IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In case the checksum calculation is offloaded to the DSA master network
interface, it will include the switch trailing tag. As soon as the switch strips
that tag on egress, the calculated checksum is wrong.
Therefore, add the checksum calculation to the tagger (if required) before
adding the switch tag. This way, the hellcreek code works with all DSA master
interfaces regardless of their declared feature set.
Fixes: 01ef09caad66 ("net: dsa: Add tag handling for Hirschmann Hellcreek switches")
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220415103320.90657-1-kurt@linutronix.de
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
This reverts commit 11fd667dac315ea3f2469961f6d2869271a46cae.
dsa_slave_change_mtu() updates the MTU of the DSA master and of the
associated CPU port, but only if it detects a change to the master MTU.
The blamed commit in the Fixes: tag below addressed a regression where
dsa_slave_change_mtu() would return early and not do anything due to
ds->ops->port_change_mtu() not being implemented.
However, that commit also had the effect that the master MTU got set up
to the correct value by dsa_master_setup(), but the associated CPU port's
MTU did not get updated. This causes breakage for drivers that rely on
the ->port_change_mtu() DSA call to account for the tagging overhead on
the CPU port, and don't set up the initial MTU during the setup phase.
Things actually worked before because they were in a fragile equilibrium
where dsa_slave_change_mtu() was called before dsa_master_setup() was.
So dsa_slave_change_mtu() could actually detect a change and update the
CPU port MTU too.
Restore the code to the way things used to work by reverting the reorder
of dsa_tree_setup_master() and dsa_tree_setup_ports(). That change did
not have a concrete motivation going for it anyway, it just looked
better.
Fixes: 066dfc429040 ("Revert "net: dsa: stop updating master MTU from master.c"")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit a1ff94c2973c43bc1e2677ac63ebb15b1d1ff846.
Switch drivers that don't implement ->port_change_mtu() will cause the
DSA master to remain with an MTU of 1500, since we've deleted the other
code path. In turn, this causes a regression for those systems, where
MTU-sized traffic can no longer be terminated.
Revert the change taking into account the fact that rtnl_lock() is now
taken top-level from the callers of dsa_master_setup() and
dsa_master_teardown(). Also add a comment in order for it to be
absolutely clear why it is still needed.
Fixes: a1ff94c2973c ("net: dsa: stop updating master MTU from master.c")
Reported-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA ports are stacked devices, so they use dev_mc_add() to sync their
address list to their lower interface (DSA master). But they are also
hardware devices, so they program those addresses to hardware using the
__dev_mc_add() sync and unsync callbacks.
Unfortunately both cannot work at the same time, and it seems that the
multicast addresses which are already present on the DSA master, like
33:33:00:00:00:01 (added by addrconf.c as in6addr_linklocal_allnodes)
are synced to the master via dev_mc_sync(), but not to hardware by
__dev_mc_sync().
This happens because both the dev_mc_sync() -> __hw_addr_sync_one()
code path, as well as __dev_mc_sync() -> __hw_addr_sync_dev(), operate
on the same variable: ha->sync_cnt, in a way that causes the "sync"
method (dsa_slave_sync_mc) to no longer be called.
To fix the issue we need to work with the API in the way in which it was
intended to be used, and therefore, call dev_uc_add() and friends for
each individual hardware address, from the sync and unsync callbacks.
Fixes: 5e8a1e03aa4d ("net: dsa: install secondary unicast and multicast addresses as host FDB/MDB")
Link: https://lore.kernel.org/netdev/20220321163213.lrn5sk7m6grighbl@skbuf/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220322003701.2056895-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
DSA probing is atypical because a tree of devices must probe all at
once, so out of N switches which call dsa_tree_setup_routing_table()
during probe, for (N - 1) of them, "complete" will return false and they
will exit probing early. The Nth switch will set up the whole tree on
their behalf.
The implication is that for (N - 1) switches, the driver binds to the
device successfully, without doing anything. When the driver is bound,
the ->shutdown() method may run. But if the Nth switch has failed to
initialize the tree, there is nothing to do for the (N - 1) driver
instances, since the slave devices have not been created, etc. Moreover,
dsa_switch_shutdown() expects that the calling @ds has been in fact
initialized, so it jumps at dereferencing the various data structures,
which is incorrect.
