12 Commits

Author SHA1 Message Date
David Howells
d001648ec7 rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.

This makes the following possibilities more achievable:

 (1) Call refcounting can be made simpler if skbs don't hold refs to calls.

 (2) skbs referring to non-data events will be able to be freed much sooner
     rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
     will be able to consult the call state.

 (3) We can shortcut the receive phase when a call is remotely aborted
     because we don't have to go through all the packets to get to the one
     cancelling the operation.

 (4) It makes it easier to do encryption/decryption directly between AFS's
     buffers and sk_buffs.

 (5) Encryption/decryption can more easily be done in the AFS's thread
     contexts - usually that of the userspace process that issued a syscall
     - rather than in one of rxrpc's background threads on a workqueue.

 (6) AFS will be able to wait synchronously on a call inside AF_RXRPC.

To make this work, the following interface function has been added:

     int rxrpc_kernel_recv_data(
		struct socket *sock, struct rxrpc_call *call,
		void *buffer, size_t bufsize, size_t *_offset,
		bool want_more, u32 *_abort_code);

This is the recvmsg equivalent.  It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.

afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them.  They don't wait synchronously yet because the socket
lock needs to be dealt with.

Five interface functions have been removed:

	rxrpc_kernel_is_data_last()
    	rxrpc_kernel_get_abort_code()
    	rxrpc_kernel_get_error_number()
    	rxrpc_kernel_free_skb()
    	rxrpc_kernel_data_consumed()

As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user.  To process the queue internally, a temporary function,
temp_deliver_data() has been added.  This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-01 16:43:27 -07:00
David Howells
4de48af663 rxrpc: Pass struct socket * to more rxrpc kernel interface functions
Pass struct socket * to more rxrpc kernel interface functions.  They should
be starting from this rather than the socket pointer in the rxrpc_call
struct if they need to access the socket.

I have left:

	rxrpc_kernel_is_data_last()
	rxrpc_kernel_get_abort_code()
	rxrpc_kernel_get_error_number()
	rxrpc_kernel_free_skb()
	rxrpc_kernel_data_consumed()

unmodified as they're all about to be removed (and, in any case, don't
touch the socket).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 16:07:53 +01:00
David Howells
8324f0bcfb rxrpc: Provide a way for AFS to ask for the peer address of a call
Provide a function so that kernel users, such as AFS, can ask for the peer
address of a call:

   void rxrpc_kernel_get_peer(struct rxrpc_call *call,
			      struct sockaddr_rxrpc *_srx);

In the future the kernel service won't get sk_buffs to look inside.
Further, this allows us to hide any canonicalisation inside AF_RXRPC for
when IPv6 support is added.

Also propagate this through to afs_find_server() and issue a warning if we
can't handle the address family yet.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 16:07:53 +01:00
David Howells
372ee16386 rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.

Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released.  The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb.  ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.

To this end, the following changes are made:

 (1) kernel_rxrpc_data_consumed() is added.  This should be called whenever
     an skb is emptied so as to crank the ACK and call states.  This does
     not release the skb, however.  kernel_rxrpc_free_skb() must now be
     called to achieve that.  These together replace
     rxrpc_kernel_data_delivered().

 (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().

     This makes afs_deliver_to_call() easier to work as the skb can simply
     be discarded unconditionally here without trying to work out what the
     return value of the ->deliver() function means.

     The ->deliver() functions can, via afs_data_complete(),
     afs_transfer_reply() and afs_extract_data() mark that an skb has been
     consumed (thereby cranking the state) without the need to
     conditionally free the skb to make sure the state is correct on an
     incoming call for when the call processor tries to send the reply.

 (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
     has finished with a packet and MSG_PEEK isn't set.

 (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().

     Because of this, we no longer need to clear the destructor and put the
     call before we free the skb in cases where we don't want the ACK/call
     state to be cranked.

 (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
     than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
     the delivery function already), and the caller is now responsible for
     producing an abort if that was the last packet.

