IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Rename commit_or_fallback() to commit(). Now all previous calls to
commit() will trigger the pool mode to fallback if the commit fails.
Also, check the error returned from commit() in alloc_data_block().
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Switch the thin pool to read-only mode in alloc_data_block() if
dm_pool_alloc_data_block() fails because the pool's metadata space is
exhausted.
Differentiate between data and metadata space in messages about no
free space available.
This issue was noticed with the device-mapper-test-suite using:
dmtest run --suite thin-provisioning -n /exhausting_metadata_space_causes_fail_mode/
The quantity of errors logged in this case must be reduced.
before patch:
device-mapper: thin: 253:4: reached low water mark for metadata device: sending event.
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
<snip ... these repeat for a _very_ long while ... >
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: commit failed: error = -28
device-mapper: thin: 253:4: switching pool to read-only mode
after patch:
device-mapper: thin: 253:4: reached low water mark for metadata device: sending event.
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: no free metadata space available.
device-mapper: thin: 253:4: switching pool to read-only mode
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
Switch the thin pool to read-only mode when dm_thin_insert_block() fails
since there is little reason to expect the cause of the failure to be
resolved without further action by user space.
This issue was noticed with the device-mapper-test-suite using:
dmtest run --suite thin-provisioning -n /exhausting_metadata_space_causes_fail_mode/
The quantity of errors logged in this case must be reduced.
before patch:
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
<snip ... these repeat for a long while ... >
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: thin: 253:4: no free metadata space available.
device-mapper: thin: 253:4: switching pool to read-only mode
after patch:
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: dm_thin_insert_block() failed: error = -28
device-mapper: thin: 253:4: switching pool to read-only mode
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
The dm_round_up function may overflow to zero. In this case,
dm_table_create() must fail rather than go on to allocate an empty array
with alloc_targets().
This fixes a possible memory corruption that could be caused by passing
too large a number in "param->target_count".
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
There is a possible leak of snapshot space in case of crash.
The reason for space leaking is that chunks in the snapshot device are
allocated sequentially, but they are finished (and stored in the metadata)
out of order, depending on the order in which copying finished.
For example, supposed that the metadata contains the following records
SUPERBLOCK
METADATA (blocks 0 ... 250)
DATA 0
DATA 1
DATA 2
...
DATA 250
Now suppose that you allocate 10 new data blocks 251-260. Suppose that
copying of these blocks finish out of order (block 260 finished first
and the block 251 finished last). Now, the snapshot device looks like
this:
SUPERBLOCK
METADATA (blocks 0 ... 250, 260, 259, 258, 257, 256)
DATA 0
DATA 1
DATA 2
...
DATA 250
DATA 251
DATA 252
DATA 253
DATA 254
DATA 255
METADATA (blocks 255, 254, 253, 252, 251)
DATA 256
DATA 257
DATA 258
DATA 259
DATA 260
Now, if the machine crashes after writing the first metadata block but
before writing the second metadata block, the space for areas DATA 250-255
is leaked, it contains no valid data and it will never be used in the
future.
This patch makes dm-snapshot complete exceptions in the same order they
were allocated, thus fixing this bug.
Note: when backporting this patch to the stable kernel, change the version
field in the following way:
* if version in the stable kernel is {1, 11, 1}, change it to {1, 12, 0}
* if version in the stable kernel is {1, 10, 0} or {1, 10, 1}, change it
to {1, 10, 2}
Userspace reads the version to determine if the bug was fixed, so the
version change is needed.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Pull block layer fixes from Jens Axboe:
"A small collection of fixes for the current series. It contains:
- A fix for a use-after-free of a request in blk-mq. From Ming Lei
- A fix for a blk-mq bug that could attempt to dereference a NULL rq
if allocation failed
- Two xen-blkfront small fixes
- Cleanup of submit_bio_wait() type uses in the kernel, unifying
that. From Kent
- A fix for 32-bit blkg_rwstat reading. I apologize for this one
looking mangled in the shortlog, it's entirely my fault for missing
an empty line between the description and body of the text"
* 'for-linus' of git://git.kernel.dk/linux-block:
blk-mq: fix use-after-free of request
blk-mq: fix dereference of rq->mq_ctx if allocation fails
block: xen-blkfront: Fix possible NULL ptr dereference
xen-blkfront: Silence pfn maybe-uninitialized warning
block: submit_bio_wait() conversions
Update of blkg_stat and blkg_rwstat may happen in bh context
Move the bio->bi_remaining increment into dm_unhook_bio() so the
overwrite_endio() handler works as expected.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fixes the following sparse warning:
drivers/md/bcache/btree.c:2220:5: warning:
symbol 'btree_insert_fn' was not declared. Should it be static?