Avoid the ensuing NULL pointer dereferences by simply checking whether
the Nth switch has previously set "ds->setup = true" for the switch
which is currently shutting down. The entire setup is serialized under
dsa2_mutex which we already hold.
Fixes: 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220318195443.275026-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Drivers might have error messages to propagate to user space, most
common being that they support a single mirror port.
Propagate the netlink extack so that they can inform user space in a
verbal way of their limitations.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add the usual trampoline functionality from the generic DSA layer down
to the drivers for MST state changes.
When a state changes to disabled/blocking/listening, make sure to fast
age any dynamic entries in the affected VLANs (those controlled by the
MSTI in question).
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add the usual trampoline functionality from the generic DSA layer down
to the drivers for VLAN MSTI migrations.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When joining a bridge where MST is enabled, we validate that the
proper offloading support is in place, otherwise we fallback to
software bridging.
When then mode is changed on a bridge in which we are members, we
refuse the change if offloading is not supported.
At the moment we only check for configurable learning, but this will
be further restricted as we support more MST related switchdev events.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
Fixes: 6d4e5c570c2d ("net: dsa: get port type at parse time")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Link: https://lore.kernel.org/r/20220316082602.10785-1-linmq006@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
If a port joins a bridge that it can't offload, it will fallback to
standalone mode and software bridging. In this case, we never want to
offload any FDB entries to hardware either.
Previously, for host addresses, we would eventually end up in
dsa_port_bridge_host_fdb_add, which would unconditionally dereference
dp->bridge and cause a segfault.
Fixes: c26933639b54 ("net: dsa: request drivers to perform FDB isolation")
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220315233033.1468071-1-tobias@waldekranz.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Similar to the port-based default priority, IEEE 802.1Q-2018 allows the
Application Priority Table to define QoS classes (0 to 7) per IP DSCP
value (0 to 63).
In the absence of an app table entry for a packet with DSCP value X,
QoS classification for that packet falls back to other methods (VLAN PCP
or port-based default). The presence of an app table for DSCP value X
with priority Y makes the hardware classify the packet to QoS class Y.
As opposed to the default-prio where DSA exposes only a "set" in
dsa_switch_ops (because the port-based default is the fallback, it
always exists, either implicitly or explicitly), for DSCP priorities we
expose an "add" and a "del". The addition of a DSCP entry means trusting
that DSCP priority, the deletion means ignoring it.
Drivers that already trust (at least some) DSCP values can describe
their configuration in dsa_switch_ops :: port_get_dscp_prio(), which is
called for each DSCP value from 0 to 63.
Again, there can be more than one dcbnl app table entry for the same
DSCP value, DSA chooses the one with the largest configured priority.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The port-based default QoS class is assigned to packets that lack a
VLAN PCP (or the port is configured to not trust the VLAN PCP),
an IP DSCP (or the port is configured to not trust IP DSCP), and packets
on which no tc-skbedit action has matched.
Similar to other drivers, this can be exposed to user space using the
DCB Application Priority Table. IEEE 802.1Q-2018 specifies in Table
D-8 - Sel field values that when the Selector is 1, the Protocol ID
value of 0 denotes the "Default application priority. For use when
application priority is not otherwise specified."
The way in which the dcbnl integration in DSA has been designed has to
do with its requirements. Andrew Lunn explains that SOHO switches are
expected to come with some sort of pre-configured QoS profile, and that
it is desirable for this to come pre-loaded into the DSA slave interfaces'
DCB application priority table.
In the dcbnl design, this is possible because calls to dcb_ieee_setapp()
can be initiated by anyone including being self-initiated by this device
driver.
