2136 Commits

Author SHA1 Message Date
Ingo Molnar
ca8778c45e Merge branch 'linus' into x86/cleanups, to resolve conflict
Conflicts:
	arch/x86/kernel/kprobes/ftrace.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-03-21 22:16:08 +01:00
Wanpeng Li
c2162e13d6 KVM: X86: Fix missing local pCPU when executing wbinvd on all dirty pCPUs
In order to deal with noncoherent DMA, we should execute wbinvd on
all dirty pCPUs when guest wbinvd exits to maintain data consistency.
smp_call_function_many() does not execute the provided function on the
local core, therefore replace it by on_each_cpu_mask().

Reported-by: Nadav Amit <namit@vmware.com>
Cc: Nadav Amit <namit@vmware.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1615517151-7465-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-18 13:55:34 -04:00
Sean Christopherson
b318e8decf KVM: x86: Protect userspace MSR filter with SRCU, and set atomically-ish
Fix a plethora of issues with MSR filtering by installing the resulting
filter as an atomic bundle instead of updating the live filter one range
at a time.  The KVM_X86_SET_MSR_FILTER ioctl() isn't truly atomic, as
the hardware MSR bitmaps won't be updated until the next VM-Enter, but
the relevant software struct is atomically updated, which is what KVM
really needs.

Similar to the approach used for modifying memslots, make arch.msr_filter
a SRCU-protected pointer, do all the work configuring the new filter
outside of kvm->lock, and then acquire kvm->lock only when the new filter
has been vetted and created.  That way vCPU readers either see the old
filter or the new filter in their entirety, not some half-baked state.

Yuan Yao pointed out a use-after-free in ksm_msr_allowed() due to a
TOCTOU bug, but that's just the tip of the iceberg...

  - Nothing is __rcu annotated, making it nigh impossible to audit the
    code for correctness.
  - kvm_add_msr_filter() has an unpaired smp_wmb().  Violation of kernel
    coding style aside, the lack of a smb_rmb() anywhere casts all code
    into doubt.
  - kvm_clear_msr_filter() has a double free TOCTOU bug, as it grabs
    count before taking the lock.
  - kvm_clear_msr_filter() also has memory leak due to the same TOCTOU bug.

The entire approach of updating the live filter is also flawed.  While
installing a new filter is inherently racy if vCPUs are running, fixing
the above issues also makes it trivial to ensure certain behavior is
deterministic, e.g. KVM can provide deterministic behavior for MSRs with
identical settings in the old and new filters.  An atomic update of the
filter also prevents KVM from getting into a half-baked state, e.g. if
installing a filter fails, the existing approach would leave the filter
in a half-baked state, having already committed whatever bits of the
filter were already processed.

[*] https://lkml.kernel.org/r/20210312083157.25403-1-yaoyuan0329os@gmail.com

Fixes: 1a155254ff93 ("KVM: x86: Introduce MSR filtering")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Reported-by: Yuan Yao <yaoyuan0329os@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210316184436.2544875-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-18 13:55:14 -04:00
Ingo Molnar
d9f6e12fb0 x86: Fix various typos in comments
Fix ~144 single-word typos in arch/x86/ code comments.

Doing this in a single commit should reduce the churn.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-18 15:31:53 +01:00
Ingo Molnar
14ff3ed86e Linux 5.12-rc3
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBOgu4eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGUd0H/3Ey8aWjVAig9Pe+
 VQVZKwG+LXWH6UmUx5qyaTxophhmGnWLvkigJMn63qIg4eQtfp2gNFHK+T4OJNIP
 ybnkjFZ337x4J9zD6m8mt4Wmelq9iW2wNOS+3YZAyYiGlXfMGM7SlYRCQRQznTED
 2O/JCMsOoP+Z8tr5ah/bzs0dANsXmTZ3QqRP2uzb6irKTgFR3/weOhj+Ht1oJ4Aq
 V+bgdcwhtk20hJhlvVeqws+o74LR789tTDCknlz/YNMv9e6VPfyIQ5vJAcFmZATE
 Ezj9yzkZ4IU+Ux6ikAyaFyBU8d1a4Wqye3eHCZBsEo6tcSAhbTZ90eoU86vh6ajS
 LZjwkNw=
 =6y1u
 -----END PGP SIGNATURE-----

Merge tag 'v5.12-rc3' into x86/cleanups, to refresh the tree

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-03-18 15:27:03 +01:00
Vitaly Kuznetsov
e880c6ea55 KVM: x86: hyper-v: Prevent using not-yet-updated TSC page by secondary CPUs
When KVM_REQ_MASTERCLOCK_UPDATE request is issued (e.g. after migration)
we need to make sure no vCPU sees stale values in PV clock structures and
thus all vCPUs are kicked with KVM_REQ_CLOCK_UPDATE. Hyper-V TSC page
clocksource is global and kvm_guest_time_update() only updates in on vCPU0
but this is not entirely correct: nothing blocks some other vCPU from
entering the guest before we finish the update on CPU0 and it can read
stale values from the page.

