IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When we'll make the switch to multiple chain offloading, we'll want to
know first what VCAP block the rule is offloaded to. This impacts what
keys are available. Since the VCAP block is determined by what actions
are used, parse the action first.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we are deriving these from the constants exposed by the
hardware, we can delete the static info we're keeping in the driver.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The numbers in struct vcap_props are not intuitive to derive, because
they are not a straightforward copy-and-paste from the reference manual
but instead rely on a fairly detailed level of understanding of the
layout of an entry in the TCAM and in the action RAM. For this reason,
bugs are very easy to introduce here.
Ease the work of hardware porters and read from hardware the constants
that were exported for this particular purpose. Note that this implies
that struct vcap_props can no longer be const.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As a preparation step for the offloading to ES0, let's create the
infrastructure for talking with this hardware block.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As a preparation step for the offloading to IS1, let's create the
infrastructure for talking with this hardware block.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the Ocelot switches there are 3 TCAMs: VCAP ES0, IS1 and IS2, which
have the same configuration interface, but different sets of keys and
actions. The driver currently only supports VCAP IS2.
In preparation of VCAP IS1 and ES0 support, the existing code must be
generalized to work with any VCAP.
In that direction, we should move the structures that depend upon VCAP
instantiation, like vcap_is2_keys and vcap_is2_actions, out of struct
ocelot and into struct vcap_props .keys and .actions, a structure that
is replicated 3 times, once per VCAP. We'll pass that structure as an
argument to each function that does the key and action packing - only
the control logic needs to distinguish between ocelot->vcap[VCAP_IS2]
or IS1 or ES0.
Another change is to make use of the newly introduced ocelot_target_read
and ocelot_target_write API, since the 3 VCAPs have the same registers
but put at different addresses.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Although it doesn't look like it is possible to hit these conditions
from user space, there are 2 separate, but related, issues.
First, the ocelot_vcap_block_get_filter_index function, née
ocelot_ace_rule_get_index_id prior to the aae4e500e106 ("net: mscc:
ocelot: generalize the "ACE/ACL" names") rename, does not do what the
author probably intended. If the desired filter entry is not present in
the ACL block, this function returns an index equal to the total number
of filters, instead of -1, which is maybe what was intended, judging
from the curious initialization with -1, and the "++index" idioms.
Either way, none of the callers seems to expect this behavior.
Second issue, the callers don't actually check the return value at all.
So in case the filter is not found in the rule list, propagate the
return code.
So update the callers and also take the opportunity to get rid of the
odd coding idioms that appear to work but don't.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are some targets (register blocks) in the Ocelot switch that are
instantiated more than once. For example, the VCAP IS1, IS2 and ES0
blocks all share the same register layout for interacting with the cache
for the TCAM and the action RAM.
For the VCAPs, the procedure for servicing them is actually common. We
just need an API specifying which VCAP we are talking to, and we do that
via these raw ocelot_target_read and ocelot_target_write accessors.
In plain ocelot_read, the target is encoded into the register enum
itself:
u16 target = reg >> TARGET_OFFSET;
For the VCAPs, the registers are currently defined like this:
enum ocelot_reg {
[...]
S2_CORE_UPDATE_CTRL = S2 << TARGET_OFFSET,
S2_CORE_MV_CFG,
S2_CACHE_ENTRY_DAT,
S2_CACHE_MASK_DAT,
S2_CACHE_ACTION_DAT,
S2_CACHE_CNT_DAT,
S2_CACHE_TG_DAT,
[...]
};
which is precisely what we want to avoid, because we'd have to duplicate
the same register map for S1 and for S0, and then figure out how to pass
VCAP instance-specific registers to the ocelot_read calls (basically
another lookup table that undoes the effect of shifting with
TARGET_OFFSET).
So for some targets, propose a more raw API, similar to what is
currently done with ocelot_port_readl and ocelot_port_writel. Those
targets can only be accessed with ocelot_target_{read,write} and not
with ocelot_{read,write} after the conversion, which is fine.