However, what makes this challenging to implement in DSA is that the DSA
core manages the net_devices (effectively hiding them from drivers),
while drivers manage the hardware. The DSA core has no knowledge of what
individual drivers' QoS policies are. DSA could export to drivers a
wrapper over dcb_ieee_setapp() and these could call that function to
pre-populate the app priority table, however drivers don't have a good
moment in time to do this. The dsa_switch_ops :: setup() method gets
called before the net_devices are created (dsa_slave_create), and so is
dsa_switch_ops :: port_setup(). What remains is dsa_switch_ops ::
port_enable(), but this gets called upon each ndo_open. If we add app
table entries on every open, we'd need to remove them on close, to avoid
duplicate entry errors. But if we delete app priority entries on close,
what we delete may not be the initial, driver pre-populated entries, but
rather user-added entries.
So it is clear that letting drivers choose the timing of the
dcb_ieee_setapp() call is inappropriate. The alternative which was
chosen is to introduce hardware-specific ops in dsa_switch_ops, and
effectively hide dcbnl details from drivers as well. For pre-populating
the application table, dsa_slave_dcbnl_init() will call
ds->ops->port_get_default_prio() which is supposed to read from
hardware. If the operation succeeds, DSA creates a default-prio app
table entry. The method is called as soon as the slave_dev is
registered, but before we release the rtnl_mutex. This is done such that
user space sees the app table entries as soon as it sees the interface
being registered.
The fact that we populate slave_dev->dcbnl_ops with a non-NULL pointer
changes behavior in dcb_doit() from net/dcb/dcbnl.c, which used to
return -EOPNOTSUPP for any dcbnl operation where netdev->dcbnl_ops is
NULL. Because there are still dcbnl-unaware DSA drivers even if they
have dcbnl_ops populated, the way to restore the behavior is to make all
dcbnl_ops return -EOPNOTSUPP on absence of the hardware-specific
dsa_switch_ops method.
The dcbnl framework absurdly allows there to be more than one app table
entry for the same selector and protocol (in other words, more than one
port-based default priority). In the iproute2 dcb program, there is a
"replace" syntactical sugar command which performs an "add" and a "del"
to hide this away. But we choose the largest configured priority when we
call ds->ops->port_set_default_prio(), using __fls(). When there is no
default-prio app table entry left, the port-default priority is restored
to 0.
Link: https://patchwork.kernel.org/project/netdevbpf/patch/20210113154139.1803705-2-olteanv@gmail.com/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c319846086 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the slave unicast address is synced to hardware and to the DSA
master during dsa_slave_open(), this means that a call to
dsa_slave_set_mac_address() while the slave interface is down will
result to a call to dsa_port_standalone_host_fdb_del() and to
dev_uc_del() for the MAC address while there was no previous
dsa_port_standalone_host_fdb_add() or dev_uc_add().
This is a partial revert of the blamed commit below, which was too
aggressive.
Fixes: 35aae5ab9121 ("net: dsa: remove workarounds for changing master promisc/allmulti only while up")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
&cpu_db->fdbs and &cpu_db->mdbs may be uninitialized lists during some
call paths of felix_set_tag_protocol().
There was an attempt to avoid calling dsa_port_walk_fdbs() during setup
by using a "bool change" in the felix driver, but this doesn't work when
the tagging protocol is defined in the device tree, and a change is
triggered by DSA at pseudo-runtime:
dsa_tree_setup_switches
-> dsa_switch_setup
-> dsa_switch_setup_tag_protocol
-> ds->ops->change_tag_protocol
dsa_tree_setup_ports
-> dsa_port_setup
-> &dp->fdbs and &db->mdbs only get initialized here
So it seems like the only way to fix this is to move the initialization
of these lists earlier.
dsa_port_touch() is called from dsa_switch_touch_ports() which is called
from dsa_switch_parse_of(), and this runs completely before
dsa_tree_setup(). Similarly, dsa_switch_release_ports() runs after
dsa_tree_teardown().
Fixes: f9cef64fa23f ("net: dsa: felix: migrate host FDB and MDB entries when changing tag proto")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There has been recent work towards matching each switchdev object
addition with a corresponding deletion.
Therefore, having elements in the fdbs, mdbs, vlans lists at the time of
a shared (DSA, CPU) port's teardown is indicative of a bug somewhere
else, and not something that is to be expected.
