47f4f657ac
11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Petr Mladek
|
7e35e4eb7e |
livepatch: Keep replaced patches until post_patch callback is called
Pre/post (un)patch callbacks might manipulate the system state. Cumulative livepatches might need to take over the changes made by the replaced ones. For this they might need to access some data stored or referenced by the old livepatches. Therefore the replaced livepatches have to stay around until post_patch() callback is called. It is achieved by calling the free functions later. It is the same location where disabled livepatches have already been freed. Link: http://lkml.kernel.org/r/20191030154313.13263-2-pmladek@suse.com To: Jiri Kosina <jikos@kernel.org> Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com> Cc: Nicolai Stange <nstange@suse.de> Cc: live-patching@vger.kernel.org Cc: linux-kernel@vger.kernel.org Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Petr Mladek <pmladek@suse.com> |
||
Petr Mladek
|
ecba29f434 |
livepatch: Introduce klp_for_each_patch macro
There are already macros to iterate over struct klp_func and klp_object. Add also klp_for_each_patch(). But make it internal because also klp_patches list is internal. Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Signed-off-by: Petr Mladek <pmladek@suse.com> |
||
Petr Mladek
|
d697bad588 |
livepatch: Remove Nop structures when unused
Replaced patches are removed from the stack when the transition is finished. It means that Nop structures will never be needed again and can be removed. Why should we care? + Nop structures give the impression that the function is patched even though the ftrace handler has no effect. + Ftrace handlers do not come for free. They cause slowdown that might be visible in some workloads. The ftrace-related slowdown might actually be the reason why the function is no longer patched in the new cumulative patch. One would expect that cumulative patch would help solve these problems as well. + Cumulative patches are supposed to replace any earlier version of the patch. The amount of NOPs depends on which version was replaced. This multiplies the amount of scenarios that might happen. One might say that NOPs are innocent. But there are even optimized NOP instructions for different processors, for example, see arch/x86/kernel/alternative.c. And klp_ftrace_handler() is much more complicated. + It sounds natural to clean up a mess that is no longer needed. It could only be worse if we do not do it. This patch allows to unpatch and free the dynamic structures independently when the transition finishes. The free part is a bit tricky because kobject free callbacks are called asynchronously. We could not wait for them easily. Fortunately, we do not have to. Any further access can be avoided by removing them from the dynamic lists. Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Jason Baron
|
e1452b607c |
livepatch: Add atomic replace
Sometimes we would like to revert a particular fix. Currently, this is not easy because we want to keep all other fixes active and we could revert only the last applied patch. One solution would be to apply new patch that implemented all the reverted functions like in the original code. It would work as expected but there will be unnecessary redirections. In addition, it would also require knowing which functions need to be reverted at build time. Another problem is when there are many patches that touch the same functions. There might be dependencies between patches that are not enforced on the kernel side. Also it might be pretty hard to actually prepare the patch and ensure compatibility with the other patches. Atomic replace && cumulative patches: A better solution would be to create cumulative patch and say that it replaces all older ones. This patch adds a new "replace" flag to struct klp_patch. When it is enabled, a set of 'nop' klp_func will be dynamically created for all functions that are already being patched but that will no longer be modified by the new patch. They are used as a new target during the patch transition. The idea is to handle Nops' structures like the static ones. When the dynamic structures are allocated, we initialize all values that are normally statically defined. The only exception is "new_func" in struct klp_func. It has to point to the original function and the address is known only when the object (module) is loaded. Note that we really need to set it. The address is used, for example, in klp_check_stack_func(). Nevertheless we still need to distinguish the dynamically allocated structures in some operations. For this, we add "nop" flag into struct klp_func and "dynamic" flag into struct klp_object. They need special handling in the following situations: + The structures are added into the lists of objects and functions immediately. In fact, the lists were created for this purpose. + The address of the original function is known only when the patched object (module) is loaded. Therefore it is copied later in klp_init_object_loaded(). + The ftrace