IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The problem that this patch aims to fix is vfsmount refcounting scalability.
We need to take a reference on the vfsmount for every successful path lookup,
which often go to the same mount point.
The fundamental difficulty is that a "simple" reference count can never be made
scalable, because any time a reference is dropped, we must check whether that
was the last reference. To do that requires communication with all other CPUs
that may have taken a reference count.
We can make refcounts more scalable in a couple of ways, involving keeping
distributed counters, and checking for the global-zero condition less
frequently.
- check the global sum once every interval (this will delay zero detection
for some interval, so it's probably a showstopper for vfsmounts).
- keep a local count and only taking the global sum when local reaches 0 (this
is difficult for vfsmounts, because we can't hold preempt off for the life of
a reference, so a counter would need to be per-thread or tied strongly to a
particular CPU which requires more locking).
- keep a local difference of increments and decrements, which allows us to sum
the total difference and hence find the refcount when summing all CPUs. Then,
keep a single integer "long" refcount for slow and long lasting references,
and only take the global sum of local counters when the long refcount is 0.
This last scheme is what I implemented here. Attached mounts and process root
and working directory references are "long" references, and everything else is
a short reference.
This allows scalable vfsmount references during path walking over mounted
subtrees and unattached (lazy umounted) mounts with processes still running
in them.
This results in one fewer atomic op in the fastpath: mntget is now just a
per-CPU inc, rather than an atomic inc; and mntput just requires a spinlock
and non-atomic decrement in the common case. However code is otherwise bigger
and heavier, so single threaded performance is basically a wash.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Regardless of how much we possibly try to scale dcache, there is likely
always going to be some fundamental contention when adding or removing children
under the same parent. Pseudo filesystems do not seem need to have connected
dentries because by definition they are disconnected.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Pseudo filesystems that don't put inode on RCU list or reachable by
rcu-walk dentries do not need to RCU free their inodes.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Use modern RCU API / annotations for net_families array.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6:
isdn: mISDN: socket: fix information leak to userland
netdev: can: Change mail address of Hans J. Koch
pcnet_cs: add new_id
net: Truncate recvfrom and sendto length to INT_MAX.
RDS: Let rds_message_alloc_sgs() return NULL
RDS: Copy rds_iovecs into kernel memory instead of rereading from userspace
RDS: Clean up error handling in rds_cmsg_rdma_args
RDS: Return -EINVAL if rds_rdma_pages returns an error
net: fix rds_iovec page count overflow
can: pch_can: fix section mismatch warning by using a whitelisted name
can: pch_can: fix sparse warning
netxen_nic: Fix the tx queue manipulation bug in netxen_nic_probe
ip_gre: fix fallback tunnel setup
vmxnet: trivial annotation of protocol constant
vmxnet3: remove unnecessary byteswapping in BAR writing macros
ipv6/udp: report SndbufErrors and RcvbufErrors
phy/marvell: rename 88ec048 to 88e1318s and fix mscr1 addr
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
split invalidate_inodes()
fs: skip I_FREEING inodes in writeback_sb_inodes
fs: fold invalidate_list into invalidate_inodes
fs: do not drop inode_lock in dispose_list
fs: inode split IO and LRU lists
fs: switch bdev inode bdi's correctly
fs: fix buffer invalidation in invalidate_list
fsnotify: use dget_parent
smbfs: use dget_parent
exportfs: use dget_parent
fs: use RCU read side protection in d_validate
fs: clean up dentry lru modification
fs: split __shrink_dcache_sb
fs: improve DCACHE_REFERENCED usage
fs: use percpu counter for nr_dentry and nr_dentry_unused
fs: simplify __d_free
fs: take dcache_lock inside __d_path
fs: do not assign default i_ino in new_inode
fs: introduce a per-cpu last_ino allocator
new helper: ihold()
...
