IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We replace the old way to configure the scheduler topology with a new method
which enables a platform to declare additionnal level (if needed).
We still have a default topology table definition that can be used by platform
that don't want more level than the SMT, MC, CPU and NUMA ones. This table can
be overwritten by an arch which either wants to add new level where a load
balance make sense like BOOK or powergating level or wants to change the flags
configuration of some levels.
For each level, we need a function pointer that returns cpumask for each cpu,
a function pointer that returns the flags for the level and a name. Only flags
that describe topology, can be set by an architecture. The current topology
flags are:
SD_SHARE_CPUPOWER
SD_SHARE_PKG_RESOURCES
SD_NUMA
SD_ASYM_PACKING
Then, each level must be a subset on the next one. The build sequence of the
sched_domain will take care of removing useless levels like those with 1 CPU
and those with the same CPU span and no more relevant information for
load balancing than its children.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux390@de.ibm.com
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/1397209481-28542-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tim wrote:
"The current code will call pick_next_task_fair a second time in the
slow path if we did not pull any task in our first try. This is
really unnecessary as we already know no task can be pulled and it
doubles the delay for the cpu to enter idle.
We instrumented some network workloads and that saw that
pick_next_task_fair is frequently called twice before a cpu enters
idle. The call to pick_next_task_fair can add non trivial latency as
it calls load_balance which runs find_busiest_group on an hierarchy of
sched domains spanning the cpus for a large system. For some 4 socket
systems, we saw almost 0.25 msec spent per call of pick_next_task_fair
before a cpu can be idled."
Optimize the second call away for the common case and document the
dependency.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/20140424100047.GP11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_task_dl() is broken:
o it forces current to be throttled setting its runtime to zero;
o it sets current's dl_se->dl_new to one, expecting that dl_task_timer()
will queue it back with proper parameters at replenish time.
Unfortunately, dl_task_timer() has this check at the very beginning:
if (!dl_task(p) || dl_se->dl_new)
goto unlock;
So, it just bails out and the task is never replenished. It actually
yielded forever.
To fix this, introduce a new flag indicating that the task properly yielded
the CPU before its current runtime expired. While this is a little overdoing
at the moment, the flag would be useful in the future to discriminate between
"good" jobs (of which remaining runtime could be reclaimed, i.e. recycled)
and "bad" jobs (for which dl_throttled task has been set) that needed to be
stopped.
Reported-by: yjay.kim <yjay.kim@lge.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140429103953.e68eba1b2ac3309214e3dc5a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As requested by Linus add explicit __visible to the asmlinkage users.
This marks functions visible to assembler.
Tree sweep for rest of tree.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1398984278-29319-4-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use NOKPROBE_SYMBOL macro to protect functions from
kprobes instead of __kprobes annotation in sched/core.c.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140417081842.26341.83959.stgit@ltc230.yrl.intra.hitachi.co.jp
Introduce NOKPROBE_SYMBOL() macro which builds a kprobes
blacklist at kernel build time.
The usage of this macro is similar to EXPORT_SYMBOL(),
placed after the function definition:
NOKPROBE_SYMBOL(function);
Since this macro will inhibit inlining of static/inline
functions, this patch also introduces a nokprobe_inline macro
for static/inline functions. In this case, we must use
NOKPROBE_SYMBOL() for the inline function caller.
When CONFIG_KPROBES=y, the macro stores the given function
address in the "_kprobe_blacklist" section.
Since the data structures are not fully initialized by the
macro (because there is no "size" information), those
are re-initialized at boot time by using kallsyms.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jan-Simon Möller <dl9pf@gmx.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-sparse@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When 'flags' argument to sched_{set,get}attr() syscalls were
added in:
6d35ab4809 ("sched: Add 'flags' argument to sched_{set,get}attr() syscalls")
no description for 'flags' was added. It causes the following warnings on "make htmldocs":
Warning(/kernel/sched/core.c:3645): No description found for parameter 'flags'
Warning(/kernel/sched/core.c:3789): No description found for parameter 'flags'
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1397753955-2914-1-git-send-email-standby24x7@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the smp_mb__{before,after}*() ops are fundamentally dependent on
how an arch can implement atomics it doesn't make sense to have 3
variants of them. They must all be the same.
Furthermore, the 3 variants suggest they're only valid for those 3
atomic ops, while we have many more where they could be applied.
So move away from
smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() and reduce the
interface to just the two: smp_mb__{before,after}_atomic().
This patch prepares the way by introducing default implementations in
asm-generic/barrier.h that default to a full barrier and providing
__deprecated inlines for the previous 6 barriers if they're not
provided by the arch.
This should allow for a mostly painless transition (lots of deprecated
warns in the interim).
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-wr59327qdyi9mbzn6x937s4e@git.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Chen, Gong" <gong.chen@linux.intel.com>
Cc: John Sullivan <jsrhbz@kanargh.force9.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mauro Carvalho Chehab <m.chehab@samsung.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge second patch-bomb from Andrew Morton:
- the rest of MM
- zram updates
- zswap updates
- exit
- procfs
- exec
- wait
- crash dump
- lib/idr
- rapidio
- adfs, affs, bfs, ufs
- cris
- Kconfig things
- initramfs
- small amount of IPC material
- percpu enhancements
- early ioremap support
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (156 commits)
MAINTAINERS: update Intel C600 SAS driver maintainers
fs/ufs: remove unused ufs_super_block_third pointer
fs/ufs: remove unused ufs_super_block_second pointer
fs/ufs: remove unused ufs_super_block_first pointer
fs/ufs/super.c: add __init to init_inodecache()
doc/kernel-parameters.txt: add early_ioremap_debug
arm64: add early_ioremap support
arm64: initialize pgprot info earlier in boot
x86: use generic early_ioremap
mm: create generic early_ioremap() support
x86/mm: sparse warning fix for early_memremap
lglock: map to spinlock when !CONFIG_SMP
percpu: add preemption checks to __this_cpu ops
vmstat: use raw_cpu_ops to avoid false positives on preemption checks
slub: use raw_cpu_inc for incrementing statistics
net: replace __this_cpu_inc in route.c with raw_cpu_inc
modules: use raw_cpu_write for initialization of per cpu refcount.
mm: use raw_cpu ops for determining current NUMA node
percpu: add raw_cpu_ops
slub: fix leak of 'name' in sysfs_slab_add
...
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs. Eg: __weak for
__attribute__((weak)). I've replaced all instances of gcc attributes
with the right macro in the kernel subsystem.
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the final piece in the puzzle, as all patches to remove the
last users of \(interruptible_\|\)sleep_on\(_timeout\|\) have made it
into the 3.15 merge window. The work was long overdue, and this
interface in particular should not have survived the BKL removal
that was done a couple of years ago.
Citing Jon Corbet from http://lwn.net/2001/0201/kernel.php3":
"[...] it was suggested that the janitors look for and fix all code
that calls sleep_on() [...] since (1) almost all such code is
incorrect, and (2) Linus has agreed that those functions should
be removed in the 2.5 development series".
We haven't quite made it for 2.5, but maybe we can merge this for 3.15.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"A lot updates for cgroup:
- The biggest one is cgroup's conversion to kernfs. cgroup took
after the long abandoned vfs-entangled sysfs implementation and
made it even more convoluted over time. cgroup's internal objects
were fused with vfs objects which also brought in vfs locking and
object lifetime rules. Naturally, there are places where vfs rules
don't fit and nasty hacks, such as credential switching or lock
dance interleaving inode mutex and cgroup_mutex with object serial
number comparison thrown in to decide whether the operation is
actually necessary, needed to be employed.