The VCAP registers are not actually modified to use this new API as of
this patch. They will be modified in the next one.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the ocelot_configure_cpu() function, which was in fact bringing
up 2 ports: the CPU port module, which both switchdev and DSA have, and
the NPI port, which only DSA has.
The (non-Ethernet) CPU port module is at a fixed index in the analyzer,
whereas the NPI port is selected through the "ethernet" property in the
device tree.
Therefore, the function to set up an NPI port is DSA-specific, so we
move it there, simplifying the ocelot switch library a little bit.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: UNGLinuxDriver <UNGLinuxDriver@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, ocelot switchdev passes the skb directly to the function that
enqueues it to the list of skb's awaiting a TX timestamp. Whereas the
felix DSA driver first clones the skb, then passes the clone to this
queue.
This matters because in the case of felix, the common IRQ handler, which
is ocelot_get_txtstamp(), currently clones the clone, and frees the
original clone. This is useless and can be simplified by using
skb_complete_tx_timestamp() instead of skb_tstamp_tx().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Two minor conflicts:
1) net/ipv4/route.c, adding a new local variable while
moving another local variable and removing it's
initial assignment.
2) drivers/net/dsa/microchip/ksz9477.c, overlapping changes.
One pretty prints the port mode differently, whilst another
changes the driver to try and obtain the port mode from
the port node rather than the switch node.
Signed-off-by: David S. Miller <davem@davemloft.net>
The IS2 IP4_TCP_UDP key offsets do not correspond to the VSC7514
datasheet. Whether they work or not is unknown to me. On VSC9959 and
VSC9953, with the same mistake and same discrepancy from the
documentation, tc-flower src_port and dst_port rules did not work, so I
am assuming the same is true here.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is a good measure to ensure correctness if the structures that are
meant to remain constant are only processed by functions that thake
constant arguments.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently mscc_ocelot_init_ports() will skip initializing a port when it
doesn't have a phy-handle, so the ocelot->ports[port] pointer will be
NULL. Take this into consideration when tearing down the driver, and add
a new function ocelot_deinit_port() to the switch library, mirror of
ocelot_init_port(), which needs to be called by the driver for all ports
it has initialized.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This driver was not unregistering its network interfaces on unbind.
Now it is.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
mscc_ocelot_probe() is already pretty large and hard to follow. So move
the code for parsing ports in a separate function.
This makes it easier for the next patch to just call
mscc_ocelot_release_ports from the error path of mscc_ocelot_init_ports.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_init() allocates memory, resets the switch and polls for a status
register, things which can fail. Stop probing the driver in that case,
and propagate the error result.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Do not proceed probing if we couldn't allocate memory for the ports
array, just error out.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot_port->ts_id is used to:
(a) populate skb->cb[0] for matching the TX timestamp in the PTP IRQ
with an skb.
(b) populate the REW_OP from the injection header of the ongoing skb.
Only then is ocelot_port->ts_id incremented.
This is a problem because, at least theoretically, another timestampable
skb might use the same ocelot_port->ts_id before that is incremented.
Normally all transmit calls are serialized by the netdev transmit
spinlock, but in this case, ocelot_port_add_txtstamp_skb() is also
called by DSA, which has started declaring the NETIF_F_LLTX feature
since commit 2b86cb829976 ("net: dsa: declare lockless TX feature for
slave ports"). So the logic of using and incrementing the timestamp id
should be atomic per port.
The solution is to use the global ocelot_port->ts_id only while
protected by the associated ocelot_port->ts_id_lock. That's where we
populate skb->cb[0]. Note that for ocelot, ocelot_port_add_txtstamp_skb
is called for the actual skb, but for felix, it is called for the skb's
clone. That is something which will also be changed in the future.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The TX-timestampable skb is added late to the ocelot_port->tx_skbs. It
is in a race with the TX timestamp IRQ, which checks that queue trying
to match the timestamp with the skb by the ts_id. The skb should be
added to the queue before the IRQ can fire.
Fixes: 4e3b0468e6d7 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Resolved kernel/bpf/btf.c using instructions from merge commit
69138b34a7248d2396ab85c8652e20c0c39beaba
Signed-off-by: David S. Miller <davem@davemloft.net>
The next hw timestamp should be snapshoot to the read registers
only once the current timestamp has been read.