handler must not set PC to func->new_func. It would cause infinite loop because the address points back to the beginning of the original function. + The various free() functions must free the structure itself. Note that other ways to detect the dynamic structures are not considered safe. For example, even the statically defined struct klp_object might include empty funcs array. It might be there just to run some callbacks. Also note that the safe iterator must be used in the free() functions. Otherwise already freed structures might get accessed. Special callbacks handling: The callbacks from the replaced patches are _not_ called by intention. It would be pretty hard to define a reasonable semantic and implement it. It might even be counter-productive. The new patch is cumulative. It is supposed to include most of the changes from older patches. In most cases, it will not want to call pre_unpatch() post_unpatch() callbacks from the replaced patches. It would disable/break things for no good reasons. Also it should be easier to handle various scenarios in a single script in the new patch than think about interactions caused by running many scripts from older patches. Not to say that the old scripts even would not expect to be called in this situation. Removing replaced patches: One nice effect of the cumulative patches is that the code from the older patches is no longer used. Therefore the replaced patches can be removed. It has several advantages: + Nops' structs will no longer be necessary and might be removed. This would save memory, restore performance (no ftrace handler), allow clear view on what is really patched. + Disabling the patch will cause using the original code everywhere. Therefore the livepatch callbacks could handle only one scenario. Note that the complication is already complex enough when the patch gets enabled. It is currently solved by calling callbacks only from the new cumulative patch. + The state is clean in both the sysfs interface and lsmod. The modules with the replaced livepatches might even get removed from the system. Some people actually expected this behavior from the beginning. After all a cumulative patch is supposed to "completely" replace an existing one. It is like when a new version of an application replaces an older one. This patch does the first step. It removes the replaced patches from the list of patches. It is safe. The consistency model ensures that they are no longer used. By other words, each process works only with the structures from klp_transition_patch. The removal is done by a special function. It combines actions done by __disable_patch() and klp_complete_transition(). But it is a fast track without all the transaction-related stuff. Signed-off-by: Jason Baron <jbaron@akamai.com> [pmladek@suse.com: Split, reuse existing code, simplified] Signed-off-by: Petr Mladek <pmladek@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jessica Yu <jeyu@kernel.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Miroslav Benes <mbenes@suse.cz> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Petr Mladek
|
958ef1e39d |
livepatch: Simplify API by removing registration step
The possibility to re-enable a registered patch was useful for immediate patches where the livepatch module had to stay until the system reboot. The improved consistency model allows to achieve the same result by unloading and loading the livepatch module again. Also we are going to add a feature called atomic replace. It will allow to create a patch that would replace all already registered patches. The aim is to handle dependent patches more securely. It will obsolete the stack of patches that helped to handle the dependencies so far. Then it might be unclear when a cumulative patch re-enabling is safe. It would be complicated to support the many modes. Instead we could actually make the API and code easier to understand. Therefore, remove the two step public API. All the checks and init calls are moved from klp_register_patch() to klp_enabled_patch(). Also the patch is automatically freed, including the sysfs interface when the transition to the disabled state is completed. As a result, there is never a disabled patch on the top of the stack. Therefore we do not need to check the stack in __klp_enable_patch(). And we could simplify the check in __klp_disable_patch(). Also the API and logic is much easier. It is enough to call klp_enable_patch() in module_init() call. The patch can be disabled by writing '0' into /sys/kernel/livepatch/<patch>/enabled. Then the module can be removed once the transition finishes and sysfs interface is freed. The only problem is how to free the structures and kobjects safely. The operation is triggered from the sysfs interface. We could not put the related kobject from there because it would cause lock inversion between klp_mutex and kernfs locks, see kn->count lockdep map. Therefore, offload the free task to a workqueue. It is perfectly fine: + The patch can no longer be used in the livepatch operations. + The module could not be removed until the free operation finishes and module_put() is called. + The operation is asynchronous already when the first klp_try_complete_transition() fails and another call is queued with a delay. Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Petr Mladek
