12 Commits

Author SHA1 Message Date
Eric Snowberg
099f26f22f integrity: machine keyring CA configuration
Add machine keyring CA restriction options to control the type of
keys that may be added to it. The motivation is separation of
certificate signing from code signing keys. Subsquent work will
limit certificates being loaded into the IMA keyring to code
signing keys used for signature verification.

When no restrictions are selected, all Machine Owner Keys (MOK) are added
to the machine keyring.  When CONFIG_INTEGRITY_CA_MACHINE_KEYRING is
selected, the CA bit must be true.  Also the key usage must contain
keyCertSign, any other usage field may be set as well.

When CONFIG_INTEGRITY_CA_MACHINE_KEYRING_MAX is selected, the CA bit must
be true. Also the key usage must contain keyCertSign and the
digitialSignature usage may not be set.

Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-04-24 16:15:53 +03:00
Eric Snowberg
76adb2fbc6 KEYS: CA link restriction
Add a new link restriction.  Restrict the addition of keys in a keyring
based on the key to be added being a CA.

Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-04-24 16:15:53 +03:00
Andrew Zaborowski
7d30198ee2 keys: X.509 public key issuer lookup without AKID
There are non-root X.509 v3 certificates in use out there that contain
no Authority Key Identifier extension (RFC5280 section 4.2.1.1).  For
trust verification purposes the kernel asymmetric key type keeps two
struct asymmetric_key_id instances that the key can be looked up by,
and another two to look up the key's issuer.  The x509 public key type
and the PKCS7 type generate them from the SKID and AKID extensions in
the certificate.  In effect current code has no way to look up the
issuer certificate for verification without the AKID.

To remedy this, add a third asymmetric_key_id blob to the arrays in
both asymmetric_key_id's (for certficate subject) and in the
public_keys_signature's auth_ids (for issuer lookup), using just raw
subject and issuer DNs from the certificate.  Adapt
asymmetric_key_ids() and its callers to use the third ID for lookups
when none of the other two are available.  Attempt to keep the logic
intact when they are, to minimise behaviour changes.  Adapt the
restrict functions' NULL-checks to include that ID too.  Do not modify
the lookup logic in pkcs7_verify.c, the AKID extensions are still
required there.

Internally use a new "dn:" prefix to the search specifier string
generated for the key lookup in find_asymmetric_key().  This tells
asymmetric_key_match_preparse to only match the data against the raw
DN in the third ID and shouldn't conflict with search specifiers
already in use.

In effect implement what (2) in the struct asymmetric_key_id comment
(include/keys/asymmetric-type.h) is probably talking about already, so
do not modify that comment.  It is also how "openssl verify" looks up
issuer certificates without the AKID available.  Lookups by the raw
DN are unambiguous only provided that the CAs respect the condition in
RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses
a single signing key.

The following is an example of two things that this change enables.
A self-signed ceritficate is generated following the example from
https://letsencrypt.org/docs/certificates-for-localhost/, and can be
looked up by an identifier and verified against itself by linking to a
restricted keyring -- both things not possible before due to the missing
AKID extension:

$ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \
  -newkey rsa:2048 -nodes -sha256 \
  -subj '/CN=localhost' -extensions EXT -config <( \
   echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \
          "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \
	  "extendedKeyUsage=serverAuth")
$ keyring=`keyctl newring test @u`
$ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \
  echo $trusted
39726322
$ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374
39726322
$ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted
$ keyctl padd asymmetric verified $keyring < localhost.crt

Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-01-09 00:18:42 +02:00
Andrew Zaborowski
40d32b59e3 keys: Update comment for restrict_link_by_key_or_keyring_chain
Add the bit of information that makes
restrict_link_by_key_or_keyring_chain different from
restrict_link_by_key_or_keyring to the inline docs comment.

Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16 10:40:27 +02:00
Thomas Gleixner
b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
Eric Biggers
4b34968e77 X.509: fix NULL dereference when restricting key with unsupported_sig
The asymmetric key type allows an X.509 certificate to be added even if
its signature's hash algorithm is not available in the crypto API.  In
that case 'payload.data[asym_auth]' will be NULL.  But the key
restriction code failed to check for this case before trying to use the
signature, resulting in a NULL pointer dereference in
key_or_keyring_common() or in restrict_link_by_signature().