If none of the pending skbs matches the current HW timestamp
just gracefully flush the available timestamp by reading it.
Signed-off-by: laurent brando <laurent.brando@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The VSC7514 is marketed as a 10-port switch, however it has 11 physical
ports (0->10) in the block diagram:
https://www.microsemi.com/product-directory/ethernet-switches/3992-vsc7514
(also in the device tree at arch/mips/boot/dts/mscc/ocelot.dtsi)
Additionally, by architecture it has one more entry in the analyzer
block, situated right after the physical ports, for the CPU port module.
This is not a physical port, it only represents a channel for frame
injection and extraction. That entry for the CPU port is at index 11 in
the analyzer.
When the register groups for QSYS_SWITCH_PORT_MODE, SYS_PORT_MODE and
SYS_PAUSE_CFG are declared to be replicated 11 times, the 11th entry in
the array of regfields is not initialized, so the CPU port module is not
initialized either.
The documentation of QSYS_SWITCH_PORT_MODE for VSC7514 also says that
this register group is replicated 12 times, so this patch is simply
reflecting that and not introducing any further inconsistency.
Fixes: 886e1387c73d ("net: mscc: ocelot: convert QSYS_SWITCH_PORT_MODE and SYS_PORT_MODE to regfields")
Fixes: 541132f0961a ("net: mscc: ocelot: convert SYS_PAUSE_CFG register access to regfield")
Reported-by: Bryan Whitehead <bryan.whitehead@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For PPS output (perout period is 1.000000000), accept the new "phase"
parameter from the periodic output request structure.
For both PPS and freeform output, accept the new "on" argument for
specifying the duty cycle of the generated signal. Preserve the old
defaults for this "on" time: 1 us for PPS, and half the period for
freeform output.
Also preserve the old behavior that accepted the "phase" via the "start"
argument.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Having the users of MSCC_OCELOT_SWITCH_LIB depend on REGMAP_MMIO was a
bad idea, since that symbol is not user-selectable. So we should have
kept a 'select REGMAP_MMIO'.
When we do that, we run into 2 more problems:
- By depending on GENERIC_PHY, we are causing a recursive dependency.
But it looks like GENERIC_PHY has no other dependencies, and other
drivers select it, so we can select it too:
drivers/of/Kconfig:69:error: recursive dependency detected!
drivers/of/Kconfig:69: symbol OF_IRQ depends on IRQ_DOMAIN
kernel/irq/Kconfig:68: symbol IRQ_DOMAIN is selected by REGMAP
drivers/base/regmap/Kconfig:7: symbol REGMAP default is visible depending on REGMAP_MMIO
drivers/base/regmap/Kconfig:39: symbol REGMAP_MMIO is selected by MSCC_OCELOT_SWITCH_LIB
drivers/net/ethernet/mscc/Kconfig:15: symbol MSCC_OCELOT_SWITCH_LIB is selected by MSCC_OCELOT_SWITCH
drivers/net/ethernet/mscc/Kconfig:22: symbol MSCC_OCELOT_SWITCH depends on GENERIC_PHY
drivers/phy/Kconfig:8: symbol GENERIC_PHY is selected by PHY_BCM_NS_USB3
drivers/phy/broadcom/Kconfig:41: symbol PHY_BCM_NS_USB3 depends on MDIO_BUS
drivers/net/phy/Kconfig:13: symbol MDIO_BUS depends on MDIO_DEVICE
drivers/net/phy/Kconfig:6: symbol MDIO_DEVICE is selected by PHYLIB
drivers/net/phy/Kconfig:254: symbol PHYLIB is selected by ARC_EMAC_CORE
drivers/net/ethernet/arc/Kconfig:19: symbol ARC_EMAC_CORE is selected by ARC_EMAC
drivers/net/ethernet/arc/Kconfig:25: symbol ARC_EMAC depends on OF_IRQ
- By depending on PHYLIB, we are causing a recursive dependency. PHYLIB
only has a single dependency, "depends on NETDEVICES", which we are
already depending on, so we can again hack our way into conformance by
turning the PHYLIB dependency into a select.
