setup for ISA 3000
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210202130207.1303975-2-mpe@ellerman.id.au
If we try to stack trace very early during boot, either due to a
WARN/BUG or manual dump_stack(), we will oops in
valid_emergency_stack() when we try to dereference the paca_ptrs
array.
The fix is simple, we just return false if paca_ptrs isn't allocated
yet. The stack pointer definitely isn't part of any emergency stack
because we haven't allocated any yet.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210202130207.1303975-1-mpe@ellerman.id.au
The idle entry/exit code saves/restores GPRs in the stack "red zone"
(Protected Zone according to PowerPC64 ELF ABI v2). However, the offset
used for the first GPR is incorrect and overwrites the back chain - the
Protected Zone actually starts below the current SP. In practice this is
probably not an issue, but it's still incorrect so fix it.
Also expand the comments to explain why using the stack "red zone"
instead of creating a new stackframe is appropriate here.
Signed-off-by: Christopher M. Riedl <cmr@codefail.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210206072342.5067-1-cmr@codefail.de
The interrupt handler wrapper functions are not the ideal place to
maintain context tracking because after they return, the low level exit
code must then determine if there are interrupts to replay, or if the
task should be preempted, etc. Those paths (e.g., schedule_user) include
their own exception_enter/exit pairs to fix this up but it's a bit hacky
(see schedule_user() comments).
Ideally context tracking will go to user mode only when there are no
more interrupts or context switches or other exit processing work to
handle.
64e can not do this because it does not use the C interrupt exit code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-36-npiggin@gmail.com
Add context tracking to the system call handler explicitly, and remove
_TIF_NOHZ.
This improves system call performance when nohz_full is enabled. On a
POWER9, gettid scv system call cost on a nohz_full CPU improves from
1129 cycles to 1004 cycles and on a housekeeping CPU from 550 cycles
to 430 cycles.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-31-npiggin@gmail.com
Move the program check handling into a function called by both, rather
than have the emulation assist handler call the program check handler.
This allows each of these handlers to be implemented with "interrupt
wrappers" in a later change.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1612702475.d6qyt6qtfy.astroid@bobo.none
As explained by commit daf00ae71d ("powerpc/traps: restore
recoverability of machine_check interrupts"), die() can't be called from
within nmi_enter to nicely kill a process context that was interrupted.
nmi_exit must be called first.
This adds a function die_mce which takes care of this for machine check
handlers.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-24-npiggin@gmail.com
This simplifies code, and it is also useful when introducing
interrupt handler wrappers when introducing wrapper functionality
that doesn't cope with asm entry code calling into more than one
handler function.
32-bit and 64e still have some such cases, which limits some ways
they can use interrupt wrappers.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-15-npiggin@gmail.com
Make mm fault handlers all just take the pt_regs * argument and load
DAR/DSISR from that. Make those that return a value return long.
This is done to make the function signatures match other handlers, which
will help with a future patch to add wrappers. Explicit arguments could
be added for performance but that would require more wrapper macro
variants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-7-npiggin@gmail.com
handle_page_fault() has some code dedicated to book3s/32 to
call do_break() when the DSI is a DABR match.
On other platforms, do_break() is handled separately.
Do the same for book3s/32, do it earlier in the process of DSI.
This change also avoid doing the test on ISI.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-4-npiggin@gmail.com
When replaying pending soft-masked interrupts when an interrupt returns
to an irqs-enabled context, there is a special case required if this was
an asynchronous interrupt to avoid unbounded interrupt recursion.
This case was not tested for in the case the asynchronous interrupt hit
in user context, because a subsequent nested interrupt would by definition
hit in kernel mode, which then exits via the kernel path which does test
this case.
There is no reason to allow this for such interrupts. While recursion is
bounded at the next level, it's simpler and uses less stack to apply the
replay logic consistently.
This also expands the comment which was really pretty poor and didn't
explain the problem (I can say that because I wrote it).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-2-npiggin@gmail.com
Make powernv, pseries, powermac and maple use ppc_mc.discover_phbs.