Invalidate TSC page in kvm_gen_update_masterclock() to switch all vCPUs
to using MSR based clocksource (HV_X64_MSR_TIME_REF_COUNT).

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-17 04:03:22 -04:00
Sean Christopherson
ec761cfd35 KVM: x86/mmu: Move initial kvm_mmu_set_mask_ptes() call into MMU proper
Move kvm_mmu_set_mask_ptes() into mmu.c as prep for future cleanup of the
mask initialization code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:46 -04:00
Maxim Levitsky
b97f074583 KVM: x86: determine if an exception has an error code only when injecting it.
A page fault can be queued while vCPU is in real paged mode on AMD, and
AMD manual asks the user to always intercept it
(otherwise result is undefined).
The resulting VM exit, does have an error code.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210225154135.405125-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:27 -04:00
Sean Christopherson
c483c45471 KVM: x86: Move RDPMC emulation to common code
Move the entirety of the accelerated RDPMC emulation to x86.c, and assign
the common handler directly to the exit handler array for VMX.  SVM has
bizarre nrips behavior that prevents it from directly invoking the common
handler.  The nrips goofiness will be addressed in a future patch.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:20 -04:00
Sean Christopherson
5ff3a351f6 KVM: x86: Move trivial instruction-based exit handlers to common code
Move the trivial exit handlers, e.g. for instructions that KVM
"emulates" as nops, to common x86 code.  Assign the common handlers
directly to the exit handler arrays and drop the vendor trampolines.

Opportunistically use pr_warn_once() where appropriate.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:19 -04:00
Sean Christopherson
92f9895c14 KVM: x86: Move XSETBV emulation to common code
Move the entirety of XSETBV emulation to x86.c, and assign the
function directly to both VMX's and SVM's exit handlers, i.e. drop the
unnecessary trampolines.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:18 -04:00
Sean Christopherson
cb6a32c2b8 KVM: x86: Handle triple fault in L2 without killing L1
Synthesize a nested VM-Exit if L2 triggers an emulated triple fault
instead of exiting to userspace, which likely will kill L1.  Any flow
that does KVM_REQ_TRIPLE_FAULT is suspect, but the most common scenario
for L2 killing L1 is if L0 (KVM) intercepts a contributory exception that
is _not_intercepted by L1.  E.g. if KVM is intercepting #GPs for the
VMware backdoor, a #GP that occurs in L2 while vectoring an injected #DF
will cause KVM to emulate triple fault.

Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210302174515.2812275-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:15 -04:00
Sean Christopherson
f66c53b3b9 KVM: x86: Defer the MMU unload to the normal path on an global INVPCID
Defer unloading the MMU after a INVPCID until the instruction emulation
has completed, i.e. until after RIP has been updated.

On VMX, this is a benign bug as VMX doesn't touch the MMU when skipping
an emulated instruction.  However, on SVM, if nrip is disabled, the
emulator is used to skip an instruction, which would lead to fireworks
if the emulator were invoked without a valid MMU.

Fixes: eb4b248e152d ("kvm: vmx: Support INVPCID in shadow paging mode")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:22 -04:00
Dongli Zhang
43c11d91fb KVM: x86: to track if L1 is running L2 VM
The new per-cpu stat 'nested_run' is introduced in order to track if L1 VM
is running or used to run L2 VM.

An example of the usage of 'nested_run' is to help the host administrator
to easily track if any L1 VM is used to run L2 VM. Suppose there is issue
that may happen with nested virtualization, the administrator will be able
to easily narrow down and confirm if the issue is due to nested
virtualization via 'nested_run'. For example, whether the fix like
commit 88dddc11a8d6 ("KVM: nVMX: do not use dangling shadow VMCS after
guest reset") is required.

