6 Commits

Author SHA1 Message Date
Joe Perches
447a5647c9 treewide: Align function definition open/close braces
Some functions definitions have either the initial open brace and/or
the closing brace outside of column 1.

Move those braces to column 1.

This allows various function analyzers like gnu complexity to work
properly for these modified functions.

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Nicolin Chen <nicoleotsuka@gmail.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-03-26 11:13:09 +02:00
Markus Stockhausen
a582564b24 md/raid6 algorithms: xor_syndrome() for SSE2
The second and (last) optimized XOR syndrome calculation. This version
supports right and left side optimization. All CPUs with architecture
older than Haswell will benefit from it.

It should be noted that SSE2 movntdq kills performance for memory areas
that are read and written simultaneously in chunks smaller than cache
line size. So use movdqa instead for P/Q writes in sse21 and sse22 XOR
functions.

Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2015-04-22 08:00:42 +10:00
Markus Stockhausen
fe5cbc6e06 md/raid6 algorithms: delta syndrome functions
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation

Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.

xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.

1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.

2) modify any block with start <= block <= stop

3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.

Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:

1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.

2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.

The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.

With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:

1) calculation of P/Q for the upper pages

2) continuation of Q for the lower (empty) pages

Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2015-04-22 08:00:41 +10:00
Yuanhan Liu
4f8c55c5ad lib/raid6: build proper files on corresponding arch
sse and avx2 stuff only exist on x86 arch, and we don't need to build
altivec on x86. And we can do that at lib/raid6/Makefile.

Proposed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-12-13 19:51:04 +11:00
NeilBrown
a8e026c785 Further tidyup of raid6 naming in lib/raid6
Rename raid6/raid6x86.h to raid6/x86.h
and modify some comments.

Signed-off-by: NeilBrown <neilb@suse.de>
2010-08-12 06:44:54 +10:00
David Woodhouse
cc4589ebfa Rename raid6 files now they're in a 'raid6' directory.
Linus asks 'why "raid6" twice?'. No reason.

Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-08-11 00:19:05 +01:00