|
68007289bf |
livepatch: Don't block the removal of patches loaded after a forced transition
module_put() is currently never called in klp_complete_transition() when klp_force is set. As a result, we might keep the reference count even when klp_enable_patch() fails and klp_cancel_transition() is called. This might give the impression that a module might get blocked in some strange init state. Fortunately, it is not the case. The reference count is ignored when mod->init fails and erroneous modules are always removed. Anyway, this might be confusing. Instead, this patch moves the global klp_forced flag into struct klp_patch. As a result, we block only modules that might still be in use after a forced transition. Newly loaded livepatches might be eventually completely removed later. It is not a big deal. But the code is at least consistent with the reality. Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Linus Torvalds
|
0ef76878cf |
Merge branch 'for-linus' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching
Pull livepatching updates from Jiri Kosina: - shadow variables support, allowing livepatches to associate new "shadow" fields to existing data structures, from Joe Lawrence - pre/post patch callbacks API, allowing livepatch writers to register callbacks to be called before and after patch application, from Joe Lawrence * 'for-linus' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: __klp_disable_patch() should never be called for disabled patches livepatch: Correctly call klp_post_unpatch_callback() in error paths livepatch: add transition notices livepatch: move transition "complete" notice into klp_complete_transition() livepatch: add (un)patch callbacks livepatch: Small shadow variable documentation fixes livepatch: __klp_shadow_get_or_alloc() is local to shadow.c livepatch: introduce shadow variable API |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Petr Mladek
|
5aaf1ab553 |
livepatch: Correctly call klp_post_unpatch_callback() in error paths
The post_unpatch_enabled flag in struct klp_callbacks is set when a pre-patch callback successfully executes, indicating that we need to call a corresponding post-unpatch callback when the patch is reverted. This is true for ordinary patch disable as well as the error paths of klp_patch_object() callers. As currently coded, we inadvertently execute the post-patch callback twice in klp_module_coming() when klp_patch_object() fails: - We explicitly call klp_post_unpatch_callback() for the failed object - We call it again for the same object (and all the others) via klp_cleanup_module_patches_limited() We should clear the flag in klp_post_unpatch_callback() to make sure that the callback is not called twice. It makes the API more safe. (We could have removed the callback from the former error path as it would be covered by the latter call, but I think that is is cleaner to clear the post_unpatch_enabled after its invoked. For example, someone might later decide to call the callback only when obj->patched flag is set.) There is another mistake in the error path of klp_coming_module() in which it skips the post-unpatch callback for the klp_transition_patch. However, the pre-patch callback was called even for this patch, so be sure to make the corresponding callbacks for all patches. Finally, I used this opportunity to make klp_pre_patch_callback() more readable. [jkosina@suse.cz: incorporate changelog wording changes proposed by Joe Lawrence] Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Joe Lawrence
|
93862e385d |
livepatch: add (un)patch callbacks
Provide livepatch modules a klp_object (un)patching notification mechanism. Pre and post-(un)patch callbacks allow livepatch modules to setup or synchronize changes that would be difficult to support in only patched-or-unpatched code contexts. Callbacks can be registered for target module or vmlinux klp_objects, but each implementation is klp_object specific. - Pre-(un)patch callbacks run before any (un)patching transition starts. - Post-(un)patch callbacks run once an object has been (un)patched and the klp_patch fully transitioned to its target state. Example use cases include modification of global data and registration of newly available services/handlers. See Documentation/livepatch/callbacks.txt for details and samples/livepatch/ for examples. Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Jiri Kosina
|
10517429b5 |
livepatch: make klp_mutex proper part of API
klp_mutex is shared between core.c and transition.c, and as such would rather be properly located in a header so that we don't have to play 'extern' games from .c sources. This also silences sparse warning (wrongly) suggesting that klp_mutex should be defined static. Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |