IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In order to deal with these systems that do not offer HW-based
deactivation of interrupts, let implement a SW-based approach:
- When the irq is queued into a LR, treat it as a pure virtual
interrupt and set the EOI flag in the LR.
- When the interrupt state is read back from the LR, force a
deactivation when the state is invalid (neither active nor
pending)
Interrupts requiring such treatment get the VGIC_SW_RESAMPLE flag.
Signed-off-by: Marc Zyngier <maz@kernel.org>
We already have the option to attach a callback to an interrupt
to retrieve its pending state. As we are planning to expand this
facility, move this callback into its own data structure.
This will limit the size of individual interrupts as the ops
structures can be shared across multiple interrupts.
Signed-off-by: Marc Zyngier <maz@kernel.org>
The vGIC, as architected by ARM, allows a virtual interrupt to
trigger the deactivation of a physical interrupt. This allows
the following interrupt to be delivered without requiring an exit.
However, some implementations have choosen not to implement this,
meaning that we will need some unsavoury workarounds to deal with this.
On detecting such a case, taint the kernel and spit a nastygram.
We'll deal with this in later patches.
Signed-off-by: Marc Zyngier <maz@kernel.org>
As it turns out, not all the interrupt controllers are able to
expose a vGIC maintenance interrupt that can be independently
enabled/disabled.
And to be fair, it doesn't really matter as all we require is
for the interrupt to kick us out of guest mode out way or another.
To that effect, add gic_kvm_info.no_maint_irq_mask for an interrupt
controller to advertise the lack of masking.
Signed-off-by: Marc Zyngier <maz@kernel.org>
The vGIC advertising code is unsurprisingly very much tied to
the GIC implementations. However, we are about to extend the
support to lesser implementations.
Let's dissociate the vgic registration from the GIC code and
move it into KVM, where it makes a bit more sense. This also
allows us to mark the gic_kvm_info structures as __initdata.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
- Clean up list_sort prototypes (Sami Tolvanen)
- Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmCHCR8ACgkQiXL039xt
wCZyFQ//fnUZaXR2K354zDyW6CJljMf+d94RF6rH+J6eMTH2/HXa5v0iJokwABLf
ussP6qF4k5wtmI22Gm9A5Zc3e4iiry5pC0jOdk0mk4gzWwFN9MdgNxJZIGA3xqhS
bsBK4AGrVKjtZl48G1/ZxJuNDeJhVp6GNK2n6/Gl4rZF6R7D/Upz0XelyJRdDpcM
HIGma7jZl6xfGU0mdWCzpOGK1zdMca1WVs7A4YuurSbLn5PZJrcNVWLouDqt/Si2
AduSri1gyPClicgvqWjMOzhUpuw/nJtBLRl1x1EsWk/KSZ1/uNVjlewfzdN4fZrr
zbtFr2gLubYLK6JOX7/LqoHlOTgE3tYLL+WIVN75DsOGZBKgHhmebTmWLyqzV0SL
oqcyM5d3ucC6msdtAK5Fv4MSp8rpjqlK1Ha4SGRT6kC2wut7AhZ3KD7eyRIz8mV9
Sa9mhignGFJnTEUp+LSbYdrAudgSKxB40WyXPmswAXX4VJFRD4ONrrcAON/SzkUT
Hw/JdFRCKkJjgwNQjIQoZcUNMTbFz2PlNIEnjJWm38YImQKQlCb2mXaZKCwBkf45
aheCZk17eKoxTCXFMd+KxlyNEtS2yBfq/PpZgvw7GW/pfFbWUg1+2O41LnihIe5v
zu0hN1wNCQqgfxiMZqX1OTb9C/2vybzGsXILt+9nppjZ8EBU7iU=
=wU6U
-----END PGP SIGNATURE-----
Merge tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull CFI on arm64 support from Kees Cook:
"This builds on last cycle's LTO work, and allows the arm64 kernels to
be built with Clang's Control Flow Integrity feature. This feature has
happily lived in Android kernels for almost 3 years[1], so I'm excited
to have it ready for upstream.