Fix this by returning -ENOPKG when the signature is unsupported.

Reproducer when all the CONFIG_CRYPTO_SHA512* options are disabled and
keyctl has support for the 'restrict_keyring' command:

    keyctl new_session
    keyctl restrict_keyring @s asymmetric builtin_trusted
    openssl req -new -sha512 -x509 -batch -nodes -outform der \
        | keyctl padd asymmetric desc @s

Fixes: a511e1af8b12 ("KEYS: Move the point of trust determination to __key_link()")
Cc: <stable@vger.kernel.org> # v4.7+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2018-02-22 14:38:34 +00:00
Mat Martineau
8e323a02e8 KEYS: Keyring asymmetric key restrict method with chaining
Add a restrict_link_by_key_or_keyring_chain link restriction that
searches for signing keys in the destination keyring in addition to the
signing key or keyring designated when the destination keyring was
created. Userspace enables this behavior by including the "chain" option
in the keyring restriction:

  keyctl(KEYCTL_RESTRICT_KEYRING, keyring, "asymmetric",
         "key_or_keyring:<signing key>:chain");

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-04 14:10:13 -07:00
Mat Martineau
7e3c4d2208 KEYS: Restrict asymmetric key linkage using a specific keychain
Adds restrict_link_by_signature_keyring(), which uses the restrict_key
member of the provided destination_keyring data structure as the
key or keyring to search for signing keys.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-04 14:10:13 -07:00
Mat Martineau
aaf66c8838 KEYS: Split role of the keyring pointer for keyring restrict functions
The first argument to the restrict_link_func_t functions was a keyring
pointer. These functions are called by the key subsystem with this
argument set to the destination keyring, but restrict_link_by_signature
expects a pointer to the relevant trusted keyring.

Restrict functions may need something other than a single struct key
pointer to allow or reject key linkage, so the data used to make that
decision (such as the trust keyring) is moved to a new, fourth
argument. The first argument is now always the destination keyring.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03 10:24:56 -07:00
Mat Martineau
acddc72015 KEYS: Fix for erroneous trust of incorrectly signed X.509 certs
Arbitrary X.509 certificates without authority key identifiers (AKIs)
can be added to "trusted" keyrings, including IMA or EVM certs loaded
from the filesystem. Signature verification is currently bypassed for
certs without AKIs.

Trusted keys were recently refactored, and this bug is not present in
4.6.

restrict_link_by_signature should return -ENOKEY (no matching parent
certificate found) if the certificate being evaluated has no AKIs,
instead of bypassing signature checks and returning 0 (new certificate
accepted).

Reported-by: Petko Manolov <petkan@mip-labs.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2016-07-18 12:19:47 +10:00
David Howells
a511e1af8b KEYS: Move the point of trust determination to __key_link()
Move the point at which a key is determined to be trustworthy to
__key_link() so that we use the contents of the keyring being linked in to
to determine whether the key being linked in is trusted or not.

What is 'trusted' then becomes a matter of what's in the keyring.

Currently, the test is done when the key is parsed, but given that at that
point we can only sensibly refer to the contents of the system trusted
keyring, we can only use that as the basis for working out the
trustworthiness of a new key.

With this change, a trusted keyring is a set of keys that once the
trusted-only flag is set cannot be added to except by verification through
one of the contained keys.

Further, adding a key into a trusted keyring, whilst it might grant
trustworthiness in the context of that keyring, does not automatically
grant trustworthiness in the context of a second keyring to which it could
be secondarily linked.

To accomplish this, the authentication data associated with the key source
must now be retained.  For an X.509 cert, this means the contents of the
AuthorityKeyIdentifier and the signature data.


If system keyrings are disabled then restrict_link_by_builtin_trusted()
resolves to restrict_link_reject().  The integrity digital signature code
still works correctly with this as it was previously using
KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there
is no system keyring against which trust can be determined.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-11 22:43:43 +01:00
David Howells
cfb664ff2b X.509: Move the trust validation code out to its own file
Move the X.509 trust validation code out to its own file so that it can be
generalised.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-11 22:42:55 +01:00