 (6) There are many bits of unmarshalling code where:

 		ret = afs_extract_data(call, skb, last, ...);
		switch (ret) {
		case 0:		break;
		case -EAGAIN:	return 0;
		default:	return ret;
		}

     is to be found.  As -EAGAIN can now be passed back to the caller, we
     now just return if ret < 0:

 		ret = afs_extract_data(call, skb, last, ...);
		if (ret < 0)
			return ret;

 (7) Checks for trailing data and empty final data packets has been
     consolidated as afs_data_complete().  So:

		if (skb->len > 0)
			return -EBADMSG;
		if (!last)
			return 0;

     becomes:

		ret = afs_data_complete(call, skb, last);
		if (ret < 0)
			return ret;

 (8) afs_transfer_reply() now checks the amount of data it has against the
     amount of data desired and the amount of data in the skb and returns
     an error to induce an abort if we don't get exactly what we want.

Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:

general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G            E   4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>]  [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0  EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS:  0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
 0000000000000006 000000000be04930 0000000000000000 ffff880400000000
 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
 [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6
 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff814c928f>] skb_dequeue+0x18/0x61
 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
 [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
 [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
 [<ffffffff81063a3a>] process_one_work+0x29d/0x57c
 [<ffffffff81064ac2>] worker_thread+0x24a/0x385
 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
 [<ffffffff810696f5>] kthread+0xf3/0xfb
 [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-06 00:08:40 -04:00
David Howells
817913d8cd af_rxrpc: Expose more RxRPC parameters via sysctls
Expose RxRPC parameters via sysctls to control the Rx window size, the Rx MTU
maximum size and the number of packets that can be glued into a jumbo packet.

More info added to Documentation/networking/rxrpc.txt.

Signed-off-by: David Howells <dhowells@redhat.com>
2014-02-26 17:25:07 +00:00
David Howells
5873c0834f af_rxrpc: Add sysctls for configuring RxRPC parameters
Add sysctls for configuring RxRPC protocol handling, specifically controls on
delays before ack generation, the delay before resending a packet, the maximum
lifetime of a call and the expiration times of calls, connections and
transports that haven't been recently used.

More info added in Documentation/networking/rxrpc.txt.

Signed-off-by: David Howells <dhowells@redhat.com>
2014-02-26 17:25:06 +00:00
Masanari Iida
c17cb8b55b doc:net: Fix typo in Documentation/networking
Correct spelling typo in Documentation/networking

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-30 17:10:20 -04:00
Frederik Schwarzer
025dfdafe7 trivial: fix then -> than typos in comments and documentation
- (better, more, bigger ...) then -> (...) than

Signed-off-by: Frederik Schwarzer <schwarzerf@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2009-01-06 11:28:06 +01:00
Matt LaPlante
01dd2fbf0d typo fixes
Most of these fixes were already submitted for old kernel versions, and were
approved, but for some reason they never made it into the releases.

Because this is a consolidation of a couple old missed patches, it touches both
Kconfigs and documentation texts.

Signed-off-by: Matt LaPlante <kernel1@cyberdogtech.com>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
2007-10-20 01:34:40 +02:00
David Howells
76181c134f KEYS: Make request_key() and co fundamentally asynchronous
Make request_key() and co fundamentally asynchronous to make it easier for
NFS to make use of them.  There are now accessor functions that do
asynchronous constructions, a wait function to wait for construction to
complete, and a completion function for the key type to indicate completion
of construction.

Note that the construction queue is now gone.  Instead, keys under
construction are linked in to the appropriate keyring in advance, and that
anyone encountering one must wait for it to be complete before they can use
it.  This is done automatically for userspace.

The following auxiliary changes are also made:

 (1) Key type implementation stuff is split from linux/key.h into
     linux/key-type.h.

 (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
     not need to call key_instantiate_and_link() directly.