Cc: Joe Jin <joe.jin@oracle.com>
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Message-Id: <20210305225747.7682-1-dongli.zhang@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:28:02 -04:00
Linus Torvalds
9d0c8e793f More fixes for ARM and x86.
-----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmBLsyoUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMpYgf/Zu1Byif+XZVdwm52wJN38ppUUVmn
 4u8HvQ8Ht+P0cGg1IaNx9D5QXGRgdn72qEpWUF5aH03ahTANAuf6zXw+evKmiub/
 RtJfxZWEcWeLdugLVHUSrR4MOox7uvFmCdcdht4sEPdjFdH/9JeceC3A1pZ/DYTR
 +eS+E3dMWQjXnd2Omo/5f5H1LTZjNLEditnkcHT5unwKKukc008V/avgs8xOAKJB
 xf3oqJF960IO+NYf8rRQb8WtyGeo0grrWjgeqvZ37gwGUaFB9ldVxchsVLsL66OR
 bJRIoSiTgL+TUYSMQ5mKG4tmmBnPHUHfgfNoOXlWMoJHIjFeQ9oM6eTHhA==
 =QTFW
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "More fixes for ARM and x86"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: LAPIC: Advancing the timer expiration on guest initiated write
  KVM: x86/mmu: Skip !MMU-present SPTEs when removing SP in exclusive mode
  KVM: kvmclock: Fix vCPUs > 64 can't be online/hotpluged
  kvm: x86: annotate RCU pointers
  KVM: arm64: Fix exclusive limit for IPA size
  KVM: arm64: Reject VM creation when the default IPA size is unsupported
  KVM: arm64: Ensure I-cache isolation between vcpus of a same VM
  KVM: arm64: Don't use cbz/adr with external symbols
  KVM: arm64: Fix range alignment when walking page tables
  KVM: arm64: Workaround firmware wrongly advertising GICv2-on-v3 compatibility
  KVM: arm64: Rename __vgic_v3_get_ich_vtr_el2() to __vgic_v3_get_gic_config()
  KVM: arm64: Don't access PMSELR_EL0/PMUSERENR_EL0 when no PMU is available
  KVM: arm64: Turn kvm_arm_support_pmu_v3() into a static key
  KVM: arm64: Fix nVHE hyp panic host context restore
  KVM: arm64: Avoid corrupting vCPU context register in guest exit
  KVM: arm64: nvhe: Save the SPE context early
  kvm: x86: use NULL instead of using plain integer as pointer
  KVM: SVM: Connect 'npt' module param to KVM's internal 'npt_enabled'
  KVM: x86: Ensure deadline timer has truly expired before posting its IRQ
2021-03-14 12:35:02 -07:00
Dave Hansen
09141ec0e4 x86: Remove duplicate TSC DEADLINE MSR definitions
There are two definitions for the TSC deadline MSR in msr-index.h,
one with an underscore and one without.  Axe one of them and move
all the references over to the other one.

 [ bp: Fixup the MSR define in handle_fastpath_set_msr_irqoff() too. ]

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200305174706.0D6B8EE4@viggo.jf.intel.com
2021-03-08 11:05:20 +01:00
Muhammad Usama Anjum
4691453406 kvm: x86: use NULL instead of using plain integer as pointer
Sparse warnings removed:
warning: Using plain integer as NULL pointer

Signed-off-by: Muhammad Usama Anjum <musamaanjum@gmail.com>
Message-Id: <20210305180816.GA488770@LEGION>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-06 04:18:39 -05:00
Linus Torvalds
cee407c5cc * Doc fixes
* selftests fixes
 * Add runstate information to the new Xen support
 * Allow compiling out the Xen interface
 * 32-bit PAE without EPT bugfix
 * NULL pointer dereference bugfix
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmA+lGcUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMaMQf/Q8bQr5vVAeNk+1MyRmzNqFEbLqbe
 h50f4Wd2N+svZ6XinQH1vvuQm1WYj/g616Q3nCeYwCJyY34g5tf60XcuAMnVRIzw
 qc2IUvSAJ3faVElMrSA5thN3bkPzJpRrdIpQGBgOd+rT+eQkPSsJlTy34JJmvbmh
 xFGjoVj49tYEkFfpxEbtytW6QiYtPz/ai8SARRXbEUWO/pVzdkgK5XWshRhE9vpB
 GLCEXUngdPokJMblRMuK4YOSFQXXHobAJAgPwSzguDV41qezXaKOGYOLe7+V+0kH
 z607RnQc1wGgsLanT13okYMQr09/XCjpvFkZ9CK2bIJPsyWP+ihA/37hVQ==
 =1GNo
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:

 - Doc fixes

 - selftests fixes

 - Add runstate information to the new Xen support

 - Allow compiling out the Xen interface

 - 32-bit PAE without EPT bugfix

 - NULL pointer dereference bugfix

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: SVM: Clear the CR4 register on reset
  KVM: x86/xen: Add support for vCPU runstate information
  KVM: x86/xen: Fix return code when clearing vcpu_info and vcpu_time_info
  selftests: kvm: Mmap the entire vcpu mmap area
  KVM: Documentation: Fix index for KVM_CAP_PPC_DAWR1
  KVM: x86: allow compiling out the Xen hypercall interface
  KVM: xen: flush deferred static key before checking it
  KVM: x86/mmu: Set SPTE_AD_WRPROT_ONLY_MASK if and only if PML is enabled
  KVM: x86: hyper-v: Fix Hyper-V context null-ptr-deref
  KVM: x86: remove misplaced comment on active_mmu_pages
  KVM: Documentation: rectify rst markup in kvm_run->flags
  Documentation: kvm: fix messy conversion from .txt to .rst
2021-03-04 11:26:17 -08:00
David Woodhouse
30b5c851af KVM: x86/xen: Add support for vCPU runstate information
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.

In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.

The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.

The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.

Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-02 14:30:54 -05:00
Paolo Bonzini
b59b153d10 KVM: x86: allow compiling out the Xen hypercall interface
The Xen hypercall interface adds to the attack surface of the hypervisor
and will be used quite rarely.  Allow compiling it out.

Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-02 14:30:45 -05:00
Linus Torvalds
d94d14008e x86:
- take into account HVA before retrying on MMU notifier race
 - fixes for nested AMD guests without NPT
 - allow INVPCID in guest without PCID
 - disable PML in hardware when not in use
 - MMU code cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmA3eMQUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroP6TQf5ARpUyq3oo+13albwg+zNca6hzR8i
 Vl7dpoR3bSJCN3sTYFnlL9eXw5TxgeUL2nqKqma6ddZDNDEBLT2Bq8rcFkbi4pUf
 n7av76EEq74HW/jlUhKVug7Q5Dm5DiKC6BOH3RVuKHbr6iZseyF3jXZSX0Ppf0yF
 gvoy6cGyMW60NVLN5tuGeOjVQ1fxziE0SqB90fXuiWgZ5rzIBfbqJV7EOOZsGO67
 /LHSaEpvKutsc2a+Hx76yQNJjAbb2/O+4Bo5/RqfdqS5tRLGBzYggdJjLvAPvd6P
 pTNtDCnErvBZQfMedEQyHYuBL2Ca59fOp6i/ekOM2I+m7816+kSkdTMt2g==
 =iMHY
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull more KVM updates from Paolo Bonzini:
 "x86:

   - take into account HVA before retrying on MMU notifier race

   - fixes for nested AMD guests without NPT

   - allow INVPCID in guest without PCID

   - disable PML in hardware when not in use

   - MMU code cleanups:

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
  KVM: SVM: Fix nested VM-Exit on #GP interception handling
  KVM: vmx/pmu: Fix dummy check if lbr_desc->event is created
  KVM: x86/mmu: Consider the hva in mmu_notifier retry
  KVM: x86/mmu: Skip mmu_notifier check when handling MMIO page fault
  KVM: Documentation: rectify rst markup in KVM_GET_SUPPORTED_HV_CPUID
  KVM: nSVM: prepare guest save area while is_guest_mode is true
  KVM: x86/mmu: Remove a variety of unnecessary exports
  KVM: x86: Fold "write-protect large" use case into generic write-protect
  KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
  KVM: VMX: Dynamically enable/disable PML based on memslot dirty logging
  KVM: x86: Further clarify the logic and comments for toggling log dirty
  KVM: x86: Move MMU's PML logic to common code
  KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
  KVM: x86/mmu: Expand on the comment in kvm_vcpu_ad_need_write_protect()
  KVM: nVMX: Disable PML in hardware when running L2
  KVM: x86/mmu: Consult max mapping level when zapping collapsible SPTEs
  KVM: x86/mmu: Pass the memslot to the rmap callbacks
  KVM: x86/mmu: Split out max mapping level calculation to helper
  KVM: x86/mmu: Expand collapsible SPTE zap for TDP MMU to ZONE_DEVICE and HugeTLB pages
  KVM: nVMX: no need to undo inject_page_fault change on nested vmexit
  ...
2021-02-26 10:00:12 -08:00
Paolo Bonzini
c462f859f8 KVM: xen: flush deferred static key before checking it
A missing flush would cause the static branch to trigger incorrectly.