We shouldn't try to silently paper over that. Instead, print a warning
and a stack trace.
This change is a prerequisite for moving the initialization/teardown of
these lists. Make it clear that clearing the lists isn't needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In this situation (VLAN filtering disabled on br0):
br0.10
/
br0
/ \
swp0 swp1
When a frame is transmitted from the VLAN upper, the bridge will send
it down to one of the switch ports with forward offloading
enabled. This will cause tag_dsa to generate a FORWARD tag. Before
this change, that tag would have it's VID set to 10, even though VID
10 is not loaded in the VTU.
Before the blamed commit, the frame would trigger a VTU miss and be
forwarded according to the PVT configuration. Now that all fabric
ports are in 802.1Q secure mode, the frame is dropped instead.
Therefore, restrict the condition under which we rewrite an 802.1Q tag
to a DSA tag. On standalone port's, reuse is always safe since we will
always generate FROM_CPU tags in that case. For bridged ports though,
we must ensure that VLAN filtering is enabled, which in turn
guarantees that the VID in question is loaded into the VTU.
Fixes: d352b20f4174 ("net: dsa: mv88e6xxx: Improve multichip isolation of standalone ports")
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Tested-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20220307110548.812455-1-tobias@waldekranz.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Clang static analysis reports this representative issue
dsa.c:486:2: warning: Undefined or garbage value
returned to caller
return err;
^~~~~~~~~~
err is only set in the loop. If the loop is empty,
garbage will be returned. So initialize err to 0
to handle this noop case.
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After the blamed commit, dsa_tree_setup_master() may exit without
calling rtnl_unlock(), fix that.
Fixes: c146f9bc195a ("net: dsa: hold rtnl_mutex when calling dsa_master_{setup,teardown}")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Realtek switches supports the same tag both before ethertype or between
payload and the CRC.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The blamed commit said one thing but did another. It explains that we
should restore the "return err" to the original "goto out_unwind_tagger",
but instead it replaced it with "goto out_unlock".
When DSA_NOTIFIER_TAG_PROTO fails after the first switch of a
multi-switch tree, the switches would end up not using the same tagging
protocol.
Fixes: 0b0e2ff10356 ("net: dsa: restore error path of dsa_tree_change_tag_proto")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220303154249.1854436-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The "ocelot" and "ocelot-8021q" tagging protocols make use of different
hardware resources, and host FDB entries have different destination
ports in the switch analyzer module, practically speaking.
So when the user requests a tagging protocol change, the driver must
migrate all host FDB and MDB entries from the NPI port (in fact CPU port
module) towards the same physical port, but this time used as a regular
port.
It is pointless for the felix driver to keep a copy of the host
addresses, when we can create and export DSA helpers for walking through
the addresses that it already needs to keep on the CPU port, for
refcounting purposes.
felix_classify_db() is moved up to avoid a forward declaration.
We pass "bool change" because dp->fdbs and dp->mdbs are uninitialized
lists when felix_setup() first calls felix_set_tag_protocol(), so we
need to avoid calling dsa_port_walk_fdbs() during probe time.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA can treat IFF_PROMISC and IFF_ALLMULTI on standalone user ports as
signifying whether packets with an unknown MAC DA will be received or
not. Since known MAC DAs are handled by FDB/MDB entries, this means that
promiscuity is analogous to including/excluding the CPU port from the
flood domain of those packets.
There are two ways to signal CPU flooding to drivers.
The first (chosen here) is to synthesize a call to
ds->ops->port_bridge_flags() for the CPU port, with a mask of
BR_FLOOD | BR_MCAST_FLOOD. This has the effect of turning on egress
flooding on the CPU port regardless of source.
