43205 Commits

Author SHA1 Message Date
Hou Wenlong
4ad980aea7 KVM: x86/mmu: Cleanup range-based flushing for given page
Use the new kvm_flush_remote_tlbs_gfn() helper to cleanup the call sites
of range-based flushing for given page, which makes the code clear.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/593ee1a876ece0e819191c0b23f56b940d6686db.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:48 -08:00
Hou Wenlong
3cdf93746f KVM: x86/mmu: Fix wrong gfn range of tlb flushing in validate_direct_spte()
The spte pointing to the children SP is dropped, so the whole gfn range
covered by the children SP should be flushed. Although, Hyper-V may
treat a 1-page flush the same if the address points to a huge page, it
still would be better to use the correct size of huge page.

Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/5f297c566f7d7ff2ea6da3c66d050f69ce1b8ede.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:48 -08:00
Hou Wenlong
1b2dc73604 KVM: x86/mmu: Fix wrong start gfn of tlb flushing with range
When a spte is dropped, the start gfn of tlb flushing should be the gfn
of spte not the base gfn of SP which contains the spte. Also introduce a
helper function to do range-based flushing when a spte is dropped, which
would help prevent future buggy use of
kvm_flush_remote_tlbs_with_address() in such case.

Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/72ac2169a261976f00c1703e88cda676dfb960f5.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:47 -08:00
Hou Wenlong
1e203847aa KVM: x86/mmu: Reduce gfn range of tlb flushing in tdp_mmu_map_handle_target_level()
Since the children SP is zapped, the gfn range of tlb flushing should be
the range covered by children SP not parent SP. Replace sp->gfn which is
the base gfn of parent SP with iter->gfn and use the correct size of gfn
range for children SP to reduce tlb flushing range.

Fixes: bb95dfb9e2df ("KVM: x86/mmu: Defer TLB flush to caller when freeing TDP MMU shadow pages")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/528ab9c784a486e9ce05f61462ad9260796a8732.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:46 -08:00
Hou Wenlong
9ffe926537 KVM: x86/mmu: Fix wrong gfn range of tlb flushing in kvm_set_pte_rmapp()
When the spte of hupe page is dropped in kvm_set_pte_rmapp(), the whole
gfn range covered by the spte should be flushed. However,
rmap_walk_init_level() doesn't align down the gfn for new level like tdp
iterator does, then the gfn used in kvm_set_pte_rmapp() is not the base
gfn of huge page. And the size of gfn range is wrong too for huge page.
Use the base gfn of huge page and the size of huge page for flushing
tlbs for huge page. Also introduce a helper function to flush the given
page (huge or not) of guest memory, which would help prevent future
buggy use of kvm_flush_remote_tlbs_with_address() in such case.

Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/0ce24d7078fa5f1f8d64b0c59826c50f32f8065e.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:46 -08:00
Hou Wenlong
c667a3baed KVM: x86/mmu: Move round_gfn_for_level() helper into mmu_internal.h
Rounding down the GFN to a huge page size is a common pattern throughout
KVM, so move round_gfn_for_level() helper in tdp_iter.c to
mmu_internal.h for common usage. Also rename it as gfn_round_for_level()
to use gfn_* prefix and clean up the other call sites.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/415c64782f27444898db650e21cf28eeb6441dfa.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:45 -08:00
Wei Liu
a7e48ef77f KVM: x86/mmu: fix an incorrect comment in kvm_mmu_new_pgd()
There is no function named kvm_mmu_ensure_valid_pgd().

Fix the comment and remove the pair of braces to conform to Linux kernel
coding style.

Signed-off-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221128214709.224710-1-wei.liu@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:45 -08:00
Lai Jiangshan
9e3fbdfd9b kvm: x86/mmu: Don't clear write flooding for direct SP
Although there is no harm, but there is no point to clear write
flooding for direct SP.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100310.6700-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:44 -08:00
Lai Jiangshan
dc1ae59fc4 kvm: x86/mmu: Rename SPTE_TDP_AD_ENABLED_MASK to SPTE_TDP_AD_ENABLED
SPTE_TDP_AD_ENABLED_MASK, SPTE_TDP_AD_DISABLED_MASK and
SPTE_TDP_AD_WRPROT_ONLY_MASK are actual value, not mask.

Remove "MASK" from their names.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100204.6521-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:44 -08:00
Paolo Bonzini
f15a87c006 Merge branch 'kvm-lapic-fix-and-cleanup' into HEAD
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.