 (3) Adjust the debugging macros so that they're -Wformat checked even if
     they are disabled, and make it so they can be enabled simply by defining
     __KDEBUG to be consistent with other code of mine.

 (3) Documentation.

[alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:57 -07:00
David Howells
651350d10f [AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available.  AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.

This permits AFS (or whatever) to:

 (1) Avoid the overhead of using the recvmsg() call.

 (2) Use different keys directly on individual client calls on one socket
     rather than having to open a whole slew of sockets, one for each key it
     might want to use.

 (3) Avoid calling request_key() at the point of issue of a call or opening of
     a socket.  This is done instead by AFS at the point of open(), unlink() or
     other VFS operation and the key handed through.

 (4) Request the use of something other than GFP_KERNEL to allocate memory.

Furthermore:

 (*) The socket buffer markings used by RxRPC are made available for AFS so
     that it can interpret the cooked RxRPC messages itself.

 (*) rxgen (un)marshalling abort codes are made available.


The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:

=========================
AF_RXRPC KERNEL INTERFACE
=========================

The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem.  This permits such a utility to:

 (1) Use different keys directly on individual client calls on one socket
     rather than having to open a whole slew of sockets, one for each key it
     might want to use.

 (2) Avoid having RxRPC call request_key() at the point of issue of a call or
     opening of a socket.  Instead the utility is responsible for requesting a
     key at the appropriate point.  AFS, for instance, would do this during VFS
     operations such as open() or unlink().  The key is then handed through
     when the call is initiated.

 (3) Request the use of something other than GFP_KERNEL to allocate memory.

 (4) Avoid the overhead of using the recvmsg() call.  RxRPC messages can be
     intercepted before they get put into the socket Rx queue and the socket
     buffers manipulated directly.

To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.

The kernel interface functions are as follows:

 (*) Begin a new client call.

	struct rxrpc_call *
	rxrpc_kernel_begin_call(struct socket *sock,
				struct sockaddr_rxrpc *srx,
				struct key *key,
				unsigned long user_call_ID,
				gfp_t gfp);

     This allocates the infrastructure to make a new RxRPC call and assigns
     call and connection numbers.  The call will be made on the UDP port that
     the socket is bound to.  The call will go to the destination address of a
     connected client socket unless an alternative is supplied (srx is
     non-NULL).

     If a key is supplied then this will be used to secure the call instead of
     the key bound to the socket with the RXRPC_SECURITY_KEY sockopt.  Calls
     secured in this way will still share connections if at all possible.

     The user_call_ID is equivalent to that supplied to sendmsg() in the
     control data buffer.  It is entirely feasible to use this to point to a
     kernel data structure.

     If this function is successful, an opaque reference to the RxRPC call is
     returned.  The caller now holds a reference on this and it must be
     properly ended.

 (*) End a client call.

	void rxrpc_kernel_end_call(struct rxrpc_call *call);

     This is used to end a previously begun call.  The user_call_ID is expunged
     from AF_RXRPC's knowledge and will not be seen again in association with
     the specified call.

 (*) Send data through a call.

	int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
				   size_t len);

     This is used to supply either the request part of a client call or the
     reply part of a server call.  msg.msg_iovlen and msg.msg_iov specify the
     data buffers to be used.  msg_iov may not be NULL and must point
     exclusively to in-kernel virtual addresses.  msg.msg_flags may be given
     MSG_MORE if there will be subsequent data sends for this call.

     The msg must not specify a destination address, control data or any flags
     other than MSG_MORE.  len is the total amount of data to transmit.

 (*) Abort a call.

	void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);

     This is used to abort a call if it's still in an abortable state.  The
     abort code specified will be placed in the ABORT message sent.