The wide diffstat is mainly due to the treewide fixing of mismatched
list_sort prototypes. Other things in core kernel are to address
various CFI corner cases. The largest code portion is the CFI runtime
implementation itself (which will be shared by all architectures
implementing support for CFI). The arm64 pieces are Acked by arm64
maintainers rather than coming through the arm64 tree since carrying
this tree over there was going to be awkward.
CFI support for x86 is still under development, but is pretty close.
There are a handful of corner cases on x86 that need some improvements
to Clang and objtool, but otherwise works well.
Summary:
- Clean up list_sort prototypes (Sami Tolvanen)
- Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)"
* tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: allow CONFIG_CFI_CLANG to be selected
KVM: arm64: Disable CFI for nVHE
arm64: ftrace: use function_nocfi for ftrace_call
arm64: add __nocfi to __apply_alternatives
arm64: add __nocfi to functions that jump to a physical address
arm64: use function_nocfi with __pa_symbol
arm64: implement function_nocfi
psci: use function_nocfi for cpu_resume
lkdtm: use function_nocfi
treewide: Change list_sort to use const pointers
bpf: disable CFI in dispatcher functions
kallsyms: strip ThinLTO hashes from static functions
kthread: use WARN_ON_FUNCTION_MISMATCH
workqueue: use WARN_ON_FUNCTION_MISMATCH
module: ensure __cfi_check alignment
mm: add generic function_nocfi macro
cfi: add __cficanonical
add support for Clang CFI
Core changes:
- Provide IRQF_NO_AUTOEN as a flag for request*_irq() so drivers can be
cleaned up which either use a seperate mechanism to prevent auto-enable
at request time or have a racy mechanism which disables the interrupt
right after request.
- Get rid of the last usage of irq_create_identity_mapping() and remove
the interface.
- An overhaul of tasklet_disable(). Most usage sites of tasklet_disable()
are in task context and usually in cleanup, teardown code pathes.
tasklet_disable() spinwaits for a tasklet which is currently executed.
That's not only a problem for PREEMPT_RT where this can lead to a live
lock when the disabling task preempts the softirq thread. It's also
problematic in context of virtualization when the vCPU which runs the
tasklet is scheduled out and the disabling code has to spin wait until
it's scheduled back in. Though there are a few code pathes which invoke
tasklet_disable() from non-sleepable context. For these a new disable
variant which still spinwaits is provided which allows to switch
tasklet_disable() to a sleep wait mechanism. For the atomic use cases
this does not solve the live lock issue on PREEMPT_RT. That is mitigated
by blocking on the RT specific softirq lock.
- The PREEMPT_RT specific implementation of softirq processing and
local_bh_disable/enable().
On RT enabled kernels soft interrupt processing happens always in task
context and all interrupt handlers, which are not explicitly marked to
be invoked in hard interrupt context are forced into task context as
well. This allows to protect against softirq processing with a per
CPU lock, which in turn allows to make BH disabled regions preemptible.
Most of the softirq handling code is still shared. The RT/non-RT
specific differences are addressed with a set of inline functions which
provide the context specific functionality. The local_bh_disable() /
local_bh_enable() mechanism are obviously seperate.