Cc: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-26 05:13:02 -05:00
Linus Torvalds
3e10585335 x86:
- Support for userspace to emulate Xen hypercalls
 - Raise the maximum number of user memslots
 - Scalability improvements for the new MMU.  Instead of the complex
   "fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
   rwlock so that page faults are concurrent, but the code that can run
   against page faults is limited.  Right now only page faults take the
   lock for reading; in the future this will be extended to some
   cases of page table destruction.  I hope to switch the default MMU
   around 5.12-rc3 (some testing was delayed due to Chinese New Year).
 - Cleanups for MAXPHYADDR checks
 - Use static calls for vendor-specific callbacks
 - On AMD, use VMLOAD/VMSAVE to save and restore host state
 - Stop using deprecated jump label APIs
 - Workaround for AMD erratum that made nested virtualization unreliable
 - Support for LBR emulation in the guest
 - Support for communicating bus lock vmexits to userspace
 - Add support for SEV attestation command
 - Miscellaneous cleanups
 
 PPC:
 - Support for second data watchpoint on POWER10
 - Remove some complex workarounds for buggy early versions of POWER9
 - Guest entry/exit fixes
 
 ARM64
 - Make the nVHE EL2 object relocatable
 - Cleanups for concurrent translation faults hitting the same page
 - Support for the standard TRNG hypervisor call
 - A bunch of small PMU/Debug fixes
 - Simplification of the early init hypercall handling
 
 Non-KVM changes (with acks):
 - Detection of contended rwlocks (implemented only for qrwlocks,
   because KVM only needs it for x86)
 - Allow __DISABLE_EXPORTS from assembly code
 - Provide a saner follow_pfn replacements for modules
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
 Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
 PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
 5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
 P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
 eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
 =uFZU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "x86:

   - Support for userspace to emulate Xen hypercalls

   - Raise the maximum number of user memslots

   - Scalability improvements for the new MMU.

     Instead of the complex "fast page fault" logic that is used in
     mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
     but the code that can run against page faults is limited. Right now
     only page faults take the lock for reading; in the future this will
     be extended to some cases of page table destruction. I hope to
     switch the default MMU around 5.12-rc3 (some testing was delayed
     due to Chinese New Year).

   - Cleanups for MAXPHYADDR checks

   - Use static calls for vendor-specific callbacks

   - On AMD, use VMLOAD/VMSAVE to save and restore host state

   - Stop using deprecated jump label APIs

   - Workaround for AMD erratum that made nested virtualization
     unreliable

   - Support for LBR emulation in the guest

   - Support for communicating bus lock vmexits to userspace

   - Add support for SEV attestation command

   - Miscellaneous cleanups

  PPC:

   - Support for second data watchpoint on POWER10

   - Remove some complex workarounds for buggy early versions of POWER9

   - Guest entry/exit fixes

  ARM64:

   - Make the nVHE EL2 object relocatable

   - Cleanups for concurrent translation faults hitting the same page

   - Support for the standard TRNG hypervisor call

   - A bunch of small PMU/Debug fixes

   - Simplification of the early init hypercall handling

  Non-KVM changes (with acks):

   - Detection of contended rwlocks (implemented only for qrwlocks,
     because KVM only needs it for x86)

   - Allow __DISABLE_EXPORTS from assembly code

   - Provide a saner follow_pfn replacements for modules"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
  KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
  KVM: selftests: Don't bother mapping GVA for Xen shinfo test
  KVM: selftests: Fix hex vs. decimal snafu in Xen test
  KVM: selftests: Fix size of memslots created by Xen tests
  KVM: selftests: Ignore recently added Xen tests' build output
  KVM: selftests: Add missing header file needed by xAPIC IPI tests
  KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
  KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
  locking/arch: Move qrwlock.h include after qspinlock.h
  KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
  KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
  KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
  KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
  KVM: PPC: remove unneeded semicolon
  KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
  KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
  KVM: PPC: Book3S HV: Fix radix guest SLB side channel
  KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
  KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
  KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
  ...
2021-02-21 13:31:43 -08:00
Sean Christopherson
a1419f8b5b KVM: x86: Fold "write-protect large" use case into generic write-protect
Drop kvm_mmu_slot_largepage_remove_write_access() and refactor its sole
caller to use kvm_mmu_slot_remove_write_access().  Remove the now-unused
slot_handle_large_level() and slot_handle_all_level() helpers.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
b6e16ae5d9 KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
Stop setting dirty bits for MMU pages when dirty logging is disabled for
a memslot, as PML is now completely disabled when there are no memslots
with dirty logging enabled.

This means that spurious PML entries will be created for memslots with
dirty logging disabled if at least one other memslot has dirty logging
enabled.  However, spurious PML entries are already possible since
dirty bits are set only when a dirty logging is turned off, i.e. memslots
that are never dirty logged will have dirty bits cleared.