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
commit 566c09c53455d7c4f1 raid5: relieve lock contention in get_active_stripe()
modified the locking in get_active_stripe() reducing the range
protected by the (highly contended) device_lock.
Unfortunately it reduced the range too much opening up some races.
One race can occur if get_priority_stripe runs between the
test on sh->count and device_lock being taken.
This will mean that sh->lru is not empty while get_active_stripe
thinks ->count is zero resulting in a 'BUG' firing.
Another race happens if __release_stripe is called immediately
after sh->count is tested and found to be non-zero. If STRIPE_HANDLE
is not set, get_active_stripe should increment ->active_stripes
when it increments ->count from 0, but as it didn't think it was 0,
it doesn't.
Extending device_lock to cover the test on sh->count close these
races.
While we are here, fix the two BUG tests:
-If count is zero, then lru really must not be empty, or we've
lock the stripe_head somehow - no other tests are relevant.
-STRIPE_ON_RELEASE_LIST is completely independent of ->lru so
testing it is pointless.
Reported-and-tested-by: Brassow Jonathan <jbrassow@redhat.com>
Reviewed-by: Shaohua Li <shli@kernel.org>
Fixes: 566c09c53455d7c4f1
Signed-off-by: NeilBrown <neilb@suse.de>
commit 7a0a5355cbc71efa md: Don't test all of mddev->flags at once.
made most tests on mddev->flags safer, but missed one.
When
commit 260fa034ef7a4ff8b7306 md: avoid deadlock when dirty buffers during md_stop.
added MD_STILL_CLOSED, this caused md_check_recovery to misbehave.
It can think there is something to do but find nothing. This can
lead to the md thread spinning during array shutdown.
https://bugzilla.kernel.org/show_bug.cgi?id=65721
Reported-and-tested-by: Richard W.M. Jones <rjones@redhat.com>
Fixes: 260fa034ef7a4ff8b7306
Cc: stable@vger.kernel.org (3.12)
Signed-off-by: NeilBrown <neilb@suse.de>
In alloc_thread_groups, worker_groups is a pointer to an array,
not an array of pointers.
So
worker_groups[i]
is wrong. It should be
&(*worker_groups)[i]
Found-by: coverity
Fixes: 60aaf9338545
Reported-by: Ben Hutchings <bhutchings@solarflare.com>
Cc: majianpeng <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
It was being open coded in a few places.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Acked-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The new bio_split() can split arbitrary bios - it's not restricted to
single page bios, like the old bio_split() (previously renamed to
bio_pair_split()). It also has different semantics - it doesn't allocate
a struct bio_pair, leaving it up to the caller to handle completions.
Then convert the existing bio_pair_split() users to the new bio_split()
- and also nvme, which was open coding bio splitting.
(We have to take that BUG_ON() out of bio_integrity_trim() because this
bio_split() needs to use it, and there's no reason it has to be used on
bios marked as cloned; BIO_CLONED doesn't seem to have clearly
documented semantics anyways.)
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Neil Brown <neilb@suse.de>
This is prep work for introducing a more general bio_split().
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: NeilBrown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Peter Osterlund <petero2@telia.com>
Cc: Sage Weil <sage@inktank.com>
This adds a generic mechanism for chaining bio completions. This is
going to be used for a bio_split() replacement, and it turns out to be
very useful in a fair amount of driver code - a fair number of drivers
were implementing this in their own roundabout ways, often painfully.