The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-24 06:08:01 -05:00
Paolo Bonzini
dc7c31e922 Merge branch 'kvm-v6.2-rc4-fixes' into HEAD
ARM:

* Fix the PMCR_EL0 reset value after the PMU rework

* Correctly handle S2 fault triggered by a S1 page table walk
  by not always classifying it as a write, as this breaks on
  R/O memslots

* Document why we cannot exit with KVM_EXIT_MMIO when taking
  a write fault from a S1 PTW on a R/O memslot

* Put the Apple M2 on the naughty list for not being able to
  correctly implement the vgic SEIS feature, just like the M1
  before it

* Reviewer updates: Alex is stepping down, replaced by Zenghui

x86:

* Fix various rare locking issues in Xen emulation and teach lockdep
  to detect them

* Documentation improvements

* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
2023-01-24 06:05:23 -05:00
Sean Christopherson
72c70ceeaf KVM: x86: Add helpers to recalc physical vs. logical optimized APIC maps
Move the guts of kvm_recalculate_apic_map()'s main loop to two separate
helpers to handle recalculating the physical and logical pieces of the
optimized map.  Having 100+ lines of code in the for-loop makes it hard
to understand what is being calculated where.

No functional change intended.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:35 -05:00
Greg Edwards
d471bd853d KVM: x86: Allow APICv APIC ID inhibit to be cleared
Legacy kernels prior to commit 4399c03c6780 ("x86/apic: Remove
verify_local_APIC()") write the APIC ID of the boot CPU twice to verify
a functioning local APIC.  This results in APIC acceleration inhibited
on these kernels for reason APICV_INHIBIT_REASON_APIC_ID_MODIFIED.

Allow the APICV_INHIBIT_REASON_APIC_ID_MODIFIED inhibit reason to be
cleared if/when all APICs in xAPIC mode set their APIC ID back to the
expected vcpu_id value.

Fold the functionality previously in kvm_lapic_xapic_id_updated() into
kvm_recalculate_apic_map(), as this allows examining all APICs in one
pass.

Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Signed-off-by: Greg Edwards <gedwards@ddn.com>
Link: https://lore.kernel.org/r/20221117183247.94314-1-gedwards@ddn.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:35 -05:00
Sean Christopherson
b3f257a846 KVM: x86: Track required APICv inhibits with variable, not callback
Track the per-vendor required APICv inhibits with a variable instead of
calling into vendor code every time KVM wants to query the set of
required inhibits.  The required inhibits are a property of the vendor's
virtualization architecture, i.e. are 100% static.

Using a variable allows the compiler to inline the check, e.g. generate
a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking
inhibits for performance reasons.

No functional change intended.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:34 -05:00
Sean Christopherson
e2ed3e64a2 Revert "KVM: SVM: Do not throw warning when calling avic_vcpu_load on a running vcpu"
Turns out that some warnings exist for good reasons.  Restore the warning
in avic_vcpu_load() that guards against calling avic_vcpu_load() on a
running vCPU now that KVM avoids doing so when switching between x2APIC
and xAPIC.  The entire point of the WARN is to highlight that KVM should
not be reloading an AVIC.

Opportunistically convert the WARN_ON() to WARN_ON_ONCE() to avoid
spamming the kernel if it does fire.

This reverts commit c0caeee65af3944b7b8abbf566e7cc1fae15c775.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:34 -05:00
Sean Christopherson
a790e338c7 KVM: SVM: Ignore writes to Remote Read Data on AVIC write traps
Drop writes to APIC_RRR, a.k.a. Remote Read Data Register, on AVIC
unaccelerated write traps.  The register is read-only and isn't emulated
by KVM.  Sending the register through kvm_apic_write_nodecode() will
result in screaming when x2APIC is enabled due to the unexpected failure
to retrieve the MSR (KVM expects that only "legal" accesses will trap).

Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:34 -05:00
Sean Christopherson
bbfc7aa62a KVM: SVM: Handle multiple logical targets in AVIC kick fastpath
Iterate over all target logical IDs in the AVIC kick fastpath instead of
bailing if there is more than one target.  Now that KVM inhibits AVIC if
vCPUs aren't mapped 1:1 with logical IDs, each bit in the destination is
guaranteed to match to at most one vCPU, i.e. iterating over the bitmap
is guaranteed to kick each valid target exactly once.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:33 -05:00
Sean Christopherson
1808c95095 KVM: SVM: Require logical ID to be power-of-2 for AVIC entry
Do not modify AVIC's logical ID table if the logical ID portion of the
LDR is not a power-of-2, i.e. if the LDR has multiple bits set.  Taking
only the first bit means that KVM will fail to match MDAs that intersect
with "higher" bits in the "ID"

The "ID" acts as a bitmap, but is referred to as an ID because there's an
implicit, unenforced "requirement" that software only set one bit.  This
edge case is arguably out-of-spec behavior, but KVM cleanly handles it
in all other cases, e.g. the optimized logical map (and AVIC!) is also
disabled in this scenario.