The alternative would be to create a new ds->ops->port_host_flood()
which is called per user port. Some switches (sja1105) have a flood
domain that is managed per {ingress port, egress port} pair, so it would
make more sense for this kind of switch to not flood the CPU from port A
if just port B requires it. Nonetheless, the sja1105 has other quirks
that prevent it from making use of unicast filtering, and without a
concrete user making use of this feature, I chose not to implement it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To be able to safely turn off CPU flooding for standalone ports, we need
to ensure that the dev_addr of each DSA slave interface is installed as
a standalone host FDB entry for compatible switches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation of disabling flooding towards the CPU in standalone ports
mode, identify the addresses requested by upper interfaces and use the
new API for DSA FDB isolation to request the hardware driver to offload
these as FDB or MDB objects. The objects belong to the user port's
database, and are installed pointing towards the CPU port.
Because dev_uc_add()/dev_mc_add() is VLAN-unaware, we offload to the
port standalone database addresses with VID 0 (also VLAN-unaware).
So this excludes switches with global VLAN filtering from supporting
unicast filtering, because there, it is possible for a port of a switch
to join a VLAN-aware bridge, and this changes the VLAN awareness of
standalone ports, requiring VLAN-aware standalone host FDB entries.
For the same reason, hellcreek, which requires VLAN awareness in
standalone mode, is also exempted from unicast filtering.
We create "standalone" variants of dsa_port_host_fdb_add() and
dsa_port_host_mdb_add() (and the _del coresponding functions).
We also create a separate work item type for handling deferred
standalone host FDB/MDB entries compared to the switchdev one.
This is done for the purpose of clarity - the procedure for offloading a
bridge FDB entry is different than offloading a standalone one, and
the switchdev event work handles only FDBs anyway, not MDBs.
Deferral is needed for standalone entries because ndo_set_rx_mode runs
in atomic context. We could probably optimize things a little by first
queuing up all entries that need to be offloaded, and scheduling the
work item just once, but the data structures that we can pass through
__dev_uc_sync() and __dev_mc_sync() are limiting (there is nothing like
a void *priv), so we'd have to keep the list of queued events somewhere
in struct dsa_switch, and possibly a lock for it. Too complicated for
now.
Adding the address to the master is handled by dev_uc_sync(), adding it
to the hardware is handled by __dev_uc_sync(). So this is the reason why
dsa_port_standalone_host_fdb_add() does not call dev_uc_add(). Not that
it had the rtnl_mutex anyway - ndo_set_rx_mode has it, but is atomic.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We are preparing to add API in port.c that adds FDB and MDB entries that
correspond to the port's standalone database. Rename the existing
methods to make it clear that the FDB and MDB entries offloaded come
from the bridge database.
Since the function names lengthen in dsa_slave_switchdev_event_work(),
we place "addr" and "vid" in temporary variables, to shorten those.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lennert Buytenhek explains in commit df02c6ff2e39 ("dsa: fix master
interface allmulti/promisc handling"), dated Nov 2008, that changing the
promiscuity of interfaces that are down (here the master) is broken.
This fact regarding promisc/allmulti has changed since commit
b6c40d68ff64 ("net: only invoke dev->change_rx_flags when device is UP")
by Vlad Yasevich, dated Nov 2013.
Therefore, DSA now has unnecessary complexity to handle master state
transitions from down to up. In fact, syncing the unicast and multicast
addresses can happen completely asynchronously to the administrative
state changes.
This change reduces that complexity by effectively fully reverting
commit df02c6ff2e39 ("dsa: fix master interface allmulti/promisc
handling").
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the DSA_NOTIFIER_TAG_PROTO returns an error, the user space process
which initiated the protocol change exits the kernel processing while
still holding the rtnl_mutex. So any other process attempting to lock
the rtnl_mutex would deadlock after such event.
The error handling of DSA_NOTIFIER_TAG_PROTO was inadvertently changed
by the blamed commit, introducing this regression. We must still call
rtnl_unlock(), and we must still call DSA_NOTIFIER_TAG_PROTO for the old
protocol. The latter is due to the limiting design of notifier chains
for cross-chip operations, which don't have a built-in error recovery
mechanism - we should look into using notifier_call_chain_robust for that.