Note that this means it's no longer to call bio_endio() more than once
on the same bio! This can cause problems for drivers that save/restore
bi_end_io. Arguably they shouldn't be saving/restoring bi_end_io at all
- in all but the simplest cases they'd be better off just cloning the
bio, and immutable biovecs is making bio cloning cheaper. But for now,
we add a bio_endio_nodec() for these cases.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Now that drivers have been converted to the new bvec_iter primitives,
there's no need to trim the bvec before we submit it; and we can't trim
it once we start sharing bvecs.
It used to be that passing a partially completed bio (i.e. one with
nonzero bi_idx) to generic_make_request() was a dangerous thing -
various drivers would choke on such things. But with immutable biovecs
and our new bio splitting that shares the biovecs, submitting partially
completed bios has to work (and should work, now that all the drivers
have been completed to the new primitives)
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
We need to convert the dm code to the new bvec_iter primitives which
respect bi_bvec_done; they also allow us to drastically simplify dm's
bio splitting code.
Also, it's no longer necessary to save/restore the bvec array anymore -
driver conversions for immutable bvecs are done, so drivers should never
be modifying it.
Also kill bio_sector_offset(), dm was the only user and it doesn't make
much sense anymore.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: dm-devel@redhat.com
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
bio_clone() just got more expensive - however, most users of bio_clone()
don't actually need to modify the biovec. If they aren't modifying the
biovec, and they can guarantee that the original bio isn't freed before
the clone (also true in most cases), we can just point the clone at the
original bio's biovec.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Now that we've got a mechanism for immutable biovecs -
bi_iter.bi_bvec_done - we need to convert drivers to use primitives that
respect it instead of using the bvec array directly.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: NeilBrown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: dm-devel@redhat.com
When we start sharing biovecs, keeping bi_vcnt accurate for splits is
going to be error prone - and unnecessary, if we refactor some code.
So bio_segments() has to go - but most of the existing users just needed
to know if the bio had multiple segments, which is easier - add a
bio_multiple_segments() for them.
(Two of the current uses of bio_segments() are going to go away in a
couple patches, but the current implementation of bio_segments() is
unsafe as soon as we start doing driver conversions for immutable
biovecs - so implement a dumb version for bisectability, it'll go away
in a couple patches)
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Neil Brown <neilb@suse.de>
Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com>
Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com>
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
More prep work for immutable biovecs - with immutable bvecs drivers
won't be able to use the biovec directly, they'll need to use helpers
that take into account bio->bi_iter.bi_bvec_done.
This updates callers for the new usage without changing the
implementation yet.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Ed L. Cashin" <ecashin@coraid.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Lars Ellenberg <drbd-dev@lists.linbit.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Paul Clements <Paul.Clements@steeleye.com>
Cc: Jim Paris <jim@jtan.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Yehuda Sadeh <yehuda@inktank.com>
Cc: Sage Weil <sage@inktank.com>
Cc: Alex Elder <elder@inktank.com>
Cc: ceph-devel@vger.kernel.org
Cc: Joshua Morris <josh.h.morris@us.ibm.com>
Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux390@de.ibm.com
Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com>
Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com>
Cc: support@lsi.com
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Guo Chao <yan@linux.vnet.ibm.com>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jan Kara <jack@suse.cz>
Cc: linux-m68k@lists.linux-m68k.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: drbd-user@lists.linbit.com
Cc: nbd-general@lists.sourceforge.net
Cc: cbe-oss-dev@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Cc: virtualization@lists.linux-foundation.org
Cc: linux-raid@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: DL-MPTFusionLinux@lsi.com
Cc: linux-scsi@vger.kernel.org
Cc: devel@driverdev.osuosl.org
Cc: linux-fsdevel@vger.kernel.org
Cc: cluster-devel@redhat.com
Cc: linux-mm@kvack.org
Acked-by: Geoff Levand <geoff@infradead.org>
For immutable biovecs, we'll be introducing a new bio_iovec() that uses
our new bvec iterator to construct a biovec, taking into account
bvec_iter->bi_bvec_done - this patch updates existing users for the new
usage.