Refactor the code to consolidate the checks, and so that the code looks
more like avic_kick_target_vcpus_fast().

Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC")
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:33 -05:00
Sean Christopherson
4f160b7bd4 KVM: SVM: Update svm->ldr_reg cache even if LDR is "bad"
Update SVM's cache of the LDR even if the new value is "bad".  Leaving
stale information in the cache can result in KVM missing updates and/or
invalidating the wrong entry, e.g. if avic_invalidate_logical_id_entry()
is triggered after a different vCPU has "claimed" the old LDR.

Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:32 -05:00
Sean Christopherson
1ba59a4454 KVM: SVM: Always update local APIC on writes to logical dest register
Update the vCPU's local (virtual) APIC on LDR writes even if the write
"fails".  The APIC needs to recalc the optimized logical map even if the
LDR is invalid or zero, e.g. if the guest clears its LDR, the optimized
map will be left as is and the vCPU will receive interrupts using its
old LDR.

Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:32 -05:00
Sean Christopherson
9a364857ab KVM: SVM: Inhibit AVIC if vCPUs are aliased in logical mode
Inhibit SVM's AVIC if multiple vCPUs are aliased to the same logical ID.
Architecturally, all CPUs whose logical ID matches the MDA are supposed
to receive the interrupt; overwriting existing entries in AVIC's
logical=>physical map can result in missed IPIs.

Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:31 -05:00
Sean Christopherson
5063c41beb KVM: x86: Inhibit APICv/AVIC if the optimized physical map is disabled
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM
KVM provides consistent APIC behavior if xAPIC IDs are aliased due to
vcpu_id being truncated and the x2APIC hotplug hack isn't enabled.  If
the hotplug hack is disabled, events that are emulated by KVM will follow
architectural behavior (all matching vCPUs receive events, even if the
"match" is due to truncation), whereas APICv and AVIC will deliver events
only to the first matching vCPU, i.e. the vCPU that matches without
truncation.

Note, the "extra" inhibit is needed because  KVM deliberately ignores
mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit
so that large VMs (>255 vCPUs) can run with APICv/AVIC.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:31 -05:00
Sean Christopherson
5b84b02917 KVM: x86: Honor architectural behavior for aliased 8-bit APIC IDs
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs
for x2APIC.  If 32-bit IDs are not enabled, disable the optimized map to
honor x86 architectural behavior if multiple vCPUs shared a physical APIC
ID.  As called out in the changelog that added the hack, all CPUs whose
(possibly truncated) APIC ID matches the target are supposed to receive
the IPI.

  KVM intentionally differs from real hardware, because real hardware
  (Knights Landing) does just "x2apic_id & 0xff" to decide whether to
  accept the interrupt in xAPIC mode and it can deliver one interrupt to
  more than one physical destination, e.g. 0x123 to 0x123 and 0x23.

Applying the hack even when x2APIC is not fully enabled means KVM doesn't
correctly handle scenarios where the guest has aliased xAPIC IDs across
multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any
interrupts.  It's extremely unlikely any real world guest aliases APIC
IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the
lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which
vCPU is "normal".

Furthermore, the hack is _not_ guaranteed to work!  The hack works if and
only if the optimized APIC map is successfully allocated.  If the map
allocation fails (unlikely), KVM will fall back to its unoptimized
behavior, which _does_ honor the architectural behavior.

Pivot on 32-bit x2APIC IDs being enabled as that is required to take
advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't
break existing setups unless they are way, way off in the weeds.

And an entry in KVM's errata to document the hack.  Alternatively, KVM
could provide an actual x2APIC quirk and document the hack that way, but
there's unlikely to ever be a use case for disabling the quirk.  Go the
errata route to avoid having to validate a quirk no one cares about.

Fixes: 5bd5db385b3e ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:30 -05:00
Sean Christopherson
2970052481 KVM: x86: Disable APIC logical map if vCPUs are aliased in logical mode
Disable the optimized APIC logical map if multiple vCPUs are aliased to
the same logical ID.  Architecturally, all CPUs whose logical ID matches
the MDA are supposed to receive the interrupt; overwriting existing map
entries can result in missed IPIs.

Fixes: 1e08ec4a130e ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:30 -05:00
Sean Christopherson
2bf934aadc KVM: x86: Disable APIC logical map if logical ID covers multiple MDAs
Disable the optimized APIC logical map if a logical ID covers multiple
MDAs, i.e. if a vCPU has multiple bits set in its ID.  In logical mode,
events match if "ID & MDA != 0", i.e. creating an entry for only the
first bit can cause interrupts to be missed.