After conversion to kernfs, internal object lifetime and locking
rules are mostly isolated from vfs interactions allowing shedding
of several nasty hacks and overall simplification. This will also
allow implmentation of operations which may affect multiple cgroups
which weren't possible before as it would have required nesting
i_mutexes.
- Various simplifications including dropping of module support,
easier cgroup name/path handling, simplified cgroup file type
handling and task_cg_lists optimization.
- Prepatory changes for the planned unified hierarchy, which is still
a patchset away from being actually operational. The dummy
hierarchy is updated to serve as the default unified hierarchy.
Controllers which aren't claimed by other hierarchies are
associated with it, which BTW was what the dummy hierarchy was for
anyway.
- Various fixes from Li and others. This pull request includes some
patches to add missing slab.h to various subsystems. This was
triggered xattr.h include removal from cgroup.h. cgroup.h
indirectly got included a lot of files which brought in xattr.h
which brought in slab.h.
There are several merge commits - one to pull in kernfs updates
necessary for converting cgroup (already in upstream through
driver-core), others for interfering changes in the fixes branch"
* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
cgroup: remove useless argument from cgroup_exit()
cgroup: fix spurious lockdep warning in cgroup_exit()
cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
cgroup: break kernfs active_ref protection in cgroup directory operations
cgroup: fix cgroup_taskset walking order
cgroup: implement CFTYPE_ONLY_ON_DFL
cgroup: make cgrp_dfl_root mountable
cgroup: drop const from @buffer of cftype->write_string()
cgroup: rename cgroup_dummy_root and related names
cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
cgroup: reorganize cgroup bootstrapping
cgroup: relocate setting of CGRP_DEAD
cpuset: use rcu_read_lock() to protect task_cs()
cgroup_freezer: document freezer_fork() subtleties
cgroup: update cgroup_transfer_tasks() to either succeed or fail
cgroup: drop task_lock() protection around task->cgroups
cgroup: update how a newly forked task gets associated with css_set
...
Pull core block layer updates from Jens Axboe:
"This is the pull request for the core block IO bits for the 3.15
kernel. It's a smaller round this time, it contains:
- Various little blk-mq fixes and additions from Christoph and
myself.
- Cleanup of the IPI usage from the block layer, and associated
helper code. From Frederic Weisbecker and Jan Kara.
- Duplicate code cleanup in bio-integrity from Gu Zheng. This will
give you a merge conflict, but that should be easy to resolve.
- blk-mq notify spinlock fix for RT from Mike Galbraith.
- A blktrace partial accounting bug fix from Roman Pen.
- Missing REQ_SYNC detection fix for blk-mq from Shaohua Li"
* 'for-3.15/core' of git://git.kernel.dk/linux-block: (25 commits)
blk-mq: add REQ_SYNC early
rt,blk,mq: Make blk_mq_cpu_notify_lock a raw spinlock
blk-mq: support partial I/O completions
blk-mq: merge blk_mq_insert_request and blk_mq_run_request
blk-mq: remove blk_mq_alloc_rq
blk-mq: don't dump CPU -> hw queue map on driver load
blk-mq: fix wrong usage of hctx->state vs hctx->flags
blk-mq: allow blk_mq_init_commands() to return failure
block: remove old blk_iopoll_enabled variable
blktrace: fix accounting of partially completed requests
smp: Rename __smp_call_function_single() to smp_call_function_single_async()
smp: Remove wait argument from __smp_call_function_single()
watchdog: Simplify a little the IPI call
smp: Move __smp_call_function_single() below its safe version
smp: Consolidate the various smp_call_function_single() declensions
smp: Teach __smp_call_function_single() to check for offline cpus
smp: Remove unused list_head from csd
smp: Iterate functions through llist_for_each_entry_safe()
block: Stop abusing rq->csd.list in blk-softirq
block: Remove useless IPI struct initialization
...
Pull timer changes from Thomas Gleixner:
"This assorted collection provides:
- A new timer based timer broadcast feature for systems which do not
provide a global accessible timer device. That allows those
systems to put CPUs into deep idle states where the per cpu timer
device stops.
- A few NOHZ_FULL related improvements to the timer wheel
- The usual updates to timer devices found in ARM SoCs
- Small improvements and updates all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
tick: Remove code duplication in tick_handle_periodic()
tick: Fix spelling mistake in tick_handle_periodic()
x86: hpet: Use proper destructor for delayed work
workqueue: Provide destroy_delayed_work_on_stack()
clocksource: CMT, MTU2, TMU and STI should depend on GENERIC_CLOCKEVENTS
timer: Remove code redundancy while calling get_nohz_timer_target()
hrtimer: Rearrange comments in the order struct members are declared
timer: Use variable head instead of &work_list in __run_timers()
clocksource: exynos_mct: silence a static checker warning
arm: zynq: Add support for cpufreq
arm: zynq: Don't use arm_global_timer with cpufreq
clocksource/cadence_ttc: Overhaul clocksource frequency adjustment
clocksource/cadence_ttc: Call clockevents_update_freq() with IRQs enabled
clocksource: Add Kconfig entries for CMT, MTU2, TMU and STI
sh: Remove Kconfig entries for TMU, CMT and MTU2
ARM: shmobile: Remove CMT, TMU and STI Kconfig entries
clocksource: armada-370-xp: Use atomic access for shared registers
clocksource: orion: Use atomic access for shared registers
clocksource: timer-keystone: Delete unnecessary variable
clocksource: timer-keystone: introduce clocksource driver for Keystone
...
Pull timer updates from Ingo Molnar:
"The main purpose is to fix a full dynticks bug related to
virtualization, where steal time accounting appears to be zero in
/proc/stat even after a few seconds of competing guests running busy
loops in a same host CPU. It's not a regression though as it was
there since the beginning.
The other commits are preparatory work to fix the bug and various
cleanups"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch: Remove stub cputime.h headers
sched: Remove needless round trip nsecs <-> tick conversion of steal time
cputime: Fix jiffies based cputime assumption on steal accounting
cputime: Bring cputime -> nsecs conversion
cputime: Default implementation of nsecs -> cputime conversion
cputime: Fix nsecs_to_cputime() return type cast
Pull s390 updates from Martin Schwidefsky:
"There are two memory management related changes, the CMMA support for
KVM to avoid swap-in of freed pages and the split page table lock for
the PMD level. These two come with common code changes in mm/.
A fix for the long standing theoretical TLB flush problem, this one
comes with a common code change in kernel/sched/.
Another set of changes is Heikos uaccess work, included is the initial
set of patches with more to come.
And fixes and cleanups as usual"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (36 commits)
s390/con3270: optionally disable auto update
s390/mm: remove unecessary parameter from pgste_ipte_notify
s390/mm: remove unnecessary parameter from gmap_do_ipte_notify
s390/mm: fixing comment so that parameter name match
s390/smp: limit number of cpus in possible cpu mask
hypfs: Add clarification for "weight_min" attribute
s390: update defconfigs
s390/ptrace: add support for PTRACE_SINGLEBLOCK
s390/perf: make print_debug_cf() static
s390/topology: Remove call to update_cpu_masks()
s390/compat: remove compat exec domain
s390: select CONFIG_TTY for use of tty in unconditional keyboard driver
s390/appldata_os: fix cpu array size calculation
s390/checksum: remove memset() within csum_partial_copy_from_user()
s390/uaccess: remove copy_from_user_real()
s390/sclp_early: Return correct HSA block count also for zero
s390: add some drivers/subsystems to the MAINTAINERS file
s390: improve debug feature usage
s390/airq: add support for irq ranges
s390/mm: enable split page table lock for PMD level
...