- The usual set of small improvements and cleanups
Driver changes:
- New drivers for Nuvoton WPCM450 and DT 79rc3243x interrupt controllers
- Extended functionality for MStar, STM32 and SC7280 irq chips
- Enhanced robustness for ARM GICv3/4.1 drivers
- The usual set of cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGh5wTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZ+/EACWBpQ/2ZHizEw1bzjaDzJrR8U228xu
wNi7nSP92Y07nJ3cCX7a6TJ53mqd0n3RT+DprlsOuqSN0D7Ktr/x44V/aZtm0d3N
GkFOlpeGCRnHusLaUTwk7a8289LuoQ7OhSxIB409n1I4nLI96ZK41D1tYonMYl6E
nxDiGADASfjaciBWbjwJO/mlwmiW/VRpSTxswx0wzakFfbIx9iKyKv1bCJQZ5JK+
lHmf0jxpDIs1EVK/ElJ9Ky6TMBlEmZyiX7n6rujtwJ1W+Jc/uL/y8pLJvGwooVmI
yHTYsLMqzviCbAMhJiB3h1qs3GbCGlM78prgJTnOd0+xEUOCcopCRQlsTXVBq8Nb
OS+HNkYmYXRfiSH6lINJsIok8Xis28bAw/qWz2Ho+8wLq0TI8crK38roD1fPndee
FNJRhsPPOBkscpIldJ0Cr0X5lclkJFiAhAxORPHoseKvQSm7gBMB7H99xeGRffTn
yB3XqeTJMvPNmAHNN4Brv6ey3OjwnEWBgwcnIM2LtbIlRtlmxTYuR+82OPOgEvzk
fSrjFFJqu0LEMLEOXS4pYN824PawjV//UAy4IaG8AodmUUCSGHgw1gTVa4sIf72t
tXY54HqWfRWRpujhVRgsZETqBUtZkL6yvpoe8f6H7P91W5tAfv3oj4ch9RkhUo+Z
b0/u9T0+Fpbg+w==
=id4G
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"The usual updates from the irq departement:
Core changes:
- Provide IRQF_NO_AUTOEN as a flag for request*_irq() so drivers can
be cleaned up which either use a seperate mechanism to prevent
auto-enable at request time or have a racy mechanism which disables
the interrupt right after request.
- Get rid of the last usage of irq_create_identity_mapping() and
remove the interface.
- An overhaul of tasklet_disable().
Most usage sites of tasklet_disable() are in task context and
usually in cleanup, teardown code pathes. tasklet_disable()
spinwaits for a tasklet which is currently executed. That's not
only a problem for PREEMPT_RT where this can lead to a live lock
when the disabling task preempts the softirq thread. It's also
problematic in context of virtualization when the vCPU which runs
the tasklet is scheduled out and the disabling code has to spin
wait until it's scheduled back in.
There are a few code pathes which invoke tasklet_disable() from
non-sleepable context. For these a new disable variant which still
spinwaits is provided which allows to switch tasklet_disable() to a
sleep wait mechanism. For the atomic use cases this does not solve
the live lock issue on PREEMPT_RT. That is mitigated by blocking on
the RT specific softirq lock.
- The PREEMPT_RT specific implementation of softirq processing and
local_bh_disable/enable().
On RT enabled kernels soft interrupt processing happens always in
task context and all interrupt handlers, which are not explicitly
marked to be invoked in hard interrupt context are forced into task
context as well. This allows to protect against softirq processing
with a per CPU lock, which in turn allows to make BH disabled
regions preemptible.
Most of the softirq handling code is still shared. The RT/non-RT
specific differences are addressed with a set of inline functions
which provide the context specific functionality. The
local_bh_disable() / local_bh_enable() mechanism are obviously
seperate.
- The usual set of small improvements and cleanups
Driver changes:
- New drivers for Nuvoton WPCM450 and DT 79rc3243x interrupt
controllers
- Extended functionality for MStar, STM32 and SC7280 irq chips
- Enhanced robustness for ARM GICv3/4.1 drivers
- The usual set of cleanups and improvements all over the place"
* tag 'irq-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
irqchip/xilinx: Expose Kconfig option for Zynq/ZynqMP
irqchip/gic-v3: Do not enable irqs when handling spurious interrups
dt-bindings: interrupt-controller: Add IDT 79RC3243x Interrupt Controller
irqchip: Add support for IDT 79rc3243x interrupt controller
irqdomain: Drop references to recusive irqdomain setup
irqdomain: Get rid of irq_create_strict_mappings()
irqchip/jcore-aic: Kill use of irq_create_strict_mappings()
ARM: PXA: Kill use of irq_create_strict_mappings()
irqchip/gic-v4.1: Disable vSGI upon (GIC CPUIF < v4.1) detection
irqchip/tb10x: Use 'fallthrough' to eliminate a warning
genirq: Reduce irqdebug cacheline bouncing
kernel: Initialize cpumask before parsing
irqchip/wpcm450: Drop COMPILE_TEST
irqchip/irq-mst: Support polarity configuration
irqchip: Add driver for WPCM450 interrupt controller
dt-bindings: interrupt-controller: Add nuvoton, wpcm450-aic
dt-bindings: qcom,pdc: Add compatible for sc7280
irqchip/stm32: Add usart instances exti direct event support
irqchip/gic-v3: Fix OF_BAD_ADDR error handling
irqchip/sifive-plic: Mark two global variables __ro_after_init
...