Fixes: dc452a471dba ("net: dsa: introduce tagger-owned storage for private and shared data")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220228141715.146485-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As FDB isolation cannot be enforced between VLAN-aware bridges in lack
of hardware assistance like extra FID bits, it seems plausible that many
DSA switches cannot do it. Therefore, they need to reject configurations
with multiple VLAN-aware bridges from the two code paths that can
transition towards that state:
- joining a VLAN-aware bridge
- toggling VLAN awareness on an existing bridge
The .port_vlan_filtering method already propagates the netlink extack to
the driver, let's propagate it from .port_bridge_join too, to make sure
that the driver can use the same function for both.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dsa_8021q_bridge_tx_fwd_offload_vid is no longer used just for
bridge TX forwarding offload, it is the private VLAN reserved for
VLAN-unaware bridging in a way that is compatible with FDB isolation.
So just rename it dsa_tag_8021q_bridge_vid.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 switch can't populate the PORT field of the tag_8021q header
when sending a frame to the CPU with a non-zero VBID.
Similar to dsa_find_designated_bridge_port_by_vid() which performs
imprecise RX for VLAN-aware bridges, let's introduce a helper in
tag_8021q for performing imprecise RX based on the VLAN that it has
allocated for a VLAN-unaware bridge.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For VLAN-unaware bridging, tag_8021q uses something perhaps a bit too
tied with the sja1105 switch: each port uses the same pvid which is also
used for standalone operation (a unique one from which the source port
and device ID can be retrieved when packets from that port are forwarded
to the CPU). Since each port has a unique pvid when performing
autonomous forwarding, the switch must be configured for Shared VLAN
Learning (SVL) such that the VLAN ID itself is ignored when performing
FDB lookups. Without SVL, packets would always be flooded, since FDB
lookup in the source port's VLAN would never find any entry.
First of all, to make tag_8021q more palatable to switches which might
not support Shared VLAN Learning, let's just use a common VLAN for all
ports that are under the same bridge.
Secondly, using Shared VLAN Learning means that FDB isolation can never
be enforced. But if all ports under the same VLAN-unaware bridge share
the same VLAN ID, it can.
The disadvantage is that the CPU port can no longer perform precise
source port identification for these packets. But at least we have a
mechanism which has proven to be adequate for that situation: imprecise
RX (dsa_find_designated_bridge_port_by_vid), which is what we use for
termination on VLAN-aware bridges.
The VLAN ID that VLAN-unaware bridges will use with tag_8021q is the
same one as we were previously using for imprecise TX (bridge TX
forwarding offload). It is already allocated, it is just a matter of
using it.
Note that because now all ports under the same bridge share the same
VLAN, the complexity of performing a tag_8021q bridge join decreases
dramatically. We no longer have to install the RX VLAN of a newly
joining port into the port membership of the existing bridge ports.
The newly joining port just becomes a member of the VLAN corresponding
to that bridge, and the other ports are already members of it from when
they joined the bridge themselves. So forwarding works properly.
This means that we can unhook dsa_tag_8021q_bridge_{join,leave} from the
cross-chip notifier level dsa_switch_bridge_{join,leave}. We can put
these calls directly into the sja1105 driver.
With this new mode of operation, a port controlled by tag_8021q can have
two pvids whereas before it could only have one. The pvid for standalone
operation is different from the pvid used for VLAN-unaware bridging.
This is done, again, so that FDB isolation can be enforced.
Let tag_8021q manage this by deleting the standalone pvid when a port
joins a bridge, and restoring it when it leaves it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This change introduces support for installing static FDB entries towards
a bridge port that is a LAG of multiple DSA switch ports, as well as
support for filtering towards the CPU local FDB entries emitted for LAG
interfaces that are bridge ports.
Conceptually, host addresses on LAG ports are identical to what we do
for plain bridge ports. Whereas FDB entries _towards_ a LAG can't simply
be replicated towards all member ports like we do for multicast, or VLAN.
Instead we need new driver API. Hardware usually considers a LAG to be a
"logical port", and sets the entire LAG as the forwarding destination.
The physical egress port selection within the LAG is made by hashing
policy, as usual.
To represent the logical port corresponding to the LAG, we pass by value
a copy of the dsa_lag structure to all switches in the tree that have at
least one port in that LAG.