Some of the existing users really do need a pointer into the bvec array
- those uses are all going to be removed, but we'll need the
functionality from immutable to remove them - so for now rename the
existing bio_iovec() -> __bio_iovec(), and it'll be removed in a couple
patches.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Ed L. Cashin" <ecashin@coraid.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: dm-devel@redhat.com
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
This patch doesn't itself have any functional changes, but immutable
biovecs are going to add a bi_bvec_done member to bi_iter, which will
need to be saved too here.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: dm-devel@redhat.com
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Bcache has a hack to avoid cloning the biovec if it's all full pages -
but with immutable biovecs coming this won't be necessary anymore.
For now, we remove the special case and always clone the bvec array so
that the immutable biovec patches are simpler.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
It was being open coded in a few places.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Acked-by: NeilBrown <neilb@suse.de>
Mostly optimisations and obscure bug fixes.
- raid5 gets less lock contention
- raid1 gets less contention between normal-io and resync-io
during resync.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIVAwUAUovzDznsnt1WYoG5AQJ1pQ//bDuXadoJ5dwjWjVxFOKoQ9j/9joEI0yH
XTApD3ADKckdBc4TSLOIbCNLW1Pbe23HlOI/GjCiJ/7mePL3OwHd7Fx8Rfq3BubV
f7NgjVwu8nwYD0OXEZsshImptEtrbYwQdy+qlKcHXcZz1MUfR+Egih3r/ouTEfEt
FNq/6MpyN0IKSY82xP/jFZgesBucgKz/YOUIbwClxm7UiyISKvWQLBIAfLB3dyI3
HoEdEzQX6I56Rw0mkSUG4Mk+8xx/8twxL+yqEUqfdJREWuB56Km8kl8y/e465Nk0
ZZg6j/TrslVEwbEeVMx0syvYcaAWFZ4X2jdKfo1lI0g9beZp7H1GRF8yR1s2t/h4
g/vb55MEN++4LPaE9ut4z7SG2yLyGkZgFTzTjyq5of+DFL0cayO7wXxbgpcD7JYf
Doef/OSa6csKiGiJI48iQa08Bolmz9ZWzZQXhAthKfFQ9Rv+GEtIAi4kLR8EZPbu
0/FL1ylYNUY9O7p0g+iy9Kcoc+xW36I95pPZf8pO8GFcXTjyuCCBVh/SNvFZZHPl
3xk3aZJknAEID8VrVG2IJPkeDI8WK8YxmpU/nARCoytn07Df6Ye8jGvLdR8pL3lB
TIZV6eRY4yciB8LtoK9Kg4XTmOMhBtjt4c3znkljp98vhOQQb/oHN+BXMGcwqvr9
fk0KGrg31VA=
=8RCg
-----END PGP SIGNATURE-----
Merge tag 'md/3.13' of git://neil.brown.name/md
Pull md update from Neil Brown:
"Mostly optimisations and obscure bug fixes.
- raid5 gets less lock contention
- raid1 gets less contention between normal-io and resync-io during
resync"
* tag 'md/3.13' of git://neil.brown.name/md:
md/raid5: Use conf->device_lock protect changing of multi-thread resources.
md/raid5: Before freeing old multi-thread worker, it should flush them.
md/raid5: For stripe with R5_ReadNoMerge, we replace REQ_FLUSH with REQ_NOMERGE.