There are only two users of get_nohz_timer_target(): timer and hrtimer. Both
call it under same circumstances, i.e.
#ifdef CONFIG_NO_HZ_COMMON
if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
return get_nohz_timer_target();
#endif
So, it makes more sense to get all this as part of get_nohz_timer_target()
instead of duplicating code at two places. For this another parameter is
required to be passed to this routine, pinned.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: fweisbec@gmail.com
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1e1b53537217d58d48c2d7a222a9c3ac47d5b64c.1395140107.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When update_rq_clock_task() accounts the pending steal time for a task,
it converts the steal delta from nsecs to tick then from tick to nsecs.
There is no apparent good reason for doing that though because both
the task clock and the prev steal delta are u64 and store values
in nsecs.
So lets remove the needless conversion.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
I decided to run my tests on linux-next, and my wakeup_rt tracer was
broken. After running a bisect, I found that the problem commit was:
linux-next commit c365c292d0
"sched: Consider pi boosting in setscheduler()"
And the reason the wake_rt tracer test was failing, was because it had
no RT task to trace. I first noticed this when running with
sched_switch event and saw that my RT task still had normal SCHED_OTHER
priority. Looking at the problem commit, I found:
- p->normal_prio = normal_prio(p);
- p->prio = rt_mutex_getprio(p);
With no
+ p->normal_prio = normal_prio(p);
+ p->prio = rt_mutex_getprio(p);
Reading what the commit is suppose to do, I realize that the p->prio
can't be set if the task is boosted with a higher prio, but the
p->normal_prio still needs to be set regardless, otherwise, when the
task is deboosted, it wont get the new priority.
The p->prio has to be set before "check_class_changed()" is called,
otherwise the class wont be changed.
Also added fix to newprio to include a check for deadline policy that
was missing. This change was suggested by Juri Lelli.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: SebastianAndrzej Siewior <bigeasy@linutronix.de>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140306120438.638bfe94@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Deny the use of SCHED_DEADLINE policy to unprivileged users.
Even if root users can set the policy for normal users, we
don't want the latter to be able to change their parameters
(safest behavior).
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1393844961-18097-1-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Michael spotted that the idle_balance() push down created a task
priority problem.
Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.
Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.
But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.
Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().
It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.
Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The name __smp_call_function_single() doesn't tell much about the
properties of this function, especially when compared to
smp_call_function_single().
The comments above the implementation are also misleading. The main
point of this function is actually not to be able to embed the csd
in an object. This is actually a requirement that result from the
purpose of this function which is to raise an IPI asynchronously.
As such it can be called with interrupts disabled. And this feature
comes at the cost of the caller who then needs to serialize the
IPIs on this csd.
Lets rename the function and enhance the comments so that they reflect
these properties.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The main point of calling __smp_call_function_single() is to send
an IPI in a pure asynchronous way. By embedding a csd in an object,
a caller can send the IPI without waiting for a previous one to complete
as is required by smp_call_function_single() for example. As such,
sending this kind of IPI can be safe even when irqs are disabled.
This flexibility comes at the expense of the caller who then needs to
synchronize the csd lifecycle by himself and make sure that IPIs on a
single csd are serialized.
This is how __smp_call_function_single() works when wait = 0 and this
usecase is relevant.
Now there don't seem to be any usecase with wait = 1 that can't be
covered by smp_call_function_single() instead, which is safer. Lets look
at the two possible scenario:
1) The user calls __smp_call_function_single(wait = 1) on a csd embedded
in an object. It looks like a nice and convenient pattern at the first
sight because we can then retrieve the object from the IPI handler easily.
But actually it is a waste of memory space in the object since the csd
can be allocated from the stack by smp_call_function_single(wait = 1)
and the object can be passed an the IPI argument.
Besides that, embedding the csd in an object is more error prone
because the caller must take care of the serialization of the IPIs
for this csd.
2) The user calls __smp_call_function_single(wait = 1) on a csd that
is allocated on the stack. It's ok but smp_call_function_single()
can do it as well and it already takes care of the allocation on the
stack. Again it's more simple and less error prone.
Therefore, using the underscore prepend API version with wait = 1
is a bad pattern and a sign that the caller can do safer and more
simple.
There was a single user of that which has just been converted.
So lets remove this option to discourage further users.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This is a leftover from commit e23ee74777
("sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list").
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/52F5CBF6.4060901@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a PI boosted task policy/priority is modified by a setscheduler()
call we unconditionally dequeue and requeue the task if it is on the
runqueue even if the new priority is lower than the current effective
boosted priority. This can result in undesired reordering of the
priority bucket list.
If the new priority is less or equal than the current effective we
just store the new parameters in the task struct and leave the
scheduler class and the runqueue untouched. This is handled when the
task deboosts itself. Only if the new priority is higher than the
effective boosted priority we apply the change immediately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ontop of v3.14-rc1. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-7-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following scenario does not work correctly:
Runqueue of CPUx contains two runnable and pinned tasks:
T1: SCHED_FIFO, prio 80
T2: SCHED_FIFO, prio 80
T1 is on the cpu and executes the following syscalls (classic priority
ceiling scenario):
sys_sched_setscheduler(pid(T1), SCHED_FIFO, .prio = 90);
...
sys_sched_setscheduler(pid(T1), SCHED_FIFO, .prio = 80);
...
Now T1 gets preempted by T3 (SCHED_FIFO, prio 95). After T3 goes back
to sleep the scheduler picks T2. Surprise!
The same happens w/o actual preemption when T1 is forced into the
scheduler due to a sporadic NEED_RESCHED event. The scheduler invokes
pick_next_task() which returns T2. So T1 gets preempted and scheduled
out.
This happens because sched_setscheduler() dequeues T1 from the prio 90
list and then enqueues it on the tail of the prio 80 list behind T2.
This violates the POSIX spec and surprises user space which relies on
the guarantee that SCHED_FIFO tasks are not scheduled out unless they
give the CPU up voluntarily or are preempted by a higher priority
task. In the latter case the preempted task must get back on the CPU
after the preempting task schedules out again.
We fixed a similar issue already in commit 60db48c (sched: Queue a
deboosted task to the head of the RT prio queue). The same treatment
is necessary for sched_setscheduler(). So enqueue to head of the prio
bucket list if the priority of the task is lowered.
It might be possible that existing user space relies on the current
behaviour, but it can be considered highly unlikely due to the corner
case nature of the application scenario.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-6-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the policy and priority remain unchanged a possible modification of
p->sched_reset_on_fork gets lost in the early exit path.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ontop of v3.14-rc1. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-5-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
might_sleep() can tell us where interrupts have been disabled, but we
have no idea what disabled preemption. Add some debug infrastructure.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-4-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Idle is not allowed to call sleeping functions ever!
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-3-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We stumbled in RT over a SMP bringup issue on ARM where the
idle->on_rq == 0 was causing try_to_wakeup() on the other cpu to run
into nada land.
After adding that idle->on_rq = 1; I was able to find the root cause
of the lockup: the idle task on the newly woken up cpu was fiddling
with a sleeping spinlock, which is a nono.