* 'for-2.6.37' of git://linux-nfs.org/~bfields/linux: (99 commits)
svcrpc: svc_tcp_sendto XPT_DEAD check is redundant
svcrpc: no need for XPT_DEAD check in svc_xprt_enqueue
svcrpc: assume svc_delete_xprt() called only once
svcrpc: never clear XPT_BUSY on dead xprt
nfsd4: fix connection allocation in sequence()
nfsd4: only require krb5 principal for NFSv4.0 callbacks
nfsd4: move minorversion to client
nfsd4: delay session removal till free_client
nfsd4: separate callback change and callback probe
nfsd4: callback program number is per-session
nfsd4: track backchannel connections
nfsd4: confirm only on succesful create_session
nfsd4: make backchannel sequence number per-session
nfsd4: use client pointer to backchannel session
nfsd4: move callback setup into session init code
nfsd4: don't cache seq_misordered replies
SUNRPC: Properly initialize sock_xprt.srcaddr in all cases
SUNRPC: Use conventional switch statement when reclassifying sockets
sunrpc/xprtrdma: clean up workqueue usage
sunrpc: Turn list_for_each-s into the ..._entry-s
...
Fix up trivial conflicts (two different deprecation notices added in
separate branches) in Documentation/feature-removal-schedule.txt
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1699 commits)
bnx2/bnx2x: Unsupported Ethtool operations should return -EINVAL.
vlan: Calling vlan_hwaccel_do_receive() is always valid.
tproxy: use the interface primary IP address as a default value for --on-ip
tproxy: added IPv6 support to the socket match
cxgb3: function namespace cleanup
tproxy: added IPv6 support to the TPROXY target
tproxy: added IPv6 socket lookup function to nf_tproxy_core
be2net: Changes to use only priority codes allowed by f/w
tproxy: allow non-local binds of IPv6 sockets if IP_TRANSPARENT is enabled
tproxy: added tproxy sockopt interface in the IPV6 layer
tproxy: added udp6_lib_lookup function
tproxy: added const specifiers to udp lookup functions
tproxy: split off ipv6 defragmentation to a separate module
l2tp: small cleanup
nf_nat: restrict ICMP translation for embedded header
can: mcp251x: fix generation of error frames
can: mcp251x: fix endless loop in interrupt handler if CANINTF_MERRF is set
can-raw: add msg_flags to distinguish local traffic
9p: client code cleanup
rds: make local functions/variables static
...
Fix up conflicts in net/core/dev.c, drivers/net/pcmcia/smc91c92_cs.c and
drivers/net/wireless/ath/ath9k/debug.c as per David
A couple of functions in socket.c are only used there and
should be localized.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Casts __kernel to __user pointer require __force markup, so add it. Also
sock_get/setsockopt() takes @optval and/or @optlen arguments as user pointers
but were taking kernel pointers, use new variables 'uoptval' and/or 'uoptlen'
to fix it. These remove following warnings from sparse:
net/socket.c:1922:46: warning: cast adds address space to expression (<asn:1>)
net/socket.c:3061:61: warning: incorrect type in argument 4 (different address spaces)
net/socket.c:3061:61: expected char [noderef] <asn:1>*optval
net/socket.c:3061:61: got char *optval
net/socket.c:3061:69: warning: incorrect type in argument 5 (different address spaces)
net/socket.c:3061:69: expected int [noderef] <asn:1>*optlen
net/socket.c:3061:69: got int *optlen
net/socket.c:3063:67: warning: incorrect type in argument 4 (different address spaces)
net/socket.c:3063:67: expected char [noderef] <asn:1>*optval
net/socket.c:3063:67: got char *optval
net/socket.c:3064:45: warning: incorrect type in argument 5 (different address spaces)
net/socket.c:3064:45: expected int [noderef] <asn:1>*optlen
net/socket.c:3064:45: got int *optlen
net/socket.c:3078:61: warning: incorrect type in argument 4 (different address spaces)
net/socket.c:3078:61: expected char [noderef] <asn:1>*optval
net/socket.c:3078:61: got char *optval
net/socket.c:3080:67: warning: incorrect type in argument 4 (different address spaces)
net/socket.c:3080:67: expected char [noderef] <asn:1>*optval
net/socket.c:3080:67: got char *optval
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes the abstraction introduced by the union skb_shared_tx in
the shared skb data.
The access of the different union elements at several places led to some
confusion about accessing the shared tx_flags e.g. in skb_orphan_try().
http://marc.info/?l=linux-netdev&m=128084897415886&w=2
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new networking option to allow hardware time stamps
from PHY devices. When enabled, likely candidates among incoming and
outgoing network packets are offered to the PHY driver for possible
time stamping. When accepted by the PHY driver, incoming packets are
deferred for later delivery by the driver.