GIC CPU interfaces versions predating GIC v4.1 were not built to
accommodate vINTID within the vSGI range; as reported in the GIC
specifications (8.2 "Changes to the CPU interface"), it is
CONSTRAINED UNPREDICTABLE to deliver a vSGI to a PE with
ID_AA64PFR0_EL1.GIC < b0011.
Check the GIC CPUIF version by reading the SYS_ID_AA64_PFR0_EL1.
Disable vSGIs if a CPUIF version < 4.1 is detected to prevent using
vSGIs on systems where they may misbehave.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210317100719.3331-2-lorenzo.pieralisi@arm.com
When reading the base address of the a REDIST region
through KVM_VGIC_V3_ADDR_TYPE_REDIST we expect the
redistributor region list to be populated with a single
element.
However list_first_entry() expects the list to be non empty.
Instead we should use list_first_entry_or_null which effectively
returns NULL if the list is empty.
Fixes: dbd9733ab6 ("KVM: arm/arm64: Replace the single rdist region by a list")
Cc: <Stable@vger.kernel.org> # v4.18+
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reported-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210412150034.29185-1-eric.auger@redhat.com
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
Commit 23bde34771 ("KVM: arm64: vgic-v3: Drop the
reporting of GICR_TYPER.Last for userspace") temporarily fixed
a bug identified when attempting to access the GICR_TYPER
register before the redistributor region setting, but dropped
the support of the LAST bit.
Emulating the GICR_TYPER.Last bit still makes sense for
architecture compliance though. This patch restores its support
(if the redistributor region was set) while keeping the code safe.
We introduce a new helper, vgic_mmio_vcpu_rdist_is_last() which
computes whether a redistributor is the highest one of a series
of redistributor contributor pages.
With this new implementation we do not need to have a uaccess
read accessor anymore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-9-eric.auger@redhat.com
To improve the readability, we introduce the new
vgic_v3_free_redist_region helper and also rename
vgic_v3_insert_redist_region into vgic_v3_alloc_redist_region
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-8-eric.auger@redhat.com
vgic_uaccess() takes a struct vgic_io_device argument, converts it
to a struct kvm_io_device and passes it to the read/write accessor
functions, which convert it back to a struct vgic_io_device.
Avoid the indirection by passing the struct vgic_io_device argument
directly to vgic_uaccess_{read,write}.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-7-eric.auger@redhat.com
On vgic_dist_destroy(), the addresses are not reset. However for
kvm selftest purpose this would allow to continue the test execution
even after a failure when running KVM_RUN. So let's reset the
base addresses.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-5-eric.auger@redhat.com
vgic_v3_insert_redist_region() may succeed while
vgic_register_all_redist_iodevs fails. For example this happens
while adding a redistributor region overlapping a dist region. The
failure only is detected on vgic_register_all_redist_iodevs when
vgic_v3_check_base() gets called in vgic_register_redist_iodev().
In such a case, remove the newly added redistributor region and free
it.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-4-eric.auger@redhat.com
The doc says:
"The characteristics of a specific redistributor region can
be read by presetting the index field in the attr data.
Only valid for KVM_DEV_TYPE_ARM_VGIC_V3"
Unfortunately the existing code fails to read the input attr data.