UAPI: include <asm/byteorder.h> in linux/raid/md_p.h
raid1: Rewrite the implementation of iobarrier.
raid1: Add some macros to make code clearly.
raid1: Replace raise_barrier/lower_barrier with freeze_array/unfreeze_array when reconfiguring the array.
raid1: Add a field array_frozen to indicate whether raid in freeze state.
md: Convert use of typedef ctl_table to struct ctl_table
md/raid5: avoid deadlock when raid5 array has unack badblocks during md_stop_writes.
md: use MD_RECOVERY_INTR instead of kthread_should_stop in resync thread.
md: fix some places where mddev_lock return value is not checked.
raid5: Retry R5_ReadNoMerge flag when hit a read error.
raid5: relieve lock contention in get_active_stripe()
raid5: relieve lock contention in get_active_stripe()
wait: add wait_event_cmd()
md/raid5.c: add proper locking to error path of raid5_start_reshape.
md: fix calculation of stacking limits on level change.
raid5: Use slow_path to release stripe when mddev->thread is null
For R5_ReadNoMerge,it mean this bio can't merge with other bios or
request.It used REQ_FLUSH to achieve this. But REQ_NOMERGE can do the
same work.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
There is an iobarrier in raid1 because of contention between normal IO and
resync IO. It suspends all normal IO when resync/recovery happens.
However if normal IO is out side the resync window, there is no contention.
So this patch changes the barrier mechanism to only block IO that
could contend with the resync that is currently happening.
We partition the whole space into five parts.
|---------|-----------|------------|----------------|-------|
start next_resync start_next_window end_window
start + RESYNC_WINDOW = next_resync
next_resync + NEXT_NORMALIO_DISTANCE = start_next_window
start_next_window + NEXT_NORMALIO_DISTANCE = end_window
Firstly we introduce some concepts:
1 - RESYNC_WINDOW: For resync, there are 32 resync requests at most at the
same time. A sync request is RESYNC_BLOCK_SIZE(64*1024).
So the RESYNC_WINDOW is 32 * RESYNC_BLOCK_SIZE, that is 2MB.
2 - NEXT_NORMALIO_DISTANCE: the distance between next_resync
and start_next_window. It also indicates the distance between
start_next_window and end_window.
It is currently 3 * RESYNC_WINDOW_SIZE but could be tuned if
this turned out not to be optimal.
3 - next_resync: the next sector at which we will do sync IO.
4 - start: a position which is at most RESYNC_WINDOW before
next_resync.
5 - start_next_window: a position which is NEXT_NORMALIO_DISTANCE
beyond next_resync. Normal-io after this position doesn't need to
wait for resync-io to complete.
6 - end_window: a position which is 2 * NEXT_NORMALIO_DISTANCE beyond
next_resync. This also doesn't need to wait, but is counted
differently.
7 - current_window_requests: the count of normalIO between
start_next_window and end_window.
8 - next_window_requests: the count of normalIO after end_window.
NormalIO will be partitioned into four types:
NormIO1: the end sector of bio is smaller or equal the start
NormIO2: the start sector of bio larger or equal to end_window
NormIO3: the start sector of bio larger or equal to
start_next_window.
NormIO4: the location between start_next_window and end_window
|--------|-----------|--------------------|----------------|-------------|
| start | next_resync | start_next_window | end_window |
NormIO1 NormIO4 NormIO4 NormIO3 NormIO2
For NormIO1, we don't need any io barrier.
For NormIO4, we used a similar approach to the original iobarrier
mechanism. The normalIO and resyncIO must be kept separate.
For NormIO2/3, we add two fields to struct r1conf: "current_window_requests"
and "next_window_requests". They indicate the count of active
requests in the two window.
For these, we don't wait for resync io to complete.
For resync action, if there are NormIO4s, we must wait for it.
If not, we can proceed.
But if resync action reaches start_next_window and
current_window_requests > 0 (that is there are NormIO3s), we must
wait until the current_window_requests becomes zero.
When current_window_requests becomes zero, start_next_window also
moves forward. Then current_window_requests will replaced by
next_window_requests.
There is a problem which when and how to change from NormIO2 to
NormIO3. Only then can sync action progress.
We add a field in struct r1conf "start_next_window".
A: if start_next_window == MaxSector, it means there are no NormIO2/3.
So start_next_window = next_resync + NEXT_NORMALIO_DISTANCE
B: if current_window_requests == 0 && next_window_requests != 0, it
means start_next_window move to end_window
There is another problem which how to differentiate between
old NormIO2(now it is NormIO3) and NormIO2.