Note, creating an entry for every bit is also wrong as KVM would generate
IPIs for every matching bit.  It would be possible to teach KVM to play
nice with this edge case, but it is very much an edge case and probably
not used in any real world OS, i.e. it's not worth optimizing.

Fixes: 1e08ec4a130e ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:30 -05:00
Sean Christopherson
76e527509d KVM: x86: Skip redundant x2APIC logical mode optimized cluster setup
Skip the optimized cluster[] setup for x2APIC logical mode, as KVM reuses
the optimized map's phys_map[] and doesn't actually need to insert the
target apic into the cluster[].  The LDR is derived from the x2APIC ID,
and both are read-only in KVM, thus the vCPU's cluster[ldr] is guaranteed
to be the same entry as the vCPU's phys_map[x2apic_id] entry.

Skipping the unnecessary setup will allow a future fix for aliased xAPIC
logical IDs to simply require that cluster[ldr] is non-NULL, i.e. won't
have to special case x2APIC.

Alternatively, the future check could allow "cluster[ldr] == apic", but
that ends up being terribly confusing because cluster[ldr] is only set
at the very end, i.e. it's only possible due to x2APIC's shenanigans.

Another alternative would be to send x2APIC down a separate path _after_
the calculation and then assert that all of the above, but the resulting
code is rather messy, and it's arguably unnecessary since asserting that
the actual LDR matches the expected LDR means that simply testing that
interrupts are delivered correctly provides the same guarantees.

Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:29 -05:00
Sean Christopherson
3536690101 KVM: x86: Explicitly track all possibilities for APIC map's logical modes
Track all possibilities for the optimized APIC map's logical modes
instead of overloading the pseudo-bitmap and treating any "unknown" value
as "invalid".

As documented by the now-stale comment above the mode values, the values
did have meaning when the optimized map was originally added.  That
dependent logical was removed by commit e45115b62f9a ("KVM: x86: use
physical LAPIC array for logical x2APIC"), but the obfuscated behavior
and its comment were left behind.

Opportunistically rename "mode" to "logical_mode", partly to make it
clear that the "disabled" case applies only to the logical map, but also
to prove that there is no lurking code that expects "mode" to be a bitmap.

Functionally, this is a glorified nop.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:29 -05:00
Sean Christopherson
6ea567ca00 KVM: x86: Explicitly skip optimized logical map setup if vCPU's LDR==0
Explicitly skip the optimized map setup if the vCPU's LDR is '0', i.e. if
the vCPU will never respond to logical mode interrupts.  KVM already
skips setup in this case, but relies on kvm_apic_map_get_logical_dest()
to generate mask==0.  KVM still needs the mask=0 check as a non-zero LDR
can yield mask==0 depending on the mode, but explicitly handling the LDR
will make it simpler to clean up the logical mode tracking in the future.

No functional change intended.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:28 -05:00
Sean Christopherson
1d22a597b3 KVM: SVM: Add helper to perform final AVIC "kick" of single vCPU
Add a helper to perform the final kick, two instances of the ICR decoding
is one too many.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:28 -05:00
Sean Christopherson
8578e4512d KVM: SVM: Document that vCPU ID == APIC ID in AVIC kick fastpatch
Document that AVIC is inhibited if any vCPU's APIC ID diverges from its
vCPU ID, i.e. that there's no need to check for a destination match in
the AVIC kick fast path.

Opportunistically tweak comments to remove "guest bug", as that suggests
KVM is punting on error handling, which is not the case.  Targeting a
non-existent vCPU or no vCPUs _may_ be a guest software bug, but whether
or not it's a guest bug is irrelevant.  Such behavior is architecturally
legal and thus needs to faithfully emulated by KVM (and it is).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:27 -05:00
Sean Christopherson
f9829c9076 Revert "KVM: SVM: Use target APIC ID to complete x2AVIC IRQs when possible"
Due to a likely mismerge of patches, KVM ended up with a superfluous
commit to "enable" AVIC's fast path for x2AVIC mode.  Even worse, the
superfluous commit has several bugs and creates a nasty local shadow
variable.

Rather than fix the bugs piece-by-piece[*] to achieve the same end
result, revert the patch wholesale.

Opportunistically add a comment documenting the x2AVIC dependencies.

This reverts commit 8c9e639da435874fb845c4d296ce55664071ea7a.

[*] https://lore.kernel.org/all/YxEP7ZBRIuFWhnYJ@google.com

Fixes: 8c9e639da435 ("KVM: SVM: Use target APIC ID to complete x2AVIC IRQs when possible")
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:27 -05:00
Suravee Suthikulpanit
da3fb46d22 KVM: SVM: Fix x2APIC Logical ID calculation for avic_kick_target_vcpus_fast
For X2APIC ID in cluster mode, the logical ID is bit [15:0].