To illustrate why a refcounted list of FDB entries is needed in struct
dsa_lag, it is enough to say that:
- a LAG may be a bridge port and may therefore receive FDB events even
while it isn't yet offloaded by any DSA interface
- DSA interfaces may be removed from a LAG while that is a bridge port;
we don't want FDB entries lingering around, but we don't want to
remove entries that are still in use, either
For all the cases below to work, the idea is to always keep an FDB entry
on a LAG with a reference count equal to the DSA member ports. So:
- if a port joins a LAG, it requests the bridge to replay the FDB, and
the FDB entries get created, or their refcount gets bumped by one
- if a port leaves a LAG, the FDB replay deletes or decrements refcount
by one
- if an FDB is installed towards a LAG with ports already present, that
entry is created (if it doesn't exist) and its refcount is bumped by
the amount of ports already present in the LAG
echo "Adding FDB entry to bond with existing ports"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link del br0
ip link del bond0
echo "Adding FDB entry to empty bond"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link del br0
ip link del bond0
echo "Adding FDB entry to empty bond, then removing ports one by one"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link set swp1 nomaster
ip link set swp2 nomaster
ip link del br0
ip link del bond0
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When switchdev_handle_fdb_event_to_device() replicates a FDB event
emitted for the bridge or for a LAG port and DSA offloads that, we
should notify back to switchdev that the FDB entry on the original
device is what was offloaded, not on the DSA slave devices that the
event is replicated on.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
By construction, the struct net_device *dev passed to
dsa_slave_switchdev_event_work() via struct dsa_switchdev_event_work
is always a DSA slave device.
Therefore, it is redundant to pass struct dsa_switch and int port
information in the deferred work structure. This can be retrieved at all
times from the provided struct net_device via dsa_slave_to_port().
For the same reason, we can drop the dsa_is_user_port() check in
dsa_fdb_offload_notify().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When the switchdev_handle_fdb_event_to_device() event replication helper
was created, my original thought was that FDB events on LAG interfaces
should most likely be special-cased, not just replicated towards all
switchdev ports beneath that LAG. So this replication helper currently
does not recurse through switchdev lower interfaces of LAG bridge ports,
but rather calls the lag_mod_cb() if that was provided.
No switchdev driver uses this helper for FDB events on LAG interfaces
yet, so that was an assumption which was yet to be tested. It is
certainly usable for that purpose, as my RFC series shows:
https://patchwork.kernel.org/project/netdevbpf/cover/20220210125201.2859463-1-vladimir.oltean@nxp.com/
however this approach is slightly convoluted because:
- the switchdev driver gets a "dev" that isn't its own net device, but
rather the LAG net device. It must call switchdev_lower_dev_find(dev)
in order to get a handle of any of its own net devices (the ones that
pass check_cb).
- in order for FDB entries on LAG ports to be correctly refcounted per
the number of switchdev ports beneath that LAG, we haven't escaped the
need to iterate through the LAG's lower interfaces. Except that is now
the responsibility of the switchdev driver, because the replication
helper just stopped half-way.
So, even though yes, FDB events on LAG bridge ports must be
special-cased, in the end it's simpler to let switchdev_handle_fdb_*
just iterate through the LAG port's switchdev lowers, and let the
switchdev driver figure out that those physical ports are under a LAG.
The switchdev_handle_fdb_event_to_device() helper takes a
"foreign_dev_check" callback so it can figure out whether @dev can
autonomously forward to @foreign_dev. DSA fills this method properly:
if the LAG is offloaded by another port in the same tree as @dev, then
it isn't foreign. If it is a software LAG, it is foreign - forwarding
happens in software.
Whether an interface is foreign or not decides whether the replication
helper will go through the LAG's switchdev lowers or not. Since the
lan966x doesn't properly fill this out, FDB events on software LAG
uppers will get called. By changing lan966x_foreign_dev_check(), we can
suppress them.
Whereas DSA will now start receiving FDB events for its offloaded LAG
uppers, so we need to return -EOPNOTSUPP, since we currently don't do
the right thing for them.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The main purpose of this change is to create a data structure for a LAG
as seen by DSA. This is similar to what we have for bridging - we pass a
copy of this structure by value to ->port_lag_join and ->port_lag_leave.