I kept the init of idle->on_rq to keep the state consistent and to
avoid another long lasting debug session.
As a side note, the whole debug mess could have been avoided if
might_sleep() would have yelled when called from the idle task. That's
fixed with patch 2/6 - and that one actually has a changelog :)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391803122-4425-2-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dan Carpenter reported:
> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)
Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.
Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.
A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.
We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Because of a recent syscall design debate; its deemed appropriate for
each syscall to have a flags argument for future extension; without
immediately requiring new syscalls.
Cc: juri.lelli@gmail.com
Cc: Ingo Molnar <mingo@redhat.com>
Suggested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140214161929.GL27965@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We're copying the on-stack structure to userspace, but forgot to give
the right number of bytes to copy. This allows the calling process to
obtain up to PAGE_SIZE bytes from the stack (and possibly adjacent
kernel memory).
This fix copies only as much as we actually have on the stack
(attr->size defaults to the size of the struct) and leaves the rest of
the userspace-provided buffer untouched.
Found using kmemcheck + trinity.
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392585857-10725-1-git-send-email-vegard.nossum@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix this lockdep warning:
[ 44.804600] =========================================================
[ 44.805746] [ INFO: possible irq lock inversion dependency detected ]
[ 44.805746] 3.14.0-rc2-test+ #14 Not tainted
[ 44.805746] ---------------------------------------------------------
[ 44.805746] bash/3674 just changed the state of lock:
[ 44.805746] (&dl_b->lock){+.....}, at: [<ffffffff8106ad15>] sched_rt_handler+0x132/0x248
[ 44.805746] but this lock was taken by another, HARDIRQ-safe lock in the past:
[ 44.805746] (&rq->lock){-.-.-.}
and interrupts could create inverse lock ordering between them.
[ 44.805746]
[ 44.805746] other info that might help us debug this:
[ 44.805746] Possible interrupt unsafe locking scenario:
[ 44.805746]
[ 44.805746] CPU0 CPU1
[ 44.805746] ---- ----
[ 44.805746] lock(&dl_b->lock);
[ 44.805746] local_irq_disable();
[ 44.805746] lock(&rq->lock);
[ 44.805746] lock(&dl_b->lock);
[ 44.805746] <Interrupt>
[ 44.805746] lock(&rq->lock);
by making dl_b->lock acquiring always IRQ safe.
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392107067-19907-3-git-send-email-juri.lelli@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Don't compare sysctl_sched_rt_runtime against sysctl_sched_rt_period if
the former is equal to RUNTIME_INF, otherwise disabling -rt bandwidth
management (with CONFIG_RT_GROUP_SCHED=n) fails.
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392107067-19907-2-git-send-email-juri.lelli@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
While debugging the crash with the bad nr_running accounting, I hit
another bug where, after running my sched deadline test, I was getting
failures to take a CPU offline. It was giving me a -EBUSY error.
Adding a bunch of trace_printk()s around, I found that the cpu
notifier that called sched_cpu_inactive() was returning a failure. The
overflow value was coming up negative?
Talking this over with Juri, the problem is that the total_bw update was
suppose to be made by dl_overflow() which, during my tests, seemed to
not be called. Adding more trace_printk()s, it wasn't that it wasn't
called, but it exited out right away with the check of new_bw being
equal to p->dl.dl_bw. The new_bw calculates the ratio between period and
runtime. The bug is that if you set a deadline, you do not need to set
a period if you plan on the period being equal to the deadline. That
is, if period is zero and deadline is not, then the system call should
set the period to be equal to the deadline. This is done elsewhere in
the code.
The fix is easy, check if period is set, and if it is not, then use the
deadline.
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140219135335.7e74abd4@gandalf.local.home
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The finish_arch_post_lock_switch is called at the end of the task
switch after all locks have been released. In concept it is paired
with the switch_mm function, but the current code only does the
call in finish_task_switch. Add the call to idle_task_exit and
use_mm. One use case for the additional calls is s390 which will
use finish_arch_post_lock_switch to wait for the completion of
TLB flush operations.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If !NULL, @skip_css makes cgroup_taskset_for_each() skip the matching
css. The intention of the interface is to make it easy to skip css's
(cgroup_subsys_states) which already match the migration target;
however, this is entirely unnecessary as migration taskset doesn't
include tasks which are already in the target cgroup. Drop @skip_css
from cgroup_taskset_for_each().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
Tracking rq->max_idle_balance_cost and sd->max_newidle_lb_cost.
It's useful to know these values in debug mode.
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/52E0F3BF.5020904@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().
Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.
We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.
Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.
However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.
We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
idle_balance() modifies the rq->idle_stamp field, making this information
shared across core.c and fair.c.
As we know if the cpu is going to idle or not with the previous patch, let's
encapsulate the rq->idle_stamp information in core.c by moving it up to the
caller.
The idle_balance() function returns true in case a balancing occured and the
cpu won't be idle, false if no balance happened and the cpu is going idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As patch "sched: Move the priority specific bits into a new header file" exposes
the priority related macros in linux/sched/prio.h, we don't have to implement
task_nice() in kernel/sched/core.c any more.
This patch implements it in linux/sched/sched.h as static inline function,
saving the kernel stack and enhancing performance a bit.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: clark.williams@gmail.com
Cc: rostedt@goodmis.org
Cc: raistlin@linux.it
Cc: juri.lelli@gmail.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1390878045-7096-1-git-send-email-yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_subsys is a bit messier than it needs to be.
* The name of a subsys can be different from its internal identifier
defined in cgroup_subsys.h. Most subsystems use the matching name
but three - cpu, memory and perf_event - use different ones.
* cgroup_subsys_id enums are postfixed with _subsys_id and each
cgroup_subsys is postfixed with _subsys. cgroup.h is widely
included throughout various subsystems, it doesn't and shouldn't
have claim on such generic names which don't have any qualifier
indicating that they belong to cgroup.
* cgroup_subsys->subsys_id should always equal the matching
cgroup_subsys_id enum; however, we require each controller to
initialize it and then BUG if they don't match, which is a bit
silly.
This patch cleans up cgroup_subsys names and initialization by doing
the followings.
* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
cgroup_subsys with _cgrp_subsys.
* With the above, renaming subsys identifiers to match the userland
visible names doesn't cause any naming conflicts. All non-matching
identifiers are renamed to match the official names.
cpu_cgroup -> cpu
mem_cgroup -> memory
perf -> perf_event
* controllers no longer need to initialize ->subsys_id and ->name.
They're generated in cgroup core and set automatically during boot.
* Redundant cgroup_subsys declarations removed.
* While updating BUG_ON()s in cgroup_init_early(), convert them to
WARN()s. BUGging that early during boot is stupid - the kernel
can't print anything, even through serial console and the trap
handler doesn't even link stack frame properly for back-tracing.
This patch doesn't introduce any behavior changes.
v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
classid handling into core").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
Pull timer/dynticks updates from Ingo Molnar:
"This tree contains misc dynticks updates: a fix and three cleanups"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/nohz: Fix overflow error in scheduler_tick_max_deferment()
nohz_full: fix code style issue of tick_nohz_full_stop_tick
nohz: Get timekeeping max deferment outside jiffies_lock
tick: Rename tick_check_idle() to tick_irq_enter()
Tracing the code that decides the active nodes has made it abundantly clear
that the naive implementation of the faults_from code has issues.
Specifically, the garbage collector in some workloads will access orders
of magnitudes more memory than the threads that do all the active work.
This resulted in the node with the garbage collector being marked the only
active node in the group.
This issue is avoided if we weigh the statistics by CPU use of each task in
the numa group, instead of by how many faults each thread has occurred.
To achieve this, we normalize the number of faults to the fraction of faults
that occurred on each node, and then multiply that fraction by the fraction
of CPU time the task has used since the last time task_numa_placement was
invoked.
This way the nodes in the active node mask will be the ones where the tasks
from the numa group are most actively running, and the influence of eg. the
garbage collector and other do-little threads is properly minimized.
On a 4 node system, using CPU use statistics calculated over a longer interval
results in about 1% fewer page migrations with two 32-warehouse specjbb runs
on a 4 node system, and about 5% fewer page migrations, as well as 1% better
throughput, with two 8-warehouse specjbb runs, as compared with the shorter
term statistics kept by the scheduler.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to get a more consistent naming scheme, making it clear
which fault statistics track memory locality, and which track
CPU locality, rename the memory fault statistics.
Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Not all classes implement (or can implement) a useful get_rr_interval()
function, default to a 0 time-slice for them.
This fixes a crash reported by Tommi Rantala.
Reported-by: Tommi Rantala <tt.rantala@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140127105413.GC11314@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a working sysctl to enable/disable automatic numa memory balancing
at runtime.
This allows us to track down performance problems with this feature and
is generally a good idea.
This was possible earlier through debugfs, but only with special
debugging options set. Also fix the boot message.
[akpm@linux-foundation.org: s/sched_numa_balancing/sysctl_numa_balancing/]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
- a couple of misc things
- inotify/fsnotify work from Jan
- ocfs2 updates (partial)
- about half of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (117 commits)
mm/migrate: remove unused function, fail_migrate_page()
mm/migrate: remove putback_lru_pages, fix comment on putback_movable_pages
mm/migrate: correct failure handling if !hugepage_migration_support()
mm/migrate: add comment about permanent failure path
mm, page_alloc: warn for non-blockable __GFP_NOFAIL allocation failure
mm: compaction: reset scanner positions immediately when they meet
mm: compaction: do not mark unmovable pageblocks as skipped in async compaction
mm: compaction: detect when scanners meet in isolate_freepages
mm: compaction: reset cached scanner pfn's before reading them
mm: compaction: encapsulate defer reset logic
mm: compaction: trace compaction begin and end
memcg, oom: lock mem_cgroup_print_oom_info
sched: add tracepoints related to NUMA task migration
mm: numa: do not automatically migrate KSM pages
mm: numa: trace tasks that fail migration due to rate limiting
mm: numa: limit scope of lock for NUMA migrate rate limiting
mm: numa: make NUMA-migrate related functions static
lib/show_mem.c: show num_poisoned_pages when oom
mm/hwpoison: add '#' to hwpoison_inject
mm/memblock: use WARN_ONCE when MAX_NUMNODES passed as input parameter
...
Pull cgroup updates from Tejun Heo:
"The bulk of changes are cleanups and preparations for the upcoming
kernfs conversion.
- cgroup_event mechanism which is and will be used only by memcg is
moved to memcg.
- pidlist handling is updated so that it can be served by seq_file.
Also, the list is not sorted if sane_behavior. cgroup
documentation explicitly states that the file is not sorted but it
has been for quite some time.
- All cgroup file handling now happens on top of seq_file. This is
to prepare for kernfs conversion. In addition, all operations are
restructured so that they map 1-1 to kernfs operations.
- Other cleanups and low-pri fixes"
* 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (40 commits)
cgroup: trivial style updates
cgroup: remove stray references to css_id
doc: cgroups: Fix typo in doc/cgroups
cgroup: fix fail path in cgroup_load_subsys()
cgroup: fix missing unlock on error in cgroup_load_subsys()
cgroup: remove for_each_root_subsys()
cgroup: implement for_each_css()
cgroup: factor out cgroup_subsys_state creation into create_css()
cgroup: combine css handling loops in cgroup_create()
cgroup: reorder operations in cgroup_create()
cgroup: make for_each_subsys() useable under cgroup_root_mutex
cgroup: css iterations and css_from_dir() are safe under cgroup_mutex
cgroup: unify pidlist and other file handling
cgroup: replace cftype->read_seq_string() with cftype->seq_show()
cgroup: attach cgroup_open_file to all cgroup files
cgroup: generalize cgroup_pidlist_open_file
cgroup: unify read path so that seq_file is always used
cgroup: unify cgroup_write_X64() and cgroup_write_string()
cgroup: remove cftype->read(), ->read_map() and ->write()
hugetlb_cgroup: convert away from cftype->read()
...
This patch adds three tracepoints
o trace_sched_move_numa when a task is moved to a node
o trace_sched_swap_numa when a task is swapped with another task
o trace_sched_stick_numa when a numa-related migration fails
The tracepoints allow the NUMA scheduler activity to be monitored and the
following high-level metrics can be calculated
o NUMA migrated stuck nr trace_sched_stick_numa
o NUMA migrated idle nr trace_sched_move_numa
o NUMA migrated swapped nr trace_sched_swap_numa
o NUMA local swapped trace_sched_swap_numa src_nid == dst_nid (should never happen)
o NUMA remote swapped trace_sched_swap_numa src_nid != dst_nid (should == NUMA migrated swapped)
o NUMA group swapped trace_sched_swap_numa src_ngid == dst_ngid
Maybe a small number of these are acceptable
but a high number would be a major surprise.
It would be even worse if bounces are frequent.
o NUMA avg task migs. Average number of migrations for tasks
o NUMA stddev task mig Self-explanatory
o NUMA max task migs. Maximum number of migrations for a single task
In general the intent of the tracepoints is to help diagnose problems
where automatic NUMA balancing appears to be doing an excessive amount
of useless work.
[akpm@linux-foundation.org: remove semicolon-after-if, repair coding-style]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the introduction of sched_attr::sched_nice we need to check
if we've got permission to actually change the nice value.
Daniel found that can_nice() would always fail; and upon
inspection it turns out that can_nice() only tests to see if we
can lower the nice value, but it doesn't validate if we're
lowering or not.
Therefore amend the test to only call can_nice() when we lower
the nice value.
Reported-and-Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: raistlin@linux.it
Cc: juri.lelli@gmail.com
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Link: http://lkml.kernel.org/r/20140116165425.GA9481@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I noticed the new sched_{set,get}attr() calls didn't properly deal
with the SCHED_RESET_ON_FORK hack.
Instead of propagating the flags in high bits nonsense use the brand
spanking new attr::sched_flags field.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Link: http://lkml.kernel.org/r/20140115162242.GJ31570@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fengguang Wu reported the following build warning:
> kernel/sched/core.c:3067 __sched_setscheduler() warn: unsigned 'attr->sched_priority' is never less than zero.
Since it doesn't make sense for attr::sched_priority to be negative,
remove the check, since we already test for an upper limit any actual
negative values passed in through the old param::sched_priority field
will still be detected.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Link: http://lkml.kernel.org/n/tip-fid9nalzii2r5voxtf4eh5kz@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Wu reported LTP failures:
> ltp.sched_setparam02.1.TFAIL
> ltp.sched_setparam02.2.TFAIL
> ltp.sched_setparam02.3.TFAIL
> ltp.sched_setparam03.1.TFAIL
There were 2 things wrong; firstly __setscheduler() failed on
sched_setparam()'s policy = -1, fix that by reading from p->policy in
that case.