In the end, it's faster overall to eat a few spurious PML entries in the
window where dirty logging is being disabled across all memslots.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Makarand Sonare
a85863c2ec KVM: VMX: Dynamically enable/disable PML based on memslot dirty logging
Currently, if enable_pml=1 PML remains enabled for the entire lifetime
of the VM irrespective of whether dirty logging is enable or disabled.
When dirty logging is disabled, all the pages of the VM are manually
marked dirty, so that PML is effectively non-operational.  Setting
the dirty bits is an expensive operation which can cause severe MMU
lock contention in a performance sensitive path when dirty logging is
disabled after a failed or canceled live migration.

Manually setting dirty bits also fails to prevent PML activity if some
code path clears dirty bits, which can incur unnecessary VM-Exits.

In order to avoid this extra overhead, dynamically enable/disable PML
when dirty logging gets turned on/off for the first/last memslot.

Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:34 -05:00
Sean Christopherson
52f4607940 KVM: x86: Further clarify the logic and comments for toggling log dirty
Add a sanity check in kvm_mmu_slot_apply_flags to assert that the
LOG_DIRTY_PAGES flag is indeed being toggled, and explicitly rely on
that holding true when zapping collapsible SPTEs.  Manipulating the
CPU dirty log (PML) and write-protection also relies on this assertion,
but that's not obvious in the current code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:34 -05:00
Sean Christopherson
a018eba538 KVM: x86: Move MMU's PML logic to common code
Drop the facade of KVM's PML logic being vendor specific and move the
bits that aren't truly VMX specific into common x86 code.  The MMU logic
for dealing with PML is tightly coupled to the feature and to VMX's
implementation, bouncing through kvm_x86_ops obfuscates the code without
providing any meaningful separation of concerns or encapsulation.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:34 -05:00
Frederic Weisbecker
4ae7dc97f7 entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point
Following the idle loop model, cleanly check for pending rcuog wakeup
before the last rescheduling point upon resuming to guest mode. This
way we can avoid to do it from rcu_user_enter() with the last resort
self-IPI hack that enforces rescheduling.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210131230548.32970-6-frederic@kernel.org
2021-02-17 14:12:43 +01:00
Vitaly Kuznetsov
fc08b628d7 KVM: x86: hyper-v: Allocate Hyper-V context lazily
Hyper-V context is only needed for guests which use Hyper-V emulation in
KVM (e.g. Windows/Hyper-V guests) so we don't actually need to allocate
it in kvm_arch_vcpu_create(), we can postpone the action until Hyper-V
specific MSRs are accessed or SynIC is enabled.

Once allocated, let's keep the context alive for the lifetime of the vCPU
as an attempt to free it would require additional synchronization with
other vCPUs and normally it is not supposed to happen.

Note, Hyper-V style hypercall enablement is done by writing to
HV_X64_MSR_GUEST_OS_ID so we don't need to worry about allocating Hyper-V
context from kvm_hv_hypercall().

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-15-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:40:50 -05:00
Vitaly Kuznetsov
8f014550df KVM: x86: hyper-v: Make Hyper-V emulation enablement conditional
Hyper-V emulation is enabled in KVM unconditionally. This is bad at least
from security standpoint as it is an extra attack surface. Ideally, there
should be a per-VM capability explicitly enabled by VMM but currently it
is not the case and we can't mandate one without breaking backwards
compatibility. We can, however, check guest visible CPUIDs and only enable
Hyper-V emulation when "Hv#1" interface was exposed in
HYPERV_CPUID_INTERFACE.

Note, VMMs are free to act in any sequence they like, e.g. they can try
to set MSRs first and CPUIDs later so we still need to allow the host
to read/write Hyper-V specific MSRs unconditionally.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-14-vkuznets@redhat.com>
[Add selftest vcpu_set_hv_cpuid API to avoid breaking xen_vmcall_test. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:39:56 -05:00
Vitaly Kuznetsov
4592b7eaa8 KVM: x86: hyper-v: Allocate 'struct kvm_vcpu_hv' dynamically
Hyper-V context is only needed for guests which use Hyper-V emulation in
KVM (e.g. Windows/Hyper-V guests). 'struct kvm_vcpu_hv' is, however, quite
big, it accounts for more than 1/4 of the total 'struct kvm_vcpu_arch'
which is also quite big already. This all looks like a waste.

Allocate 'struct kvm_vcpu_hv' dynamically. This patch does not bring any
(intentional) functional change as we still allocate the context
unconditionally but it paves the way to doing that only when needed.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-13-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:15 -05:00
Vitaly Kuznetsov
f2bc14b69c KVM: x86: hyper-v: Prepare to meet unallocated Hyper-V context
Currently, Hyper-V context is part of 'struct kvm_vcpu_arch' and is always
available. As a preparation to allocating it dynamically, check that it is
not NULL at call sites which can normally proceed without it i.e. the
behavior is identical to the situation when Hyper-V emulation is not being
used by the guest.