For now we keep the lag_dev, id and a reference count in it. Future
patches will add a list of FDB entries for the LAG (these also need to
be refcounted to work properly).
The LAG structure is created using dsa_port_lag_create() and destroyed
using dsa_port_lag_destroy(), just like we have for bridging.
Because now, the dsa_lag itself is refcounted, we can simplify
dsa_lag_map() and dsa_lag_unmap(). These functions need to keep a LAG in
the dst->lags array only as long as at least one port uses it. The
refcounting logic inside those functions can be removed now - they are
called only when we should perform the operation.
dsa_lag_dev() is renamed to dsa_lag_by_id() and now returns the dsa_lag
structure instead of the lag_dev net_device.
dsa_lag_foreach_port() now takes the dsa_lag structure as argument.
dst->lags holds an array of dsa_lag structures.
dsa_lag_map() now also saves the dsa_lag->id value, so that linear
walking of dst->lags in drivers using dsa_lag_id() is no longer
necessary. They can just look at lag.id.
dsa_port_lag_id_get() is a helper, similar to dsa_port_bridge_num_get(),
which can be used by drivers to get the LAG ID assigned by DSA to a
given port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The DSA LAG API will be changed to become more similar with the bridge
data structures, where struct dsa_bridge holds an unsigned int num,
which is generated by DSA and is one-based. We have a similar thing
going with the DSA LAG, except that isn't stored anywhere, it is
calculated dynamically by dsa_lag_id() by iterating through dst->lags.
The idea of encoding an invalid (or not requested) LAG ID as zero for
the purpose of simplifying checks in drivers means that the LAG IDs
passed by DSA to drivers need to be one-based too. So back-and-forth
conversion is needed when indexing the dst->lags array, as well as in
drivers which assume a zero-based index.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In preparation of converting struct net_device *dp->lag_dev into a
struct dsa_lag *dp->lag, we need to rename, for consistency purposes,
all occurrences of the "lag" variable in the DSA core to "lag_dev".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Ensures that the DSA switch driver gets notified of changes to the
BR_PORT_LOCKED flag as well, for the case when a DSA port joins or
leaves a LAG that is a bridge port.
Signed-off-by: Hans Schultz <schultz.hans+netdev@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If a bridged port is not offloaded to the hardware - either because the
underlying driver does not implement the port_bridge_{join,leave} ops,
or because the operation failed - then its dp->bridge pointer will be
NULL when dsa_port_bridge_leave() is called. Avoid dereferncing NULL.
This fixes the following splat when removing a port from a bridge:
Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP
CPU: 3 PID: 1119 Comm: brctl Tainted: G O 5.17.0-rc4-rt4 #1
Call trace:
dsa_port_bridge_leave+0x8c/0x1e4
dsa_slave_changeupper+0x40/0x170
dsa_slave_netdevice_event+0x494/0x4d4
notifier_call_chain+0x80/0xe0
raw_notifier_call_chain+0x1c/0x24
call_netdevice_notifiers_info+0x5c/0xac
__netdev_upper_dev_unlink+0xa4/0x200
netdev_upper_dev_unlink+0x38/0x60
del_nbp+0x1b0/0x300
br_del_if+0x38/0x114
add_del_if+0x60/0xa0
br_ioctl_stub+0x128/0x2dc
br_ioctl_call+0x68/0xb0
dev_ifsioc+0x390/0x554
dev_ioctl+0x128/0x400
sock_do_ioctl+0xb4/0xf4
sock_ioctl+0x12c/0x4e0
__arm64_sys_ioctl+0xa8/0xf0
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x28/0x84
el0_svc+0x1c/0x50
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x17c/0x180
Code: f9402f00 f0002261 f9401302 913cc021 (a9401404)
---[ end trace 0000000000000000 ]---
Fixes: d3eed0e57d5d ("net: dsa: keep the bridge_dev and bridge_num as part of the same structure")
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220221203539.310690-1-alvin@pqrs.dk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>