The patch also adds phylib driver methods for the SIOCSHWTSTAMP ioctl
and callbacks for transmit and receive time stamping. Drivers may
optionally implement these functions.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: David S. Miller <davem@davemloft.net>
MAX_SOCK_ADDR is no longer used because commit 230b1839 "net: Use standard
structures for generic socket address structures." replaced
"char address[MAX_SOCK_ADDR];" with "struct sockaddr_storage address;".
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
Up until now cls_cgroup has relied on fetching the classid out of
the current executing thread. This runs into trouble when a packet
processing is delayed in which case it may execute out of another
thread's context.
Furthermore, even when a packet is not delayed we may fail to
classify it if soft IRQs have been disabled, because this scenario
is indistinguishable from one where a packet unrelated to the
current thread is processed by a real soft IRQ.
In fact, the current semantics is inherently broken, as a single
skb may be constructed out of the writes of two different tasks.
A different manifestation of this problem is when the TCP stack
transmits in response of an incoming ACK. This is currently
unclassified.
As we already have a concept of packet ownership for accounting
purposes in the skb->sk pointer, this is a natural place to store
the classid in a persistent manner.
This patch adds the cls_cgroup classid in struct sock, filling up
an existing hole on 64-bit :)
The value is set at socket creation time. So all sockets created
via socket(2) automatically gains the ID of the thread creating it.
Whenever another process touches the socket by either reading or
writing to it, we will change the socket classid to that of the
process if it has a valid (non-zero) classid.
For sockets created on inbound connections through accept(2), we
inherit the classid of the original listening socket through
sk_clone, possibly preceding the actual accept(2) call.
In order to minimise risks, I have not made this the authoritative
classid. For now it is only used as a backup when we execute
with soft IRQs disabled. Once we're completely happy with its
semantics we can use it as the sole classid.
Footnote: I have rearranged the error path on cls_group module
creation. If we didn't do this, then there is a window where
someone could create a tc rule using cls_group before the cgroup
subsystem has been registered.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Also added an explicit break; to avoid
a fallthrough in net/ipv4/tcp_input.c
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_callback_lock rwlock actually protects sk->sk_sleep pointer, so we
need two atomic operations (and associated dirtying) per incoming
packet.
RCU conversion is pretty much needed :
1) Add a new structure, called "struct socket_wq" to hold all fields
that will need rcu_read_lock() protection (currently: a
wait_queue_head_t and a struct fasync_struct pointer).
[Future patch will add a list anchor for wakeup coalescing]
2) Attach one of such structure to each "struct socket" created in
sock_alloc_inode().
3) Respect RCU grace period when freeing a "struct socket_wq"
4) Change sk_sleep pointer in "struct sock" by sk_wq, pointer to "struct
socket_wq"
5) Change sk_sleep() function to use new sk->sk_wq instead of
sk->sk_sleep
6) Change sk_has_sleeper() to wq_has_sleeper() that must be used inside
a rcu_read_lock() section.
7) Change all sk_has_sleeper() callers to :
- Use rcu_read_lock() instead of read_lock(&sk->sk_callback_lock)
- Use wq_has_sleeper() to eventually wakeup tasks.
- Use rcu_read_unlock() instead of read_unlock(&sk->sk_callback_lock)
8) sock_wake_async() is modified to use rcu protection as well.
9) Exceptions :
macvtap, drivers/net/tun.c, af_unix use integrated "struct socket_wq"
instead of dynamically allocated ones. They dont need rcu freeing.
Some cleanups or followups are probably needed, (possible
sk_callback_lock conversion to a spinlock for example...).
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sock_recv_ts_and_drops() is fat and slow (~ 4% of cpu time on some
profiles)
We can test all socket flags at once to make fast path fast again.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
kill_fasync() uses a central rwlock, candidate for RCU conversion, to
avoid cache line ping pongs on SMP.
fasync_remove_entry() and fasync_add_entry() can disable IRQS on a short
section instead during whole list scan.
Use a spinlock per fasync_struct to synchronize kill_fasync_rcu() and
fasync_{remove|add}_entry(). This spinlock is IRQ safe, so sock_fasync()
doesnt need its own implementation and can use fasync_helper(), to
reduce code size and complexity.