Secondly, getparam() (and getattr()) would still report !0
sched_priority for !FIFO/RR tasks after having been such. So
unconditionally set p->rt_priority.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Link: http://lkml.kernel.org/r/20140115153320.GH31570@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previously sched_setscheduler() and sched_setparam() would not affect
the nice value of a task, restore this behaviour.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: raistlin@linux.it
Cc: juri.lelli@gmail.com
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Link: http://lkml.kernel.org/r/20140115113015.GB31570@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fengguang Wu's kbuild test robot reported the following new htmldocs warnings:
>>> Warning(kernel/sched/core.c:3380): No description found for parameter 'uattr'
>>> Warning(kernel/sched/core.c:3380): Excess function parameter 'attr' description in 'sys_sched_setattr'
>>> Warning(kernel/sched/core.c:3520): No description found for parameter 'uattr'
>>> Warning(kernel/sched/core.c:3520): Excess function parameter 'attr' description in 'sys_sched_getattr'
The second argument to sys_sched_{setattr,getattr}() is named uattr (not attr).
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Fixes: d50dde5a10 ("sched: Add new scheduler syscalls to support an extended scheduling parameters ABI")
Link: http://lkml.kernel.org/r/52D5552D.5000102@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fix these new sparse warnings:
>> kernel/sched/core.c:305:14: sparse: symbol 'sysctl_sched_dl_period' was not declared. Should it be static?
>> kernel/sched/core.c:306:5: sparse: symbol 'sysctl_sched_dl_runtime' was not declared. Should it be static?
Better still, they're completely unused so remove them.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/n/tip-ke0shkG7vMnzmcdqhhiymyem@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While calculating the scheduler tick max deferment, the delta is
converted from microseconds to nanoseconds through a multiplication
against NSEC_PER_USEC.
But this microseconds operand is an unsigned int, thus the result may
likely overflow. The result is cast to u64 but only once the operation
is completed, which is too late to avoid overflown result.
This is currently not a problem because the scheduler tick max deferment
is 1 second. But this may become an issue as we plan to make this
value tunable.
So lets fix this by casting the usecs value to u64 before multiplying by
NSECS_PER_USEC.
Also to prevent from this kind of mistake to happen again, move this
ad-hoc jiffies -> nsecs conversion to a new helper.
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kevin Hilman <khilman@linaro.org>
Link: http://lkml.kernel.org/r/1387315388-31676-2-git-send-email-khilman@linaro.org
[move ad-hoc conversion to jiffies_to_nsecs helper]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
With various drivers wanting to inject idle time; we get people
calling idle routines outside of the idle loop proper.
Therefore we need to be extra careful about not missing
TIF_NEED_RESCHED -> PREEMPT_NEED_RESCHED propagations.
While looking at this, I also realized there's a small window in the
existing idle loop where we can miss TIF_NEED_RESCHED; when it hits
right after the tif_need_resched() test at the end of the loop but
right before the need_resched() test at the start of the loop.
So move preempt_fold_need_resched() out of the loop where we're
guaranteed to have TIF_NEED_RESCHED set.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-x9jgh45oeayzajz2mjt0y7d6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current hotplug admission control is broken because:
CPU_DYING -> migration_call() -> migrate_tasks() -> __migrate_task()
cannot fail and hard assumes it _will_ move all tasks off of the dying
cpu, failing this will break hotplug.
The much simpler solution is a DOWN_PREPARE handler that fails when
removing one CPU gets us below the total allocated bandwidth.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131220171343.GL2480@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the deadline specific sysctls for now. The problem with them is
that the interaction with the exisiting rt knobs is nearly impossible
to get right.
The current (as per before this patch) situation is that the rt and dl
bandwidth is completely separate and we enforce rt+dl < 100%. This is
undesirable because this means that the rt default of 95% leaves us
hardly any room, even though dl tasks are saver than rt tasks.
Another proposed solution was (a discarted patch) to have the dl
bandwidth be a fraction of the rt bandwidth. This is highly
confusing imo.
Furthermore neither proposal is consistent with the situation we
actually want; which is rt tasks ran from a dl server. In which case
the rt bandwidth is a direct subset of dl.
So whichever way we go, the introduction of dl controls at this point
is painful. Therefore remove them and instead share the rt budget.
This means that for now the rt knobs are used for dl admission control
and the dl runtime is accounted against the rt runtime. I realise that
this isn't entirely desirable either; but whatever we do we appear to
need to change the interface later, so better have a small interface
for now.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-zpyqbqds1r0vyxtxza1e7rdc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For now deadline tasks are not allowed to set smp affinity; however
the current tests are wrong, cure this.
The test in __sched_setscheduler() also uses an on-stack cpumask_t
which is a no-no.
Change both tests to use cpumask_subset() such that we test the root
domain span to be a subset of the cpus_allowed mask. This way we're
sure the tasks can always run on all CPUs they can be balanced over,
and have no effective affinity constraints.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-fyqtb1lapxca3lhsxv9cumdc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Data from tests confirmed that the original active load balancing
logic didn't scale neither in the number of CPU nor in the number of
tasks (as sched_rt does).
Here we provide a global data structure to keep track of deadlines
of the running tasks in the system. The structure is composed by
a bitmask showing the free CPUs and a max-heap, needed when the system
is heavily loaded.
The implementation and concurrent access scheme are kept simple by
design. However, our measurements show that we can compete with sched_rt
on large multi-CPUs machines [1].
Only the push path is addressed, the extension to use this structure
also for pull decisions is straightforward. However, we are currently
evaluating different (in order to decrease/avoid contention) data
structures to solve possibly both problems. We are also going to re-run
tests considering recent changes inside cpupri [2].
[1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf
[2] http://www.spinics.net/lists/linux-rt-users/msg06778.html
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order of deadline scheduling to be effective and useful, it is
important that some method of having the allocation of the available
CPU bandwidth to tasks and task groups under control.
This is usually called "admission control" and if it is not performed
at all, no guarantee can be given on the actual scheduling of the
-deadline tasks.
Since when RT-throttling has been introduced each task group have a
bandwidth associated to itself, calculated as a certain amount of
runtime over a period. Moreover, to make it possible to manipulate
such bandwidth, readable/writable controls have been added to both
procfs (for system wide settings) and cgroupfs (for per-group
settings).
Therefore, the same interface is being used for controlling the
bandwidth distrubution to -deadline tasks and task groups, i.e.,
new controls but with similar names, equivalent meaning and with
the same usage paradigm are added.
However, more discussion is needed in order to figure out how
we want to manage SCHED_DEADLINE bandwidth at the task group level.
Therefore, this patch adds a less sophisticated, but actually
very sensible, mechanism to ensure that a certain utilization
cap is not overcome per each root_domain (the single rq for !SMP
configurations).
Another main difference between deadline bandwidth management and
RT-throttling is that -deadline tasks have bandwidth on their own
(while -rt ones doesn't!), and thus we don't need an higher level
throttling mechanism to enforce the desired bandwidth.
This patch, therefore:
- adds system wide deadline bandwidth management by means of:
* /proc/sys/kernel/sched_dl_runtime_us,
* /proc/sys/kernel/sched_dl_period_us,
that determine (i.e., runtime / period) the total bandwidth
available on each CPU of each root_domain for -deadline tasks;
- couples the RT and deadline bandwidth management, i.e., enforces
that the sum of how much bandwidth is being devoted to -rt
-deadline tasks to stay below 100%.