Fixes: 603ccef42ce9 ("KVM: x86: SVM: fix avic_kick_target_vcpus_fast")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:26 -05:00
Sean Christopherson
a879a88e05 KVM: SVM: Compute dest based on sender's x2APIC status for AVIC kick
Compute the destination from ICRH using the sender's x2APIC status, not
each (potential) target's x2APIC status.

Fixes: c514d3a348ac ("KVM: SVM: Update avic_kick_target_vcpus to support 32-bit APIC ID")
Cc: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:26 -05:00
Sean Christopherson
f628a34a9d KVM: SVM: Replace "avic_mode" enum with "x2avic_enabled" boolean
Replace the "avic_mode" enum with a single bool to track whether or not
x2AVIC is enabled.  KVM already has "apicv_enabled" that tracks if any
flavor of AVIC is enabled, i.e. AVIC_MODE_NONE and AVIC_MODE_X1 are
redundant and unnecessary noise.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:26 -05:00
Sean Christopherson
2008fab345 KVM: x86: Inhibit APIC memslot if x2APIC and AVIC are enabled
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's
AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with
x2APIC enabled.  On AMD, if its "hybrid" mode is enabled (AVIC is enabled
when x2APIC is enabled even without x2AVIC support), keeping the APIC
access page memslot results in the guest being able to access the virtual
APIC page as x2APIC is fully emulated by KVM.  I.e. hardware isn't aware
that the guest is operating in x2APIC mode.

Exempt nested SVM's update of APICv state from the new logic as x2APIC
can't be toggled on VM-Exit.  In practice, invoking the x2APIC logic
should be harmless precisely because it should be a glorified nop, but
play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU
lock.

Intel doesn't suffer from the same issue as APICv has fully independent
VMCS controls for xAPIC vs. x2APIC virtualization.  Technically, KVM
should provide bus error semantics and not memory semantics for the APIC
page when x2APIC is enabled, but KVM already provides memory semantics in
other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware
disabled (via APIC_BASE MSR).

Note, checking apic_access_memslot_enabled without taking locks relies
it being set during vCPU creation (before kvm_vcpu_reset()).  vCPUs can
race to set the inhibit and delete the memslot, i.e. can get false
positives, but can't get false negatives as apic_access_memslot_enabled
can't be toggled "on" once any vCPU reaches KVM_RUN.

Opportunistically drop the "can" while updating avic_activate_vmcb()'s
comment, i.e. to state that KVM _does_ support the hybrid mode.  Move
the "Note:" down a line to conform to preferred kernel/KVM multi-line
comment style.

Opportunistically update the apicv_update_lock comment, as it isn't
actually used to protect apic_access_memslot_enabled (which is protected
by slots_lock).

Fixes: 0e311d33bfbe ("KVM: SVM: Introduce hybrid-AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:25 -05:00
Sean Christopherson
c482f2cebe KVM: x86: Move APIC access page helper to common x86 code
Move the APIC access page allocation helper function to common x86 code,
the allocation routine is virtually identical between APICv (VMX) and
AVIC (SVM).  Keep APICv's gfn_to_page() + put_page() sequence, which
verifies that a backing page can be allocated, i.e. that the system isn't
under heavy memory pressure.  Forcing the backing page to be populated
isn't strictly necessary, but skipping the effective prefetch only delays
the inevitable.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:25 -05:00
Sean Christopherson
1459f5c6b8 KVM: x86: Handle APICv updates for APIC "mode" changes via request
Use KVM_REQ_UPDATE_APICV to react to APIC "mode" changes, i.e. to handle
the APIC being hardware enabled/disabled and/or x2APIC being toggled.
There is no need to immediately update APICv state, the only requirement
is that APICv be updating prior to the next VM-Enter.

Making a request will allow piggybacking KVM_REQ_UPDATE_APICV to "inhibit"
the APICv memslot when x2APIC is enabled.  Doing that directly from
kvm_lapic_set_base() isn't feasible as KVM's SRCU must not be held when
modifying memslots (to avoid deadlock), and may or may not be held when
kvm_lapic_set_base() is called, i.e. KVM can't do the right thing without
tracking that is rightly buried behind CONFIG_PROVE_RCU=y.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:24 -05:00
Sean Christopherson
e0bead97e7 KVM: SVM: Don't put/load AVIC when setting virtual APIC mode
Move the VMCB updates from avic_refresh_apicv_exec_ctrl() into
avic_set_virtual_apic_mode() and invert the dependency being said
functions to avoid calling avic_vcpu_{load,put}() and
avic_set_pi_irte_mode() when "only" setting the virtual APIC mode.

avic_set_virtual_apic_mode() is invoked from common x86 with preemption
enabled, which makes avic_vcpu_{load,put}() unhappy.  Luckily, calling
those and updating IRTE stuff is unnecessary as the only reason
avic_set_virtual_apic_mode() is called is to handle transitions between
xAPIC and x2APIC that don't also toggle APICv activation.  And if
activation doesn't change, there's no need to fiddle with the physical
APIC ID table or update IRTE.