We can remove __kill_fasync() direct use in net/socket.c, and rename it
to kill_fasync_rcu().
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct timespec ts was alreay defined. Reuse the previously
defined one and reduce the memory footprint on the stack by
16 bytes.
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Add new flag MSG_WAITFORONE for the recvmmsg() syscall.
When this flag is specified for a blocking socket, recvmmsg()
will only block until at least 1 packet is available. The
default behavior is to block until all vlen packets are
available. This flag has no effect on non-blocking sockets
or when used in combination with MSG_DONTWAIT.
Signed-off-by: Brandon L Black <blblack@gmail.com>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Filesystems outside the regular namespace do not have to clear DCACHE_UNHASHED
in order to have a working /proc/$pid/fd/XXX. Nothing in proc prevents the
fd link from being used if its dentry is not in the hash.
Also, it does not get put into the dcache hash if DCACHE_UNHASHED is clear;
that depends on the filesystem calling d_add or d_rehash.
So delete the misleading comments and needless code.
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Both to traverse the entries and to set the msg_len field.
Commiter note: folded two patches and avoided one branch repeating the
compat test.
Signed-off-by: Jean-Mickael Guerin <jean-mickael.guerin@6wind.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We have two implementations of the compat_ioctl handling for ATM, the
one that we have had for ages in fs/compat_ioctl.c and the one added to
net/atm/ioctl.c by David Woodhouse. Unfortunately, both versions are
incomplete, and in practice we use a very confusing combination of the
two.
For ioctl numbers that have the same identifier on 32 and 64 bit systems,
we go directly through the compat_ioctl socket operation, for those that
differ, we do a conversion in fs/compat_ioctl.c.
This patch moves both variants into the vcc_compat_ioctl() function,
while preserving the current behaviour. It also kills off the COMPATIBLE_IOCTL
definitions that we never use here.
Doing it this way is clearly not a good solution, but I hope it is a
step into the right direction, so that someone is able to clean up this
mess for real.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Handling for SIOCSHWTSTAMP is broken on architectures
with a split user/kernel address space like s390,
because it passes a real user pointer while using
set_fs(KERNEL_DS).
A similar problem might arise the next time somebody
adds code to dev_ifsioc.
Split up dev_ifsioc into three separate functions for
SIOCSHWTSTAMP, SIOC*IFMAP and all other numbers so
we can get rid of set_fs in all potentially affected
cases.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Patrick Ohly <patrick.ohly@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds compat_ioctl support for SIOCWANDEV, which has
always been missing.
The definition of struct compat_ifreq was missing an
ifru_settings fields that is needed to support SIOCWANDEV,
so add that and clean up the whitespace damage in the
struct definition.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
SIOCGMIIPHY and SIOCGMIIREG return data through ifreq,
so it needs to be converted on the way out as well.
SIOCGIFPFLAGS is unused, but has the same problem in theory.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The MII ioctls and SIOCSIFNAME need to go through ifsioc conversion,
which they never did so far. Some others are not implemented in the
native path, so we can just return -EINVAL directly.
Add IFSLAVE ioctls to the EINVAL list and move it to the end to
optimize the code path for the common case.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes the original socket compat_ioctl code
from fs/compat_ioctl.c and converts the code from the copy
in net/socket.c into a single function. We add a few cycles
of runtime to compat_sock_ioctl() with the long switch()
statement, but gain some cycles in return by simplifying
the call chain to get there.
Due to better inlining, save 1.5kb of object size in the
process, and enable further savings:
before:
text data bss dec hex filename
13540 18008 2080 33628 835c obj/fs/compat_ioctl.o
14565 636 40 15241 3b89 obj/net/socket.o
after:
text data bss dec hex filename
8916 15176 2080 26172 663c obj/fs/compat_ioctl.o
20725 636 40 21401 5399 obj/net/socket.o
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This makes an identical copy of the socket compat_ioctl code
from fs/compat_ioctl.c to net/socket.c, as a preparation
for moving the functionality in a way that can be easily
reviewed.
The code is hidden inside of #if 0 and gets activated in the
patch that will make it work.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The generic __sock_create function has a kern argument which allows the
security system to make decisions based on if a socket is being created by
the kernel or by userspace. This patch passes that flag to the
net_proto_family specific create function, so it can do the same thing.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>