This means that, for a root_domain comprising M CPUs, -deadline tasks
can be created until the sum of their bandwidths stay below:
M * (sched_dl_runtime_us / sched_dl_period_us)
It is also possible to disable this bandwidth management logic, and
be thus free of oversubscribing the system up to any arbitrary level.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-12-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some method to deal with rt-mutexes and make sched_dl interact with
the current PI-coded is needed, raising all but trivial issues, that
needs (according to us) to be solved with some restructuring of
the pi-code (i.e., going toward a proxy execution-ish implementation).
This is under development, in the meanwhile, as a temporary solution,
what this commits does is:
- ensure a pi-lock owner with waiters is never throttled down. Instead,
when it runs out of runtime, it immediately gets replenished and it's
deadline is postponed;
- the scheduling parameters (relative deadline and default runtime)
used for that replenishments --during the whole period it holds the
pi-lock-- are the ones of the waiting task with earliest deadline.
Acting this way, we provide some kind of boosting to the lock-owner,
still by using the existing (actually, slightly modified by the previous
commit) pi-architecture.
We would stress the fact that this is only a surely needed, all but
clean solution to the problem. In the end it's only a way to re-start
discussion within the community. So, as always, comments, ideas, rants,
etc.. are welcome! :-)
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Added !RT_MUTEXES build fix. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Turn the pi-chains from plist to rb-tree, in the rt_mutex code,
and provide a proper comparison function for -deadline and
-priority tasks.
This is done mainly because:
- classical prio field of the plist is just an int, which might
not be enough for representing a deadline;
- manipulating such a list would become O(nr_deadline_tasks),
which might be to much, as the number of -deadline task increases.
Therefore, an rb-tree is used, and tasks are queued in it according
to the following logic:
- among two -priority (i.e., SCHED_BATCH/OTHER/RR/FIFO) tasks, the
one with the higher (lower, actually!) prio wins;
- among a -priority and a -deadline task, the latter always wins;
- among two -deadline tasks, the one with the earliest deadline
wins.
Queueing and dequeueing functions are changed accordingly, for both
the list of a task's pi-waiters and the list of tasks blocked on
a pi-lock.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-again-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-10-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make it possible to specify a period (different or equal than
deadline) for -deadline tasks. Relative deadlines (D_i) are used on
task arrivals to generate new scheduling (absolute) deadlines as "d =
t + D_i", and periods (P_i) to postpone the scheduling deadlines as "d
= d + P_i" when the budget is zero.
This is in general useful to model (and schedule) tasks that have slow
activation rates (long periods), but have to be scheduled soon once
activated (short deadlines).
Signed-off-by: Harald Gustafsson <harald.gustafsson@ericsson.com>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-7-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduces data structures relevant for implementing dynamic
migration of -deadline tasks and the logic for checking if
runqueues are overloaded with -deadline tasks and for choosing
where a task should migrate, when it is the case.
Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can
be moved among CPUs when necessary. It is also possible to bind a
task to a (set of) CPU(s), thus restricting its capability of
migrating, or forbidding migrations at all.
The very same approach used in sched_rt is utilised:
- -deadline tasks are kept into CPU-specific runqueues,
- -deadline tasks are migrated among runqueues to achieve the
following:
* on an M-CPU system the M earliest deadline ready tasks
are always running;
* affinity/cpusets settings of all the -deadline tasks is
always respected.
Therefore, this very special form of "load balancing" is done with
an active method, i.e., the scheduler pushes or pulls tasks between
runqueues when they are woken up and/or (de)scheduled.
IOW, every time a preemption occurs, the descheduled task might be sent
to some other CPU (depending on its deadline) to continue executing
(push). On the other hand, every time a CPU becomes idle, it might pull
the second earliest deadline ready task from some other CPU.
To enforce this, a pull operation is always attempted before taking any
scheduling decision (pre_schedule()), as well as a push one after each
scheduling decision (post_schedule()). In addition, when a task arrives
or wakes up, the best CPU where to resume it is selected taking into
account its affinity mask, the system topology, but also its deadline.
E.g., from the scheduling point of view, the best CPU where to wake
up (and also where to push) a task is the one which is running the task
with the latest deadline among the M executing ones.
In order to facilitate these decisions, per-runqueue "caching" of the
deadlines of the currently running and of the first ready task is used.
Queued but not running tasks are also parked in another rb-tree to
speed-up pushes.
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.
Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.
Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.
The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.
The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.
To summarize, this patch:
- introduces the data structures, constants and symbols needed;
- implements the core logic of the scheduling algorithm in the new
scheduling class file;
- provides all the glue code between the new scheduling class and
the core scheduler and refines the interactions between sched/dl
and the other existing scheduling classes.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the syscalls needed for supporting scheduling algorithms
with extended scheduling parameters (e.g., SCHED_DEADLINE).
In general, it makes possible to specify a periodic/sporadic task,
that executes for a given amount of runtime at each instance, and is
scheduled according to the urgency of their own timing constraints,
i.e.:
- a (maximum/typical) instance execution time,
- a minimum interval between consecutive instances,
- a time constraint by which each instance must be completed.
Thus, both the data structure that holds the scheduling parameters of
the tasks and the system calls dealing with it must be extended.
Unfortunately, modifying the existing struct sched_param would break
the ABI and result in potentially serious compatibility issues with
legacy binaries.
For these reasons, this patch:
- defines the new struct sched_attr, containing all the fields
that are necessary for specifying a task in the computational
model described above;
- defines and implements the new scheduling related syscalls that
manipulate it, i.e., sched_setattr() and sched_getattr().
Syscalls are introduced for x86 (32 and 64 bits) and ARM only, as a
proof of concept and for developing and testing purposes. Making them
available on other architectures is straightforward.
Since no "user" for these new parameters is introduced in this patch,
the implementation of the new system calls is just identical to their
already existing counterpart. Future patches that implement scheduling
policies able to exploit the new data structure must also take care of
modifying the sched_*attr() calls accordingly with their own purposes.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
[ Rewrote to use sched_attr. ]
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Removed sched_setscheduler2() for now. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-3-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 42eb088e (sched: Avoid NULL dereference on sd_busy) corrected a NULL
dereference on sd_busy but the fix also altered what scheduling domain it
used for the 'sd_llc' percpu variable.
One impact of this is that a task selecting a runqueue may consider
idle CPUs that are not cache siblings as candidates for running.
Tasks are then running on CPUs that are not cache hot.
This was found through bisection where ebizzy threads were not seeing equal
performance and it looked like a scheduling fairness issue. This patch
mitigates but does not completely fix the problem on all machines tested
implying there may be an additional bug or a common root cause. Here are
the average range of performance seen by individual ebizzy threads. It
was tested on top of candidate patches related to x86 TLB range flushing.