drivers/of/Kconfig:69:error: recursive dependency detected!
drivers/of/Kconfig:69: symbol OF_IRQ depends on IRQ_DOMAIN
kernel/irq/Kconfig:68: symbol IRQ_DOMAIN is selected by REGMAP
drivers/base/regmap/Kconfig:7: symbol REGMAP default is visible depending on REGMAP_MMIO
drivers/base/regmap/Kconfig:39: symbol REGMAP_MMIO is selected by MSCC_OCELOT_SWITCH_LIB
drivers/net/ethernet/mscc/Kconfig:15: symbol MSCC_OCELOT_SWITCH_LIB is selected by MSCC_OCELOT_SWITCH
drivers/net/ethernet/mscc/Kconfig:22: symbol MSCC_OCELOT_SWITCH depends on PHYLIB
drivers/net/phy/Kconfig:254: symbol PHYLIB is selected by ARC_EMAC_CORE
drivers/net/ethernet/arc/Kconfig:19: symbol ARC_EMAC_CORE is selected by ARC_EMAC
drivers/net/ethernet/arc/Kconfig:25: symbol ARC_EMAC depends on OF_IRQ
Fixes: f4d0323bae4e ("net: mscc: ocelot: convert MSCC_OCELOT_SWITCH into a library")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot_wm_encode function deals with setting thresholds for pause
frame start and stop. In Ocelot and Felix the register layout is the
same, but for Seville, it isn't. The easiest way to accommodate Seville
hardware configuration is to introduce a function pointer for setting
this up.
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Seville has a different bitwise layout than Ocelot and Felix.
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Ocelot switches do not support flow control on Ethernet interfaces
where a DSA tag must be added. If pause frames are enabled, they will be
encapsulated in the DSA tag just like regular frames, and the DSA master
will not recognize them.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We don't want ocelot_port_set_maxlen to enable pause frame TX, just to
adjust the pause thresholds.
Move the unconditional enabling of pause TX to ocelot_init_port. There
is no good place to put such setting because it shouldn't be
unconditional. But at the moment it is, we're not changing that.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently Felix and Ocelot share the same bit layout in these per-port
registers, but Seville does not. So we need reg_fields for that.
Actually since these are per-port registers, we need to also specify the
number of ports, and register size per port, and use the regmap API for
multiple ports.
There's a more subtle point to be made about the other 2 register
fields:
- QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG
- QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE
which we are not writing any longer, for 2 reasons:
- Using the previous API (ocelot_write_rix), we were only writing 1 for
Felix and Ocelot, which was their hardware-default value, and which
there wasn't any intention in changing.
- In the case of SCH_NEXT_CFG, in fact Seville does not have this
register field at all, and therefore, if we want to have common code
we would be required to not write to it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the register definitions for the MSCC MIIM MDIO controller in
preparation for seville_vsc9959.c to create its accessors for the
internal MDIO bus.
Since we've introduced elements to ocelot_regfields that are not
instantiated by felix and ocelot, we need to define the size of the
regfields arrays explicitly, otherwise ocelot_regfields_init, which
iterates up to REGFIELD_MAX, will fault on the undefined regfield
entries (if we're lucky).
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At the moment, there are some minimal register differences between
VSC7514 Ocelot and VSC9959 Felix. To be precise, the PCS1G registers are
missing from Felix because it was integrated with an NXP PCS.
But with VSC9953 Seville (not yet introduced), the register differences
are more pronounced. The MAC registers are located at different offsets
within the DEV_GMII target. So we need to refactor the driver to keep a
regmap even for per-port registers. The callers of the ocelot_port_readl
and ocelot_port_writel were kept unchanged, only the implementation is
now more generic.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since 'tcfp_burst' with TICK factor, driver side always need to recover
it to the original value, this patch moves the generic calculation and
recover to the 'burst' original value before offloading to device driver.