Fixes: 04c1109322 ("KVM: arm/arm64: Implement KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION")
Cc: stable@vger.kernel.org#v4.17+
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-3-eric.auger@redhat.com
KVM_DEV_ARM_VGIC_GRP_ADDR group doc says we should return
-EEXIST in case the base address of the redist is already set.
We currently return -EINVAL.
However we need to return -EINVAL in case a legacy REDIST address
is attempted to be set while REDIST_REGIONS were set. This case
is discriminated by looking at the count field.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405163941.510258-2-eric.auger@redhat.com
Before GICv4.1, we don't have direct access to the VLPI state. So
we simply let it fail early when encountering any VLPI in saving.
But now we don't have to return -EACCES directly if on GICv4.1. Let’s
change the hard code and give a chance to save the VLPI state (and
preserve the UAPI).
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210322060158.1584-7-lushenming@huawei.com
When setting the forwarding path of a VLPI (switch to the HW mode),
we can also transfer the pending state from irq->pending_latch to
VPT (especially in migration, the pending states of VLPIs are restored
into kvm’s vgic first). And we currently send "INT+VSYNC" to trigger
a VLPI to pending.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210322060158.1584-6-lushenming@huawei.com
After pausing all vCPUs and devices capable of interrupting, in order
to save the states of all interrupts, besides flushing the states in
kvm’s vgic, we also try to flush the states of VLPIs in the virtual
pending tables into guest RAM, but we need to have GICv4.1 and safely
unmap the vPEs first.
As for the saving of VSGIs, which needs the vPEs to be mapped and might
conflict with the saving of VLPIs, but since we will map the vPEs back
at the end of save_pending_tables and both savings require the kvm->lock
to be held (thus only happen serially), it will work fine.
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210322060158.1584-5-lushenming@huawei.com
With GICv4.1 and the vPE unmapped, which indicates the invalidation
of any VPT caches associated with the vPE, we can get the VLPI state
by peeking at the VPT. So we add a function for this.
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210322060158.1584-4-lushenming@huawei.com
It looks like we have broken firmware out there that wrongly advertises
a GICv2 compatibility interface, despite the CPUs not being able to deal
with it.
To work around this, check that the CPU initialising KVM is actually able
to switch to MMIO instead of system registers, and use that as a
precondition to enable GICv2 compatibility in KVM.
Note that the detection happens on a single CPU. If the firmware is
lying *and* that the CPUs are asymetric, all hope is lost anyway.
Reported-by: Shameerali Kolothum Thodi <shameerali.kolothum.thodi@huawei.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-8-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As we are about to report a bit more information to the rest of
the kernel, rename __vgic_v3_get_ich_vtr_el2() to the more
explicit __vgic_v3_get_gic_config().
No functional change.
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-7-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
dist->ready setting is pointlessly spread across the two vgic
backends, while it could be consolidated in kvm_vgic_map_resources().
Move it there, and slightly simplify the flows in both backends.
Suggested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
vgic_v3_map_resources() returns -EBUSY if the VGIC isn't initialized,
update the comment to kvm_vgic_map_resources() to match what the function
does.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201201150157.223625-5-alexandru.elisei@arm.com
kvm_vgic_map_resources() is called when a VCPU if first run and it maps all
the VGIC MMIO regions. To prevent double-initialization, the VGIC uses the
ready variable to keep track of the state of resources and the global KVM
mutex to protect against concurrent accesses. After the lock is taken, the
variable is checked again in case another VCPU took the lock between the
current VCPU reading ready equals false and taking the lock.
The double-checked lock pattern is spread across four different functions:
in kvm_vcpu_first_run_init(), in kvm_vgic_map_resource() and in
vgic_{v2,v3}_map_resources(), which makes it hard to reason about and
introduces minor code duplication. Consolidate the checks in
kvm_vgic_map_resources(), where the lock is taken.