When Hyper-V context for a particular vCPU is not allocated, we may still
need to get 'vp_index' from there. E.g. in a hypothetical situation when
Hyper-V emulation was enabled on one CPU and wasn't on another, Hyper-V
style send-IPI hypercall may still be used. Luckily, vp_index is always
initialized to kvm_vcpu_get_idx() and can only be changed when Hyper-V
context is present. Introduce kvm_hv_get_vpindex() helper for
simplification.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-12-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:14 -05:00
Vitaly Kuznetsov
9ff5e0304e KVM: x86: hyper-v: Always use to_hv_vcpu() accessor to get to 'struct kvm_vcpu_hv'
As a preparation to allocating Hyper-V context dynamically, make it clear
who's the user of the said context.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-11-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:13 -05:00
Vitaly Kuznetsov
05f04ae4ff KVM: x86: hyper-v: Introduce to_kvm_hv() helper
Spelling '&kvm->arch.hyperv' correctly is hard. Also, this makes the code
more consistent with vmx/svm where to_kvm_vmx()/to_kvm_svm() are already
being used.

Opportunistically change kvm_hv_msr_{get,set}_crash_{data,ctl}() and
kvm_hv_msr_set_crash_data() to take 'kvm' instead of 'vcpu' as these
MSRs are partition wide.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:12 -05:00
Vitaly Kuznetsov
e0121fa29a KVM: x86: hyper-v: Rename vcpu_to_synic()/synic_to_vcpu()
vcpu_to_synic()'s argument is almost always 'vcpu' so there's no need to
have an additional prefix. Also, as this is used outside of hyper-v
emulation code, add '_hv_' part to make it clear what this s. This makes
the naming more consistent with to_hv_vcpu().

Rename synic_to_vcpu() to hv_synic_to_vcpu() for consistency.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:11 -05:00
Paolo Bonzini
996ff5429e KVM: x86: move kvm_inject_gp up from kvm_set_dr to callers
Push the injection of #GP up to the callers, so that they can just use
kvm_complete_insn_gp. __kvm_set_dr is pretty much what the callers can use
together with kvm_complete_insn_gp, so rename it to kvm_set_dr and drop
the old kvm_set_dr wrapper.

This also allows nested VMX code, which really wanted to use __kvm_set_dr,
to use the right function.

While at it, remove the kvm_require_dr() check from the SVM interception.
The APM states:

  All normal exception checks take precedence over the SVM intercepts.

which includes the CR4.DE=1 #UD.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:07 -05:00
Paolo Bonzini
29d6ca4199 KVM: x86: reading DR cannot fail
kvm_get_dr and emulator_get_dr except an in-range value for the register
number so they cannot fail.  Change the return type to void.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:07 -05:00
Sean Christopherson
031b91a5fe KVM: x86: Set so called 'reserved CR3 bits in LM mask' at vCPU reset
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset.  The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.

Cc: stable@vger.kernel.org
Fixes: 0107973a80ad ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 12:59:28 -05:00
Sean Christopherson
a8ac864a7d KVM: x86: Add helper to consolidate "raw" reserved GPA mask calculations
Add a helper to generate the mask of reserved GPA bits _without_ any
adjustments for repurposed bits, and use it to replace a variety of
open coded variants in the MTRR and APIC_BASE flows.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:30 -05:00
Sean Christopherson
5b7f575ccd KVM: x86: Use reserved_gpa_bits to calculate reserved PxE bits
Use reserved_gpa_bits, which accounts for exceptions to the maxphyaddr
rule, e.g. SEV's C-bit, for the page {table,directory,etc...} entry (PxE)
reserved bits checks.  For SEV, the C-bit is ignored by hardware when
walking pages tables, e.g. the APM states:

  Note that while the guest may choose to set the C-bit explicitly on
  instruction pages and page table addresses, the value of this bit is a
  don't-care in such situations as hardware always performs these as
  private accesses.

Such behavior is expected to hold true for other features that repurpose
GPA bits, e.g. KVM could theoretically emulate SME or MKTME, which both
allow non-zero repurposed bits in the page tables.  Conceptually, KVM
should apply reserved GPA checks universally, and any features that do
not adhere to the basic rule should be explicitly handled, i.e. if a GPA
bit is repurposed but not allowed in page tables for whatever reason.

Refactor __reset_rsvds_bits_mask() to take the pre-generated reserved
bits mask, and opportunistically clean up its code, e.g. to align lines
and comments.