4-core machine
3.13.0-rc3 3.13.0-rc3
vanilla fixsd-v3r3
Mean 1 0.00 ( 0.00%) 0.00 ( 0.00%)
Mean 2 0.34 ( 0.00%) 0.10 ( 70.59%)
Mean 3 1.29 ( 0.00%) 0.93 ( 27.91%)
Mean 4 7.08 ( 0.00%) 0.77 ( 89.12%)
Mean 5 193.54 ( 0.00%) 2.14 ( 98.89%)
Mean 6 151.12 ( 0.00%) 2.06 ( 98.64%)
Mean 7 115.38 ( 0.00%) 2.04 ( 98.23%)
Mean 8 108.65 ( 0.00%) 1.92 ( 98.23%)
8-core machine
Mean 1 0.00 ( 0.00%) 0.00 ( 0.00%)
Mean 2 0.40 ( 0.00%) 0.21 ( 47.50%)
Mean 3 23.73 ( 0.00%) 0.89 ( 96.25%)
Mean 4 12.79 ( 0.00%) 1.04 ( 91.87%)
Mean 5 13.08 ( 0.00%) 2.42 ( 81.50%)
Mean 6 23.21 ( 0.00%) 69.46 (-199.27%)
Mean 7 15.85 ( 0.00%) 101.72 (-541.77%)
Mean 8 109.37 ( 0.00%) 19.13 ( 82.51%)
Mean 12 124.84 ( 0.00%) 28.62 ( 77.07%)
Mean 16 113.50 ( 0.00%) 24.16 ( 78.71%)
It's eliminated for one machine and reduced for another.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: H Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131217092124.GV11295@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Yinghai reported that he saw a /0 in sg_capacity on his EX parts.
Make sure to always initialize power_orig now that we actually use it.
Ideally build_sched_domains() -> init_sched_groups_power() would also
initialize this; but for some yet unexplained reason some setups seem
to miss updates there.
Reported-by: Yinghai Lu <yinghai@kernel.org>
Tested-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-l8ng2m9uml6fhibln8wqpom7@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation of conversion to kernfs, cgroup file handling is
updated so that it can be easily mapped to kernfs. This patch
replaces cftype->read_seq_string() with cftype->seq_show() which is
not limited to single_open() operation and will map directcly to
kernfs seq_file interface.
The conversions are mechanical. As ->seq_show() doesn't have @css and
@cft, the functions which make use of them are converted to use
seq_css() and seq_cft() respectively. In several occassions, e.f. if
it has seq_string in its name, the function name is updated to fit the
new method better.
This patch does not introduce any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
In preparation of conversion to kernfs, cgroup file handling is being
consolidated so that it can be easily mapped to the seq_file based
interface of kernfs.
cftype->read_map() doesn't add any value and being replaced with
->read_seq_string(). Update cpu_stats_show() and cpuacct_stats_show()
accordingly.
This patch doesn't make any visible behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
schedule_debug() ignores in_atomic() if prev->exit_state != 0.
This is not what we want, ->exit_state is set by exit_notify()
but we should complain until the task does the last schedule()
in TASK_DEAD.
See also 7407251a0e "PF_DEAD cleanup", I think this ancient
commit explains why schedule() had to rely on ->exit_state,
until that commit exit_notify() disabled preemption and set
PF_DEAD which was used to detect the exiting task.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131113154538.GB15810@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tony reported that aa0d532605 ("ia64: Use preempt_schedule_irq")
broke PREEMPT=n builds on ia64.
Ok, wrapped my brain around it. I tripped over the magic asm foo which
has a single need_resched check and schedule point for both sys call
return and interrupt return.
So you need the schedule_preempt_irq() for kernel preemption from
interrupt return while on a normal syscall preemption a schedule would
be sufficient. But using schedule_preempt_irq() is not harmful here in
any way. It just sets the preempt_active bit also in cases where it
would not be required.
Even on preempt=n kernels adding the preempt_active bit is completely
harmless. So instead of having an extra function, moving the existing
one out of the ifdef PREEMPT looks like the sanest thing to do.
It would also allow getting rid of various other sti/schedule/cli asm
magic in other archs.
Reported-and-Tested-by: Tony Luck <tony.luck@gmail.com>
Fixes: aa0d532605 ("ia64: Use preempt_schedule_irq")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[slightly edited Changelog]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311211230030.30673@ionos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 37dc6b50ce ("sched: Remove unnecessary iteration over sched
domains to update nr_busy_cpus") forgot to clear 'sd_busy' under some
conditions leading to a possible NULL deref in set_cpu_sd_state_idle().
Reported-by: Anton Blanchard <anton@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131118113701.GF3866@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Large multi-threaded apps like to hit this using do_sys_times() and
then queue up on the rq->lock.
Avoid when possible.
Larry reported ~20% performance increase his test case.
Reported-by: Larry Woodman <lwoodman@redhat.com>
Suggested-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131111172925.GG26898@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the
number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES
flag set. Therefore instead of updating nr_busy_cpus at every level
of sched domain, since it is irrelevant, we can update this parameter
only at the parent domain of the sd which has this flag set. Introduce
a per-cpu parameter sd_busy which represents this parent domain.
In nohz_kick_needed() we directly query the nr_busy_cpus parameter
associated with the groups of sd_busy.
By associating sd_busy with the highest domain which has
SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains
which could have this flag set and trigger nohz_idle_balancing if any
of the levels have more than one busy cpu.
sd_busy is irrelevant for asymmetric load balancing. However sd_asym
has been introduced to represent the highest sched domain which has
SD_ASYM_PACKING flag set so that it can be queried directly when
required.
While we are at it, we might as well change the nohz_idle parameter to
be updated at the sd_busy domain level alone and not the base domain
level of a CPU. This will unify the concept of busy cpus at just one
level of sched domain where it is currently used.
Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: svaidy@linux.vnet.ibm.com
Cc: vincent.guittot@linaro.org
Cc: bitbucket@online.de
Cc: benh@kernel.crashing.org
Cc: anton@samba.org
Cc: Morten.Rasmussen@arm.com
Cc: pjt@google.com
Cc: peterz@infradead.org
Cc: mikey@neuling.org
Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Completions already have their own header file: linux/completion.h
Move the implementation out of kernel/sched/core.c and into its own
file: kernel/sched/completion.c.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-x2y49rmxu5dljt66ai2lcfuw@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For some reason only the wait part of the wait api lives in
kernel/sched/wait.c and the wake part still lives in kernel/sched/core.c;
ammend this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-ftycee88naznulqk7ei5mbci@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.
Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.
Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove get_online_cpus() usage from the scheduler; there's 4 sites that
use it:
- sched_init_smp(); where its completely superfluous since we're in
'early' boot and there simply cannot be any hotplugging.
- sched_getaffinity(); we already take a raw spinlock to protect the
task cpus_allowed mask, this disables preemption and therefore
also stabilizes cpu_online_mask as that's modified using
stop_machine. However switch to active mask for symmetry with
sched_setaffinity()/set_cpus_allowed_ptr(). We guarantee active
mask stability by inserting sync_rcu/sched() into _cpu_down.
- sched_setaffinity(); we don't appear to need get_online_cpus()
either, there's two sites where hotplug appears relevant:
* cpuset_cpus_allowed(); for the !cpuset case we use possible_mask,
for the cpuset case we hold task_lock, which is a spinlock and
thus for mainline disables preemption (might cause pain on RT).
* set_cpus_allowed_ptr(); Holds all scheduler locks and thus has
preemption properly disabled; also it already deals with hotplug
races explicitly where it releases them.
- migrate_swap(); we can make stop_two_cpus() do the heavy lifting for
us with a little trickery. By adding a sync_sched/rcu() after the
CPU_DOWN_PREPARE notifier we can provide preempt/rcu guarantees for
cpu_active_mask. Use these to validate that both our cpus are active
when queueing the stop work before we queue the stop_machine works
for take_cpu_down().
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20131011123820.GV3081@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>