No functional change intended.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201201150157.223625-4-alexandru.elisei@arm.com
In order to reduce the impact of the VPT parsing happening on the GIC,
we can split the vcpu reseidency in two phases:
- programming GICR_VPENDBASER: this still happens in vcpu_load()
- checking for the VPT parsing to be complete: this can happen
on vcpu entry (in kvm_vgic_flush_hwstate())
This allows the GIC and the CPU to work in parallel, rewmoving some
of the entry overhead.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Shenming Lu <lushenming@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201128141857.983-3-lushenming@huawei.com
It was recently reported that if GICR_TYPER is accessed before the RD base
address is set, we'll suffer from the unset @rdreg dereferencing. Oops...
gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
It's "expected" that users will access registers in the redistributor if
the RD has been properly configured (e.g., the RD base address is set). But
it hasn't yet been covered by the existing documentation.
Per discussion on the list [1], the reporting of the GICR_TYPER.Last bit
for userspace never actually worked. And it's difficult for us to emulate
it correctly given that userspace has the flexibility to access it any
time. Let's just drop the reporting of the Last bit for userspace for now
(userspace should have full knowledge about it anyway) and it at least
prevents kernel from panic ;-)
[1] https://lore.kernel.org/kvmarm/c20865a267e44d1e2c0d52ce4e012263@kernel.org/
Fixes: ba7b3f1275 ("KVM: arm/arm64: Revisit Redistributor TYPER last bit computation")
Reported-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20201117151629.1738-1-yuzenghui@huawei.com
Cc: stable@vger.kernel.org
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
The host need not concern itself with the pointer differences for the
hyp interfaces that are shared between VHE and nVHE so leave it to the
hyp to handle.
As the SMCCC function IDs are converted into function calls, it is a
suitable place to also convert any pointer arguments into hyp pointers.
This, additionally, eases the reuse of the handlers in different
contexts.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-20-ascull@google.com
- Split the VHE and nVHE hypervisor code bases, build the EL2 code
separately, allowing for the VHE code to now be built with instrumentation
- Level-based TLB invalidation support
- Restructure of the vcpu register storage to accomodate the NV code
- Pointer Authentication available for guests on nVHE hosts
- Simplification of the system register table parsing
- MMU cleanups and fixes
- A number of post-32bit cleanups and other fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl8q5DEPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDQFAP/jtscnC5OxEOoGNW1gvg/1QI/BuU4zLvqQL1
OEW72fUQlil7tmF/CbLLKnsBpxKmzO02C3wDdg3oaRi884bRtTXdok0nsFuCvrZD
u/wrlMnP0zTjjk1uwIFfZJTx+nnUiT0jC6ffvGxB/jnTJk/8atvOUFL7ODFEfixz
mS5g1jwwJkRmWKESFg7KGSghKuwXTvo4HVWCfME+t1rQwAa03stXFV8H5tkU6+cG
BRIssxo7BkAV2AozwL7hgl/M6wd6QvbOrYJqgb67+sQ8qts0YNne96NN3InMedb1
RENyDssXlA+VI0HoYyEbYnPtFy1Hoj1lOGDZLEZAEH1qcmWrV+hApnoSXSmuofvn
QlfOWCyd92CZySu21MALRUVXbrKkA3zT2b9R93A5z7iEBPY+Wk0ryJCO6IxdZzF8
48LNjtzb/Kd0SMU/issJlw+u6fJvLbpnSzXNsYYhiiTMUE9cbu2SEkq0SkonH0a4
d3V8UifZyeffXsOfOAG0DJZOu/fWZp1/I3tfzujtG9rCb+jTQueJ4E1cFYrwSO6b
sFNyiI1AzlwcCippG08zSUX61nGfKXBuMXuhIlMRk7GeiF95DmSXuxEgYndZX9I+
E6zJr1iQk/1lrip41svDIIOBHuMbIeD/w1bsOKi7Zoa270MxB4r2Z3IqRMgosoE5
l4YO9pl1
=Ukr4
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next-5.6
KVM/arm64 updates for Linux 5.9:
- Split the VHE and nVHE hypervisor code bases, build the EL2 code
separately, allowing for the VHE code to now be built with instrumentation
- Level-based TLB invalidation support
- Restructure of the vcpu register storage to accomodate the NV code
- Pointer Authentication available for guests on nVHE hosts
- Simplification of the system register table parsing
- MMU cleanups and fixes
- A number of post-32bit cleanups and other fixes
PENDBASER and PROPBASER define the outer caching mode for LPI tables.