The "full" refresh is guaranteed to be called if activation changes in
this case as the only call to the "set" path is:

	kvm_vcpu_update_apicv(vcpu);
	static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);

and kvm_vcpu_update_apicv() invokes the refresh if activation changes:

	if (apic->apicv_active == activate)
		goto out;

	apic->apicv_active = activate;
	kvm_apic_update_apicv(vcpu);
	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);

Rename the helper to reflect that it is also called during "refresh".

  WARNING: CPU: 183 PID: 49186 at arch/x86/kvm/svm/avic.c:1081 avic_vcpu_put+0xde/0xf0 [kvm_amd]
  CPU: 183 PID: 49186 Comm: stable Tainted: G           O       6.0.0-smp--fcddbca45f0a-sink #34
  Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
  RIP: 0010:avic_vcpu_put+0xde/0xf0 [kvm_amd]
   avic_refresh_apicv_exec_ctrl+0x142/0x1c0 [kvm_amd]
   avic_set_virtual_apic_mode+0x5a/0x70 [kvm_amd]
   kvm_lapic_set_base+0x149/0x1a0 [kvm]
   kvm_set_apic_base+0x8f/0xd0 [kvm]
   kvm_set_msr_common+0xa3a/0xdc0 [kvm]
   svm_set_msr+0x364/0x6b0 [kvm_amd]
   __kvm_set_msr+0xb8/0x1c0 [kvm]
   kvm_emulate_wrmsr+0x58/0x1d0 [kvm]
   msr_interception+0x1c/0x30 [kvm_amd]
   svm_invoke_exit_handler+0x31/0x100 [kvm_amd]
   svm_handle_exit+0xfc/0x160 [kvm_amd]
   vcpu_enter_guest+0x21bb/0x23e0 [kvm]
   vcpu_run+0x92/0x450 [kvm]
   kvm_arch_vcpu_ioctl_run+0x43e/0x6e0 [kvm]
   kvm_vcpu_ioctl+0x559/0x620 [kvm]

Fixes: 05c4fe8c1bd9 ("KVM: SVM: Refresh AVIC configuration when changing APIC mode")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:24 -05:00
Sean Christopherson
f651a00895 KVM: x86: Don't inhibit APICv/AVIC if xAPIC ID mismatch is due to 32-bit ID
Truncate the vcpu_id, a.k.a. x2APIC ID, to an 8-bit value when comparing
it against the xAPIC ID to avoid false positives (sort of) on systems
with >255 CPUs, i.e. with IDs that don't fit into a u8.  The intent of
APIC_ID_MODIFIED is to inhibit APICv/AVIC when the xAPIC is changed from
it's original value,

The mismatch isn't technically a false positive, as architecturally the
xAPIC IDs do end up being aliased in this scenario, and neither APICv
nor AVIC correctly handles IPI virtualization when there is aliasing.
However, KVM already deliberately does not honor the aliasing behavior
that results when an x2APIC ID gets truncated to an xAPIC ID.  I.e. the
resulting APICv/AVIC behavior is aligned with KVM's existing behavior
when KVM's x2APIC hotplug hack is effectively enabled.

If/when KVM provides a way to disable the hotplug hack, APICv/AVIC can
piggyback whatever logic disables the optimized APIC map (which is what
provides the hotplug hack), i.e. so that KVM's optimized map and APIC
virtualization yield the same behavior.

For now, fix the immediate problem of APIC virtualization being disabled
for large VMs, which is a much more pressing issue than ensuring KVM
honors architectural behavior for APIC ID aliasing.

Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:23 -05:00
Sean Christopherson
a58a66afc4 KVM: x86: Don't inhibit APICv/AVIC on xAPIC ID "change" if APIC is disabled
Don't inhibit APICv/AVIC due to an xAPIC ID mismatch if the APIC is
hardware disabled.  The ID cannot be consumed while the APIC is disabled,
and the ID is guaranteed to be set back to the vcpu_id when the APIC is
hardware enabled (architectural behavior correctly emulated by KVM).

Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:23 -05:00
Sean Christopherson
5aede752a8 KVM: SVM: Process ICR on AVIC IPI delivery failure due to invalid target
Emulate ICR writes on AVIC IPI failures due to invalid targets using the
same logic as failures due to invalid types.  AVIC acceleration fails if
_any_ of the targets are invalid, and crucially VM-Exits before sending
IPIs to targets that _are_ valid.  In logical mode, the destination is a
bitmap, i.e. a single IPI can target multiple logical IDs.  Doing nothing
causes KVM to drop IPIs if at least one target is valid and at least one
target is invalid.

Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC")
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:22 -05:00
Sean Christopherson
0ccf3e7cb9 KVM: SVM: Flush the "current" TLB when activating AVIC
Flush the TLB when activating AVIC as the CPU can insert into the TLB
while AVIC is "locally" disabled.  KVM doesn't treat "APIC hardware
disabled" as VM-wide AVIC inhibition, and so when a vCPU has its APIC
hardware disabled, AVIC is not guaranteed to be inhibited.  As a result,
KVM may create a valid NPT mapping for the APIC base, which the CPU can
cache as a non-AVIC translation.

Note, Intel handles this in vmx_set_virtual_apic_mode().

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:22 -05:00
Sean Christopherson
97a71c444a KVM: x86: Purge "highest ISR" cache when updating APICv state
Purge the "highest ISR" cache when updating APICv state on a vCPU.  The
cache must not be used when APICv is active as hardware may emulate EOIs
(and other operations) without exiting to KVM.

This fixes a bug where KVM will effectively block IRQs in perpetuity due
to the "highest ISR" never getting reset if APICv is activated on a vCPU
while an IRQ is in-service.  Hardware emulates the EOI and KVM never gets
a chance to update its cache.

Fixes: b26a695a1d78 ("kvm: lapic: Introduce APICv update helper function")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:22 -05:00
Sean Christopherson
0a19807b46 KVM: x86: Blindly get current x2APIC reg value on "nodecode write" traps
When emulating a x2APIC write in response to an APICv/AVIC trap, get the
the written value from the vAPIC page without checking that reads are
allowed for the target register.  AVIC can generate trap-like VM-Exits on
writes to EOI, and so KVM needs to get the written value from the backing
page without running afoul of EOI's write-only behavior.

Alternatively, EOI could be special cased to always write '0', e.g. so
that the sanity check could be preserved, but x2APIC on AMD is actually
supposed to disallow non-zero writes (not emulated by KVM), and the
sanity check was a byproduct of how the KVM code was written, i.e. wasn't
added to guard against anything in particular.

Fixes: 70c8327c11c6 ("KVM: x86: Bug the VM if an accelerated x2APIC trap occurs on a "bad" reg")
Fixes: 1bd9dfec9fd4 ("KVM: x86: Do not block APIC write for non ICR registers")
Reported-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13 10:45:21 -05:00
David Woodhouse
310bc39546 KVM: x86/xen: Avoid deadlock by adding kvm->arch.xen.xen_lock leaf node lock
In commit 14243b387137a ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN
and event channel delivery") the clever version of me left some helpful
notes for those who would come after him:

       /*
        * For the irqfd workqueue, using the main kvm->lock mutex is
        * fine since this function is invoked from kvm_set_irq() with
        * no other lock held, no srcu. In future if it will be called
        * directly from a vCPU thread (e.g. on hypercall for an IPI)
        * then it may need to switch to using a leaf-node mutex for
        * serializing the shared_info mapping.
        */
       mutex_lock(&kvm->lock);

In commit 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
the other version of me ran straight past that comment without reading it,
and introduced a potential deadlock by taking vcpu->mutex and kvm->lock
in the wrong order.

Solve this as originally suggested, by adding a leaf-node lock in the Xen
state rather than using kvm->lock for it.

Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-4-dwmw2@infradead.org>
[Rebase, add docs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11 17:45:58 -05:00
David Woodhouse
bbe17c625d KVM: x86/xen: Fix potential deadlock in kvm_xen_update_runstate_guest()
The kvm_xen_update_runstate_guest() function can be called when the vCPU
is being scheduled out, from a preempt notifier. It *opportunistically*
updates the runstate area in the guest memory, if the gfn_to_pfn_cache
which caches the appropriate address is still valid.

