27 Commits

Author SHA1 Message Date
David Howells
a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00
Darrick J. Wong
29ac8e856c ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
Connect the new VFS clone_range, copy_range, and dedupe_range features
to the existing reflink capability of ocfs2.  Compared to the existing
ocfs2 reflink ioctl We have to do things a little differently to support
the VFS semantics (we can clone subranges of a file but we don't clone
xattrs), but the VFS ioctls are more broadly supported.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
---
v2: Convert inline data files to extents files before reflinking,
and fix i_blocks so that stat(2) output is correct.
v3: Make zero-length dedupe consistent with btrfs behavior.
v4: Use VFS double-inode lock routines and remove MAX_DEDUPE_LEN.
2016-12-10 12:39:45 -08:00
Joseph Qi
026749a86e ocfs2: prepare some interfaces used in append direct io
Currently in case of append O_DIRECT write (block not allocated yet),
ocfs2 will fall back to buffered I/O.  This has some disadvantages.
Firstly, it is not the behavior as expected.  Secondly, it will consume
huge page cache, e.g.  in mass backup scenario.  Thirdly, modern
filesystems such as ext4 support this feature.

In this patch set, the direct I/O write doesn't fallback to buffer I/O
write any more because the allocate blocks are enabled in direct I/O now.

This patch (of 9):

Prepare some interfaces which will be used in append O_DIRECT write.

Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Xuejiufei <xuejiufei@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: alex chen <alex.chen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:04 -08:00
Al Viro
10556cb21a ->permission() sanitizing: don't pass flags to ->permission()
not used by the instances anymore.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20 01:43:24 -04:00
Nick Piggin
b74c79e993 fs: provide rcu-walk aware permission i_ops
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
2011-01-07 17:50:29 +11:00
Joel Becker
5693486bad ocfs2: Zero the tail cluster when extending past i_size.
ocfs2's allocation unit is the cluster.  This can be larger than a block
or even a memory page.  This means that a file may have many blocks in
its last extent that are beyond the block containing i_size.  There also
may be more unwritten extents after that.

When ocfs2 grows a file, it zeros the entire cluster in order to ensure
future i_size growth will see cleared blocks.  Unfortunately,
block_write_full_page() drops the pages past i_size.  This means that
ocfs2 is actually leaking garbage data into the tail end of that last
cluster.  This is a bug.

We adjust ocfs2_write_begin_nolock() and ocfs2_extend_file() to detect
when a write or truncate is past i_size.  They will use
ocfs2_zero_extend() to ensure the data is properly zeroed.

Older versions of ocfs2_zero_extend() simply zeroed every block between
i_size and the zeroing position.  This presumes three things:

1) There is allocation for all of these blocks.
2) The extents are not unwritten.
3) The extents are not refcounted.

(1) and (2) hold true for non-sparse filesystems, which used to be the
only users of ocfs2_zero_extend().  (3) is another bug.

Since we're now using ocfs2_zero_extend() for sparse filesystems as
well, we teach ocfs2_zero_extend() to check every extent between
i_size and the zeroing position.  If the extent is unwritten, it is
ignored.  If it is refcounted, it is CoWed.  Then it is zeroed.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Cc: stable@kernel.org
2010-07-08 13:25:35 -07:00
Tao Ma
293b2f70b4 ocfs2: Integrate CoW in file write.
When we use mmap, we CoW the refcountd clusters in
ocfs2_write_begin_nolock. While for normal file
io(including directio), we do CoW in
ocfs2_prepare_inode_for_write.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
2009-09-22 20:09:37 -07:00
Jan Kara
9e33d69f55 ocfs2: Implementation of local and global quota file handling
For each quota type each node has local quota file. In this file it stores
changes users have made to disk usage via this node. Once in a while this
information is synced to global file (and thus with other nodes) so that
limits enforcement at least aproximately works.

Global quota files contain all the information about usage and limits. It's
mostly handled by the generic VFS code (which implements a trie of structures
inside a quota file). We only have to provide functions to convert structures
from on-disk format to in-memory one. We also have to provide wrappers for
various quota functions starting transactions and acquiring necessary cluster
locks before the actual IO is really started.

Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-01-05 08:40:23 -08:00
Tao Ma
0eb8d47e69 ocfs2: Make high level btree extend code generic
Factor out the non-inode specifics of ocfs2_do_extend_allocation() into a more generic
function, ocfs2_do_cluster_allocation(). ocfs2_do_extend_allocation calls
ocfs2_do_cluster_allocation() now, but the latter can be used for other
btree types as well.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13 13:57:59 -07:00
Tao Ma
e7d4cb6bc1 ocfs2: Abstract ocfs2_extent_tree in b-tree operations.
In the old extent tree operation, we take the hypothesis that we
are using the ocfs2_extent_list in ocfs2_dinode as the tree root.
As xattr will also use ocfs2_extent_list to store large value
for a xattr entry, we refactor the tree operation so that xattr
can use it directly.

The refactoring includes 4 steps:
1. Abstract set/get of last_eb_blk and update_clusters since they may
   be stored in different location for dinode and xattr.
2. Add a new structure named ocfs2_extent_tree to indicate the
   extent tree the operation will work on.
3. Remove all the use of fe_bh and di, use root_bh and root_el in
   extent tree instead. So now all the fe_bh is replaced with
   et->root_bh, el with root_el accordingly.
4. Make ocfs2_lock_allocators generic. Now it is limited to be only used
   in file extend allocation. But the whole function is useful when we want
   to store large EAs.

Note: This patch doesn't touch ocfs2_commit_truncate() since it is not used
for anything other than truncate inode data btrees.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13 13:57:58 -07:00
Tao Ma
231b87d109 ocfs2: Modify ocfs2_num_free_extents for future xattr usage.
ocfs2_num_free_extents() is used to find the number of free extent records
in an inode btree. Hence, it takes an "ocfs2_dinode" parameter. We want to
use this for extended attribute trees in the future, so genericize the
interface the take a buffer head. A future patch will allow that buffer_head
to contain any structure rooting an ocfs2 btree.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13 13:57:58 -07:00
Mark Fasheh
53da4939f3 ocfs2: POSIX file locks support
This is actually pretty easy since fs/dlm already handles the bulk of the
work. The Ocfs2 userspace cluster stack module already uses fs/dlm as the
underlying lock manager, so I only had to add the right calls.

Cluster-aware POSIX locks ("plocks") can be turned off by the same means at
UNIX locks - mount with 'noflocks', or create a local-only Ocfs2 volume.
Internally, the file system uses two sets of file_operations, depending on
whether cluster aware plocks is required. This turns out to be easier than
implementing local-only versions of ->lock.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13 13:57:57 -07:00
Al Viro
e6305c43ed [PATCH] sanitize ->permission() prototype
* kill nameidata * argument; map the 3 bits in ->flags anybody cares
  about to new MAY_... ones and pass with the mask.
* kill redundant gfs2_iop_permission()
* sanitize ecryptfs_permission()
* fix remaining places where ->permission() instances might barf on new
  MAY_... found in mask.

The obvious next target in that direction is permission(9)

folded fix for nfs_permission() breakage from Miklos Szeredi <mszeredi@suse.cz>

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-07-26 20:53:14 -04:00
Mark Fasheh
cf8e06f1a8 [PATCH 1/2] ocfs2: add flock lock type
This adds a new dlmglue lock type which is intended to back flock()
requests.

Since these locks are driven from userspace, usage rules are much more
liberal than the typical Ocfs2 internal cluster lock. As a result, we can't
make use of most dlmglue features - lock caching and lock level
optimizations in particular. Additionally, userspace is free to deadlock
itself, so we have to deal with that in the same way as the rest of the
kernel - by allowing a signal to abort a lock request.

In order to keep ocfs2_cluster_lock() complexity down, ocfs2_file_lock()
does it's own dlm coordination. We still use the same helper functions
though, so duplicated code is kept to a minimum.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2008-01-25 15:05:43 -08:00
Mark Fasheh
65ed39d6ca ocfs2: move nonsparse hole-filling into ocfs2_write_begin()
By doing this, we can remove any higher level logic which has to have
knowledge of btree functionality - any callers of ocfs2_write_begin() can
now expect it to do anything necessary to prepare the inode for new data.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
2007-10-12 11:54:35 -07:00
Mark Fasheh
b25801038d ocfs2: Support xfs style space reservation ioctls
We re-use the RESVSP/UNRESVSP ioctls from xfs which allow the user to
allocate and deallocate regions to a file without zeroing data or changing
i_size.