Practically speaking, this is change is a likely a glorified nop given
the current KVM code base.  SEV's C-bit is the only repurposed GPA bit,
and KVM doesn't support shadowing encrypted page tables (which is
theoretically possible via SEV debug APIs).

Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
ca29e14506 KVM: x86: SEV: Treat C-bit as legal GPA bit regardless of vCPU mode
Rename cr3_lm_rsvd_bits to reserved_gpa_bits, and use it for all GPA
legality checks.  AMD's APM states:

  If the C-bit is an address bit, this bit is masked from the guest
  physical address when it is translated through the nested page tables.

Thus, any access that can conceivably be run through NPT should ignore
the C-bit when checking for validity.

For features that KVM emulates in software, e.g. MTRRs, there is no
clear direction in the APM for how the C-bit should be handled.  For
such cases, follow the SME behavior inasmuch as possible, since SEV is
is essentially a VM-specific variant of SME.  For SME, the APM states:

  In this case the upper physical address bits are treated as reserved
  when the feature is enabled except where otherwise indicated.

Collecting the various relavant SME snippets in the APM and cross-
referencing the omissions with Linux kernel code, this leaves MTTRs and
APIC_BASE as the only flows that KVM emulates that should _not_ ignore
the C-bit.

Note, this means the reserved bit checks in the page tables are
technically broken.  This will be remedied in a future patch.

Although the page table checks are technically broken, in practice, it's
all but guaranteed to be irrelevant.  NPT is required for SEV, i.e.
shadowing page tables isn't needed in the common case.  Theoretically,
the checks could be in play for nested NPT, but it's extremely unlikely
that anyone is running nested VMs on SEV, as doing so would require L1
to expose sensitive data to L0, e.g. the entire VMCB.  And if anyone is
running nested VMs, L0 can't read the guest's encrypted memory, i.e. L1
would need to put its NPT in shared memory, in which case the C-bit will
never be set.  Or, L1 could use shadow paging, but again, if L0 needs to
read page tables, e.g. to load PDPTRs, the memory can't be encrypted if
L1 has any expectation of L0 doing the right thing.

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
f156abec72 KVM: x86: Set so called 'reserved CR3 bits in LM mask' at vCPU reset
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset.  The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.

Cc: stable@vger.kernel.org
Fixes: 0107973a80ad ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:26 -05:00
David Woodhouse
8d4e7e8083 KVM: x86: declare Xen HVM shared info capability and add test case
Instead of adding a plethora of new KVM_CAP_XEN_FOO capabilities, just
add bits to the return value of KVM_CAP_XEN_HVM.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
David Woodhouse
40da8ccd72 KVM: x86/xen: Add event channel interrupt vector upcall
It turns out that we can't handle event channels *entirely* in userspace
by delivering them as ExtINT, because KVM is a bit picky about when it
accepts ExtINT interrupts from a legacy PIC. The in-kernel local APIC
has to have LVT0 configured in APIC_MODE_EXTINT and unmasked, which
isn't necessarily the case for Xen guests especially on secondary CPUs.

To cope with this, add kvm_xen_get_interrupt() which checks the
evtchn_pending_upcall field in the Xen vcpu_info, and delivers the Xen
upcall vector (configured by KVM_XEN_ATTR_TYPE_UPCALL_VECTOR) if it's
set regardless of LAPIC LVT0 configuration. This gives us the minimum
support we need for completely userspace-based implementation of event
channels.

This does mean that vcpu_enter_guest() needs to check for the
evtchn_pending_upcall flag being set, because it can't rely on someone
having set KVM_REQ_EVENT unless we were to add some way for userspace to
do so manually.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
f2340cd9e4 KVM: x86/xen: register vcpu time info region
Allow the Xen emulated guest the ability to register secondary
vcpu time information. On Xen guests this is used in order to be
mapped to userspace and hence allow vdso gettimeofday to work.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
aa096aa0a0 KVM: x86/xen: setup pvclock updates
Parameterise kvm_setup_pvclock_page() a little bit so that it can be
invoked for different gfn_to_hva_cache structures, and with different
offsets. Then we can invoke it for the normal KVM pvclock and also for
the Xen one in the vcpu_info.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
David Woodhouse
3e32461588 KVM: x86/xen: Add KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR
This will be used for per-vCPU setup such as runstate and vcpu_info.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
629b534884 KVM: x86/xen: update wallclock region
Wallclock on Xen is written in the shared_info page.

To that purpose, export kvm_write_wall_clock() and pass on the GPA of
its location to populate the shared_info wall clock data.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
a76b9641ad KVM: x86/xen: add KVM_XEN_HVM_SET_ATTR/KVM_XEN_HVM_GET_ATTR
This will be used to set up shared info pages etc.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00