These platforms need to be done together because they all depend on
pci_dn's being created from the DT. The pci_dn contains a pointer to
the relevant pci_controller so they need to be created after the
pci_controller structures are available, but before PCI devices are
scanned. Currently this ordering is provided by initcalls and the
sequence is:
1. PHBs are discovered (setup_arch) (early boot, pre-initcalls)
2. pci_dn are created from the unflattended DT (core initcall)
3. PHBs are scanned pcibios_init() (subsys initcall)
The new ppc_md.discover_phbs() function is also a core_initcall so we
can't guarantee ordering between the creation of pci_controllers and
the creation of pci_dn's which require a pci_controller. We could use
the postcore, or core_sync initcall levels, but it's cleaner to just
move the pci_dn setup into the per-PHB inits which occur inside of
.discover_phb() for these platforms. This brings the boot-time path in
line with the PHB hotplug path that is used for pseries DLPAR
operations too.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Squash powermac & maple in to avoid breakage those platforms,
convert memblock allocs to use kmalloc to avoid warnings]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201103043523.916109-2-oohall@gmail.com
On many powerpc platforms the discovery and initalisation of
pci_controllers (PHBs) happens inside of setup_arch(). This is very early
in boot (pre-initcalls) and means that we're initialising the PHB long
before many basic kernel services (slab allocator, debugfs, a real ioremap)
are available.
On PowerNV this causes an additional problem since we map the PHB registers
with ioremap(). As of commit d538aadc27 ("powerpc/ioremap: warn on early
use of ioremap()") a warning is printed because we're using the "incorrect"
API to setup and MMIO mapping in searly boot. The kernel does provide
early_ioremap(), but that is not intended to create long-lived MMIO
mappings and a seperate warning is printed by generic code if
early_ioremap() mappings are "leaked."
This is all fixable with dumb hacks like using early_ioremap() to setup
the initial mapping then replacing it with a real ioremap later on in
boot, but it does raise the question: Why the hell are we setting up the
PHB's this early in boot?
The old and wise claim it's due to "hysterical rasins." Aside from amused
grapes there doesn't appear to be any real reason to maintain the current
behaviour. Already most of the newer embedded platforms perform PHB
discovery in an arch_initcall and between the end of setup_arch() and the
start of initcalls none of the generic kernel code does anything PCI
related. On powerpc scanning PHBs occurs in a subsys_initcall so it should
be possible to move the PHB discovery to a core, postcore or arch initcall.
This patch adds the ppc_md.discover_phbs hook and a core_initcall stub that
calls it. The core_initcalls are the earliest to be called so this will
any possibly issues with dependency between initcalls. This isn't just an
academic issue either since on pseries and PowerNV EEH init occurs in an
arch_initcall and depends on the pci_controllers being available, similarly
the creation of pci_dns occurs at core_initcall_sync (i.e. between core and
postcore initcalls). These problems need to be addressed seperately.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Make discover_phbs() static]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201103043523.916109-1-oohall@gmail.com
Commit 0138ba5783 ("powerpc/64/signal: Balance return predictor
stack in signal trampoline") changed __kernel_sigtramp_rt64() VDSO and
trampoline code, and introduced a regression in the way glibc's
backtrace()[1] detects the signal-handler stack frame. Apart from the
practical implications, __kernel_sigtramp_rt64() was a VDSO function
with the semantics that it is a function you can call from userspace
to end a signal handling. Now this semantics are no longer valid.
I believe the aforementioned change affects all releases since 5.9.
This patch tries to fix both the semantics and practical aspect of
__kernel_sigtramp_rt64() returning it to the previous code, whilst
keeping the intended behaviour of 0138ba5783 by adding a new symbol
to serve as the jump target from the kernel to the trampoline. Now the
trampoline has two parts, a new entry point and the old return point.
[1] https://lists.ozlabs.org/pipermail/linuxppc-dev/2021-January/223194.html
Fixes: 0138ba5783 ("powerpc/64/signal: Balance return predictor stack in signal trampoline")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Raoni Fassina Firmino <raoni@linux.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Minor tweaks to change log formatting, add stable tag]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210201200505.iz46ubcizipnkcxe@work-tp
Access to per-cpu variables requires translation to be enabled on
pseries machine running in hash mmu mode, Since part of MCE handler
runs in realmode and part of MCE handling code is shared between ppc
architectures pseries and powernv, it becomes difficult to manage
these variables differently on different architectures, So have
these variables in paca instead of having them as per-cpu variables
to avoid complications.
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210128104143.70668-2-ganeshgr@linux.ibm.com
When CONFIG_IRQ_TIME_ACCOUNTING and CONFIG_VIRT_CPU_ACCOUNTING_GEN, powerpc
does not enable "sched_clock_irqtime" and can not utilize irq time
accounting.
Like x86, powerpc does not use the sched_clock_register() interface. So it
needs an dedicated call to enable_sched_clock_irqtime() to enable irq time
accounting.
Fixes: 518470fe96 ("powerpc: Add HAVE_IRQ_TIME_ACCOUNTING")
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
[mpe: Add fixes tag]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1603349479-26185-1-git-send-email-kernelfans@gmail.com