If there is *contention* when it attempts to obtain gpc->lock, then
locking inside the priority inheritance checks may cause a deadlock.
Lockdep reports:

[13890.148997] Chain exists of:
                 &gpc->lock --> &p->pi_lock --> &rq->__lock

[13890.149002]  Possible unsafe locking scenario:

[13890.149003]        CPU0                    CPU1
[13890.149004]        ----                    ----
[13890.149005]   lock(&rq->__lock);
[13890.149007]                                lock(&p->pi_lock);
[13890.149009]                                lock(&rq->__lock);
[13890.149011]   lock(&gpc->lock);
[13890.149013]
                *** DEADLOCK ***

In the general case, if there's contention for a read lock on gpc->lock,
that's going to be because something else is either invalidating or
revalidating the cache. Either way, we've raced with seeing it in an
invalid state, in which case we would have aborted the opportunistic
update anyway.

So in the 'atomic' case when called from the preempt notifier, just
switch to using read_trylock() and avoid the PI handling altogether.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11 13:32:21 -05:00
David Woodhouse
23e60258ae KVM: x86/xen: Fix lockdep warning on "recursive" gpc locking
In commit 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate
area") we declared it safe to obtain two gfn_to_pfn_cache locks at the same
time:
	/*
	 * The guest's runstate_info is split across two pages and we
	 * need to hold and validate both GPCs simultaneously. We can
	 * declare a lock ordering GPC1 > GPC2 because nothing else
	 * takes them more than one at a time.
	 */

However, we forgot to tell lockdep. Do so, by setting a subclass on the
first lock before taking the second.

Fixes: 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate area")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11 13:32:21 -05:00
Paolo Bonzini
45e966fcca KVM: x86: Do not return host topology information from KVM_GET_SUPPORTED_CPUID
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler.  In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.

The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.

Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-09 05:35:21 -05:00
Paolo Bonzini
74905e3de8 KVM: nSVM: clarify recalc_intercepts() wrt CR8
The mysterious comment "We only want the cr8 intercept bits of L1"
dates back to basically the introduction of nested SVM, back when
the handling of "less typical" hypervisors was very haphazard.
With the development of kvm-unit-tests for interrupt handling,
the same code grew another vmcb_clr_intercept for the interrupt
window (VINTR) vmexit, this time with a comment that is at least
decent.

It turns out however that the same comment applies to the CR8 write
intercept, which is also a "recheck if an interrupt should be
injected" intercept.  The CR8 read intercept instead has not
been used by KVM for 14 years (commit 649d68643ebf, "KVM: SVM:
sync TPR value to V_TPR field in the VMCB"), so do not bother
clearing it and let one comment describe both CR8 write and VINTR
handling.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-09 05:35:21 -05:00
Linus Torvalds
d7a0853d65 Intel RAPL updates for new model IDs.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmO4CGwRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gCjg//YdjAjNrJ9HkLfhmEtYSA1fCXef0f9nD7
 ddEY7FIHa+yTE5QJ3o3Ag4ZPVaHUHkD2t936pRMcZ6EOsbDldlS6R5c5P1ISpzvl
 SAPv19iWoVKqFjjFv0ftocb6yO6bVizyUea0TV8yp2+3ih3C5pj1KhRJ/IHJaClX
 ohyK6APMdYlffeb8VfLegM8Kr8E0bdn5FZyX8LmBuUi1PyYe4x/Bo3ZW3QhgtgI2
 Rnm8bXC1dFkwqNHUFbw8dwkCKQe9jePc2VBjwah251X+M3RSIEoF7RHmPjUS1zpc
 rn9o3elifV45D6g6A74wXJ+7eH2DRkDsXXyfeEB5dtrt5HBzhROfrw2PIyywAC91
 B01HLMDaB/jRux+7i2uj2KZO1hwEWT3a3Y+GunB2ZrPqD2WvqASKDcs9wfe6kfuv
 awOrip50sKZb6KmQgWq/xIDutpzBeK/smX49+rnY9ot/jXxBqsKgk9L6U7Qt6RiH
 MpbT5EnT5149bVp6sUqZk4SmWjYa3El0f4X93Weqfxx6rxsuZYq70QVMdktnI9A+
 VTeQE4525wQxu+oENQhB86iv63sRsk4i53LmyIkaV/KJxoAK1X1G9kNQ6fIrT7Ad
 7vwrmeA1sLst8H76WpDGuEk9rngAg7SS3IorS0QPupc494eCgs6vazAvUS5pAOu2
 ZdA365eMKe8=
 =5mg2
 -----END PGP SIGNATURE-----

Merge tag 'perf-urgent-2023-01-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf fix from Ingo Molnar:
 "Intel RAPL updates for new model IDs"

* tag 'perf-urgent-2023-01-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/rapl: Add support for Intel Emerald Rapids
  perf/x86/rapl: Add support for Intel Meteor Lake
  perf/x86/rapl: Treat Tigerlake like Icelake
2023-01-06 11:20:12 -08:00