Signed-off-by: Po Liu <po.liu@nxp.com>
Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that all net_device operations are bundled together inside
mscc_ocelot.ko and no longer part of the common library, there's no
reason to export these symbols.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current procedure for installing a multicast address is hardcoded
for IPv4. But, in the ocelot hardware, there are 3 different procedures
for IPv4, IPv6 and for regular L2 multicast.
For IPv6 (33-33-xx-xx-xx-xx), it's the same as for IPv4
(01-00-5e-xx-xx-xx), except that the destination port mask is stuffed
into first 2 bytes of the MAC address except into first 3 bytes.
For plain Ethernet multicast, there's no port-in-address stuffing going
on, instead the DEST_IDX (pointer to PGID) is used there, just as for
unicast. So we have to use one of the nonreserved multicast PGIDs that
the hardware has allocated for this purpose.
This patch classifies the type of multicast address based on its first
bytes, then redirects to one of the 3 different hardware procedures.
Note that this gives us a really better way of redirecting PTP frames
sent at 01-1b-19-00-00-00 to the CPU. Previously, Yangbo Lu tried to add
a trapping rule for PTP EtherType but got a lot of pushback:
https://patchwork.ozlabs.org/project/netdev/patch/20190813025214.18601-5-yangbo.lu@nxp.com/
But right now, that isn't needed at all. The application stack (ptp4l)
does this for the PTP multicast addresses it's interested in (which are
configurable, and include 01-1b-19-00-00-00):
memset(&mreq, 0, sizeof(mreq));
mreq.mr_ifindex = index;
mreq.mr_type = PACKET_MR_MULTICAST;
mreq.mr_alen = MAC_LEN;
memcpy(mreq.mr_address, addr1, MAC_LEN);
err1 = setsockopt(fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, &mreq,
sizeof(mreq));
Into the kernel, this translates into a dev_mc_add on the switch network
interfaces, and our drivers know that it means they should translate it
into a host MDB address (make the CPU port be the destination).
Previously, this was broken because all mdb addresses were treated as
IPv4 (which 01-1b-19-00-00-00 obviously is not).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current iterators are impossible to understand at first glance
without switching back and forth between the definitions and their
actual use in the for loops.
So introduce some convenience names to help readability.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds the mdb hooks in felix and exports the mdb functions from
ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When used in DSA mode (as seen in Felix), the DEST_IDX in the MAC table
should point to the PGID for the CPU port (PGID_CPU) and not for the
Ethernet port where the CPU queues are redirected to (also known as Node
Processor Interface - NPI).
Because for Felix this distinction shouldn't really matter (from DSA
perspective, the NPI port _is_ the CPU port), make the ocelot library
act upon the CPU port when NPI mode is enabled. This has no effect for
the mscc_ocelot driver for VSC7514, because that does not use NPI (and
ocelot->npi is -1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot hardware designers have made some hacks to support multicast
IPv4 and IPv6 addresses. Normally, the MAC table matches on MAC
addresses and the destination ports are selected through the DEST_IDX
field of the respective MAC table entry. The DEST_IDX points to a Port
Group ID (PGID) which contains the bit mask of ports that frames should
be forwarded to. But there aren't a lot of PGIDs (only 80 or so) and
there are clearly many more IP multicast addresses than that, so it
doesn't scale to use this PGID mechanism, so something else was done.
Since the first portion of the MAC address is known, the hack they did
was to use a single PGID for _flooding_ unknown IPv4 multicast
(PGID_MCIPV4 == 62), but for known IP multicast, embed the destination
ports into the first 3 bytes of the MAC address recorded in the MAC
table.
The VSC7514 datasheet explains it like this:
3.9.1.5 IPv4 Multicast Entries
MAC table entries with the ENTRY_TYPE = 2 settings are interpreted
as IPv4 multicast entries.
IPv4 multicasts entries match IPv4 frames, which are classified to
the specified VID, and which have DMAC = 0x01005Exxxxxx, where
xxxxxx is the lower 24 bits of the MAC address in the entry.
Instead of a lookup in the destination mask table (PGID), the
destination set is programmed as part of the entry MAC address. This
is shown in the following table.