The memory backing them may not be outer sharable, so we mark them as nC
by default. This however, breaks Windows on ARM which only accepts
SameAsInner or RaWaWb as values for outer cachability.
We do today already allow the outer mode to be set to SameAsInner
explicitly, so the easy fix is to default to that instead of nC for
situations when an OS asks for a not fulfillable cachability request.
This fixes booting Windows in KVM with vgicv3 and ITS enabled for me.
Signed-off-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200701140206.8664-1-graf@amazon.com
On a system that uses SPIs to implement MSIs (as it would be
the case on a GICv2 system exposing a GICv2m to its guests),
we deny the possibility of injecting SPIs on the in-atomic
fast-path.
This results in a very large amount of context-switches
(roughly equivalent to twice the interrupt rate) on the host,
and suboptimal performance for the guest (as measured with
a test workload involving a virtio interface backed by vhost-net).
Given that GICv2 systems are usually on the low-end of the spectrum
performance wise, they could do without the aggravation.
We solved this for GICv3+ITS by having a translation cache. But
SPIs do not need any extra infrastructure, and can be immediately
injected in the virtual distributor as the locking is already
heavy enough that we don't need to worry about anything.
This halves the number of context switches for the same workload.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
When making a vPE non-resident because it has hit a blocking WFI,
the doorbell can fire at any time after the write to the RD.
Crucially, it can fire right between the write to GICR_VPENDBASER
and the write to the pending_last field in the its_vpe structure.
This means that we would overwrite pending_last with stale data,
and potentially not wakeup until some unrelated event (such as
a timer interrupt) puts the vPE back on the CPU.
GICv4 isn't affected by this as we actively mask the doorbell on
entering the guest, while GICv4.1 automatically manages doorbell
delivery without any hypervisor-driven masking.
Use the vpe_lock to synchronize such update, which solves the
problem altogether.
Fixes: ae699ad348 ("irqchip/gic-v4.1: Move doorbell management to the GICv4 abstraction layer")
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested virtualization
- Nested AMD event injection facelift, building on the rework of generic code
and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page fault
work, will come next week.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp
ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1
5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4
7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ
asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy
CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg==
=v7Wn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested
virtualization
- Nested AMD event injection facelift, building on the rework of
generic code and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch
with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host
side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page
fault work, will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
KVM: check userspace_addr for all memslots
KVM: selftests: update hyperv_cpuid with SynDBG tests
x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
x86/kvm/hyper-v: Add support for synthetic debugger interface
x86/hyper-v: Add synthetic debugger definitions
KVM: selftests: VMX preemption timer migration test
KVM: nVMX: Fix VMX preemption timer migration
x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
KVM: x86/pmu: Support full width counting
KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
KVM: x86: acknowledgment mechanism for async pf page ready notifications
KVM: x86: interrupt based APF 'page ready' event delivery
KVM: introduce kvm_read_guest_offset_cached()
KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
KVM: VMX: Replace zero-length array with flexible-array
...
If we move the used_lrs field to the version-specific cpu interface
structure, the following functions only operate on the struct
vgic_v3_cpu_if and not the full vcpu:
__vgic_v3_save_state
__vgic_v3_restore_state
__vgic_v3_activate_traps
__vgic_v3_deactivate_traps
__vgic_v3_save_aprs
__vgic_v3_restore_aprs
This is going to be very useful for nested virt, so move the used_lrs
field and change the prototypes and implementations of these functions to
take the cpu_if parameter directly.
No functional change.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that the 32bit KVM/arm host is a distant memory, let's move the
whole of the KVM/arm64 code into the arm64 tree.
As they said in the song: Welcome Home (Sanitarium).
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200513104034.74741-1-maz@kernel.org