 (*) Intercept received RxRPC messages.

	typedef void (*rxrpc_interceptor_t)(struct sock *sk,
					    unsigned long user_call_ID,
					    struct sk_buff *skb);

	void
	rxrpc_kernel_intercept_rx_messages(struct socket *sock,
					   rxrpc_interceptor_t interceptor);

     This installs an interceptor function on the specified AF_RXRPC socket.
     All messages that would otherwise wind up in the socket's Rx queue are
     then diverted to this function.  Note that care must be taken to process
     the messages in the right order to maintain DATA message sequentiality.

     The interceptor function itself is provided with the address of the socket
     and handling the incoming message, the ID assigned by the kernel utility
     to the call and the socket buffer containing the message.

     The skb->mark field indicates the type of message:

	MARK				MEANING
	===============================	=======================================
	RXRPC_SKB_MARK_DATA		Data message
	RXRPC_SKB_MARK_FINAL_ACK	Final ACK received for an incoming call
	RXRPC_SKB_MARK_BUSY		Client call rejected as server busy
	RXRPC_SKB_MARK_REMOTE_ABORT	Call aborted by peer
	RXRPC_SKB_MARK_NET_ERROR	Network error detected
	RXRPC_SKB_MARK_LOCAL_ERROR	Local error encountered
	RXRPC_SKB_MARK_NEW_CALL		New incoming call awaiting acceptance

     The remote abort message can be probed with rxrpc_kernel_get_abort_code().
     The two error messages can be probed with rxrpc_kernel_get_error_number().
     A new call can be accepted with rxrpc_kernel_accept_call().

     Data messages can have their contents extracted with the usual bunch of
     socket buffer manipulation functions.  A data message can be determined to
     be the last one in a sequence with rxrpc_kernel_is_data_last().  When a
     data message has been used up, rxrpc_kernel_data_delivered() should be
     called on it..

     Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
     of.  It is possible to get extra refs on all types of message for later
     freeing, but this may pin the state of a call until the message is finally
     freed.

 (*) Accept an incoming call.

	struct rxrpc_call *
	rxrpc_kernel_accept_call(struct socket *sock,
				 unsigned long user_call_ID);

     This is used to accept an incoming call and to assign it a call ID.  This
     function is similar to rxrpc_kernel_begin_call() and calls accepted must
     be ended in the same way.

     If this function is successful, an opaque reference to the RxRPC call is
     returned.  The caller now holds a reference on this and it must be
     properly ended.

 (*) Reject an incoming call.

	int rxrpc_kernel_reject_call(struct socket *sock);

     This is used to reject the first incoming call on the socket's queue with
     a BUSY message.  -ENODATA is returned if there were no incoming calls.
     Other errors may be returned if the call had been aborted (-ECONNABORTED)
     or had timed out (-ETIME).

 (*) Record the delivery of a data message and free it.

	void rxrpc_kernel_data_delivered(struct sk_buff *skb);

     This is used to record a data message as having been delivered and to
     update the ACK state for the call.  The socket buffer will be freed.

 (*) Free a message.

	void rxrpc_kernel_free_skb(struct sk_buff *skb);

     This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
     socket.

 (*) Determine if a data message is the last one on a call.

	bool rxrpc_kernel_is_data_last(struct sk_buff *skb);

     This is used to determine if a socket buffer holds the last data message
     to be received for a call (true will be returned if it does, false
     if not).

     The data message will be part of the reply on a client call and the
     request on an incoming call.  In the latter case there will be more
     messages, but in the former case there will not.

 (*) Get the abort code from an abort message.

	u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);

     This is used to extract the abort code from a remote abort message.

 (*) Get the error number from a local or network error message.

	int rxrpc_kernel_get_error_number(struct sk_buff *skb);

     This is used to extract the error number from a message indicating either
     a local error occurred or a network error occurred.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:50:17 -07:00
David Howells
17926a7932 [AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve
answers to AFS clients.  KerberosIV security is fully supported.  The patches
and some example test programs can be found in:

	http://people.redhat.com/~dhowells/rxrpc/

This will eventually replace the old implementation of kernel-only RxRPC
currently resident in net/rxrpc/.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:48:28 -07:00