Table 78: IPv4 Multicast Destination Mask
Destination Ports Record Bit Field
---------------------------------------------
Ports 10-0 MAC[34-24]
Example: All IPv4 multicast frames in VLAN 12 with MAC 01005E112233 are
to be forwarded to ports 3, 8, and 9. This is done by inserting the
following entry in the MAC table entry:
VALID = 1
VID = 12
MAC = 0x000308112233
ENTRY_TYPE = 2
DEST_IDX = 0
But this procedure is not at all what's going on in the driver. In fact,
the code that embeds the ports into the MAC address looks like it hasn't
actually been tested. This patch applies the procedure described in the
datasheet.
Since there are many other fixes to be made around multicast forwarding
until it works properly, there is no real reason for this patch to be
backported to stable trees, or considered a real fix of something that
should have worked.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the function prototypes from ocelot_police.h and make these
functions static. We need to move them above their callers. Note that
moving the implementations to ocelot_police.c is not trivially possible
due to dependency on is2_entry_set() which is static to ocelot_vcap.c.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Access Control Lists (and their respective Access Control Entries) are
specifically entries in the VCAP IS2, the security enforcement block,
according to the documentation.
Let's rename the structures and functions to something more generic, so
that VCAP IS1 structures (which would otherwise have to be called
Ingress Classification Entries) can reuse the same code without
confusion.
Some renaming that was done:
struct ocelot_ace_rule -> struct ocelot_vcap_filter
struct ocelot_acl_block -> struct ocelot_vcap_block
enum ocelot_ace_type -> enum ocelot_vcap_key_type
struct ocelot_ace_vlan -> struct ocelot_vcap_key_vlan
enum ocelot_ace_action -> enum ocelot_vcap_action
struct ocelot_ace_stats -> struct ocelot_vcap_stats
enum ocelot_ace_type -> enum ocelot_vcap_key_type
struct ocelot_ace_frame_* -> struct ocelot_vcap_key_*
No functional change is intended.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Access Control Lists (and their respective Access Control Entries) are
specifically entries in the VCAP IS2, the security enforcement block,
according to the documentation.
Let's rename the files that deal with generic operations on the VCAP
TCAM, so that VCAP IS1 and ES0 can reuse the same code without
confusion.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot hardware library shouldn't contain too much net_device
specific code, since it is shared with DSA which abstracts that
structure away. So much as much of this code as possible into the
mscc_ocelot driver and outside of the common library.
We're making an exception for MDB and LAG code. That is not yet exported
to DSA, but when it will, most of the code that's already in ocelot.c
will remain there. So, there's no point in moving code to ocelot_net.c
just to move it back later.
We could have moved all net_device code to ocelot_vsc7514.c directly,
but let's operate under the assumption that if a new switchdev ocelot
driver gets added, it'll define its SoC-specific stuff in a new
ocelot_vsc*.c file and it'll reuse the rest of the code.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_regs.c actually shouldn't be part of the common library. It
describes the register map of the VSC7514 switch. The way ocelot
switches work, they'll have highly optimized register maps, so another
SoC will likely have the same registers but laid out completely
different in memory (so there's little room for reusing this structure).
So move it to ocelot_vsc7514.c instead.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Putting 'ocelot' in the config's name twice just to say that 'it's the
ocelot driver running on the ocelot SoC' is a bit confusing. Instead,
it's just the ocelot driver. Now that we've renamed the previous symbol
that was holding the MSCC_OCELOT_SWITCH_OCELOT into *_LIB (because
that's what it is), we're free to use this name for the driver.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Hide the CONFIG_MSCC_OCELOT_SWITCH option from users. It is meant to be
only a hardware library which is selected by the drivers that use it
(ocelot, felix).
Since it is "selected" from Kconfig, all its dependencies are manually
transferred to the driver that selects it. This is because "select" in
Kconfig language is a bit of a mess, and doesn't handle dependencies of
selected options quite right.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
mscc_ocelot is a slightly better name for a module than ocelot_board or
ocelot_vsc7514 is, so let's use that.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To follow the model of felix and seville where we have one
platform-specific file, rename this file to the actual SoC it serves.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Get rid of sparse "cast to restricted __be16" warnings.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>