Though renamed, the structure passed in from user is identical to struct
xfs_flock64. The three fields that are actually used right now are l_whence,
l_start and l_len.

This should get ocfs2 immediate compatibility with userspace software using
the pre-existing xfs ioctls.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-07-10 17:32:09 -07:00
Mark Fasheh
2ae99a6037 ocfs2: Support creation of unwritten extents
This can now be trivially supported with re-use of our existing extend code.

ocfs2_allocate_unwritten_extents() takes a start offset and a byte length
and iterates over the inode, adding extents (marked as unwritten) until len
is reached. Existing extents are skipped over.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-07-10 17:32:04 -07:00
Mark Fasheh
b27b7cbcf1 ocfs2: support writing of unwritten extents
Update the write code to detect when the user is asking to write to an
unwritten extent. Like writing to a hole, we must zero the region between
the write and the cluster boundaries. Most of the existing cluster zeroing
logic can be re-used with some additional checks for the unwritten flag on
extent records.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-07-10 17:32:03 -07:00
Adrian Bunk
6cb129f567 [PATCH] fs/ocfs2/: make 3 functions static
This patch makes the following needlessly global functions static:
- aops.c: ocfs2_write_data_page()
- dlmglue.c: ocfs2_dump_meta_lvb_info()
- file.c: ocfs2_set_inode_size()

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-05-02 15:07:27 -07:00
Mark Fasheh
9517bac6cc ocfs2: teach ocfs2_file_aio_write() about sparse files
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock()
because allocating writes will require zeroing of pages adjacent to the I/O
for cluster sizes greater than page size.

Implement a custom file write here, which can order page locks for zeroing.
This also has the advantage that cluster locks can easily be ordered outside
of the page locks.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-04-26 15:02:08 -07:00
Mark Fasheh
dcd0538ff4 ocfs2: sparse b-tree support
Introduce tree rotations into the b-tree code. This will allow ocfs2 to
support sparse files. Much of the added code is designed to be generic (in
the ocfs2 sense) so that it can later be re-used to implement large
extended attributes.

This patch only adds the rotation code and does minimal updates to callers
of the extent api.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-04-26 14:44:03 -07:00
Arjan van de Ven
92e1d5be91 [PATCH] mark struct inode_operations const 2
Many struct inode_operations in the kernel can be "const".  Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data.  In addition it'll catch accidental writes at compile time to
these shared resources.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:46 -08:00
Tiger Yang
d38eb8db6a ocfs2: implement i_op->permission
Implement .permission() in ocfs2_file_iops, ocfs2_special_file_iops and
ocfs2_dir_iops.

This helps us avoid some multi-node races with mode change and vfs
operations.

Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2006-12-01 18:29:14 -08:00
Tiger Yang
7f1a37e31f ocfs2: core atime update functions
This patch adds the core routines for updating atime in ocfs2.

Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2006-12-01 18:28:51 -08:00
Mark Fasheh
1fabe1481f ocfs2: Remove struct ocfs2_journal_handle in favor of handle_t
This is mostly a search and replace as ocfs2_journal_handle is now no more
than a container for a handle_t pointer.

ocfs2_commit_trans() becomes very straight forward, and we remove some out
of date comments / code.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2006-12-01 18:28:28 -08:00
Arjan van de Ven
4b6f5d20b0 [PATCH] Make most file operations structs in fs/ const
This is a conversion to make the various file_operations structs in fs/
const.  Basically a regexp job, with a few manual fixups

The goal is both to increase correctness (harder to accidentally write to
shared datastructures) and reducing the false sharing of cachelines with
things that get dirty in .data (while .rodata is nicely read only and thus
cache clean)

Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:06 -08:00
Mark Fasheh
ccd979bdbc [PATCH] OCFS2: The Second Oracle Cluster Filesystem
The OCFS2 file system module.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Kurt Hackel <kurt.hackel@oracle.com>
2006-01-03 11:45:47 -08:00