For example, there are many bios which are NormIO2 and a bio which is
NormIO3. NormIO3 firstly completed, so the bios of NormIO2 became NormIO3.
We add a field in struct r1bio "start_next_window".
This is used to record the position conf->start_next_window when the call
to wait_barrier() is made in make_request().
In allow_barrier(), we check the conf->start_next_window.
If r1bio->stat_next_window == conf->start_next_window, it means
there is no transition between NormIO2 and NormIO3.
If r1bio->start_next_window != conf->start_next_window, it mean
there was a transition between NormIO2 and NormIO3. There can only
have been one transition. So it only means the bio is old NormIO2.
For one bio, there may be many r1bio's. So we make sure
all the r1bio->start_next_window are the same value.
If we met blocked_dev in make_request(), it must call allow_barrier
and wait_barrier. So the former and the later value of
conf->start_next_window will be change.
If there are many r1bio's with differnet start_next_window,
for the relevant bio, it depend on the last value of r1bio.
It will cause error. To avoid this, we must wait for previous r1bios
to complete.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
In a subsequent patch, we'll use some const parameters.
Using macros will make the code clearly.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
We used to use raise_barrier to suspend normal IO while we reconfigure
the array. However raise_barrier will soon only suspend some normal
IO, not all. So we need something else.
Change it to use freeze_array.
But freeze_array not only suspends normal io, it also suspends
resync io.
For the place where call raise_barrier for reconfigure, it isn't a
problem.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Because the following patch will rewrite the content between normal IO
and resync IO. So we used a parameter to indicate whether raid is in freeze
array.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
When raid5 recovery hits a fresh badblock, this badblock will flagged as unack
badblock until md_update_sb() is called.
But md_stop will take reconfig lock which means raid5d can't call
md_update_sb() in md_check_recovery(), the badblock will always
be unack, so raid5d thread enters an infinite loop and md_stop_write()
can never stop sync_thread. This causes deadlock.
To solve this, when STOP_ARRAY ioctl is issued and sync_thread is
running, we need set md->recovery FROZEN and INTR flags and wait for
sync_thread to stop before we (re)take reconfig lock.
This requires that raid5 reshape_request notices MD_RECOVERY_INTR
(which it probably should have noticed anyway) and stops waiting for a
metadata update in that case.
Reported-by: Jianpeng Ma <majianpeng@gmail.com>
Reported-by: Bian Yu <bianyu@kedacom.com>
Signed-off-by: NeilBrown <neilb@suse.de>
We currently use kthread_should_stop() in various places in the
sync/reshape code to abort early.
However some places set MD_RECOVERY_INTR but don't immediately call
md_reap_sync_thread() (and we will shortly get another one).
When this happens we are relying on md_check_recovery() to reap the
thread and that only happen when it finishes normally.
So MD_RECOVERY_INTR must lead to a normal finish without the
kthread_should_stop() test.
So replace all relevant tests, and be more careful when the thread is
interrupted not to acknowledge that latest step in a reshape as it may
not be fully committed yet.
Also add a test on MD_RECOVERY_INTR in the 'is_mddev_idle' loop
so we don't wait have to wait for the speed to drop before we can abort.
Signed-off-by: NeilBrown <neilb@suse.de>
Sometimes we need to lock and mddev and cannot cope with
failure due to interrupt.
In these cases we should use mutex_lock, not mutex_lock_interruptible.
Signed-off-by: NeilBrown <neilb@suse.de>
Because of block layer merge, one bio fails will cause other bios
which belongs to the same request fails, so raid5_end_read_request
will record all these bios as badblocks.
If retry request with R5_ReadNoMerge flag to avoid bios merge,
badblocks can only record sector which is bad exactly.
test:
hdparm --yes-i-know-what-i-am-doing --make-bad-sector 300000 /dev/sdb
mdadm -C /dev/md0 -l5 -n3 /dev/sd[bcd] --assume-clean
mdadm /dev/md0 -f /dev/sdd
mdadm /dev/md0 -r /dev/sdd
mdadm --zero-superblock /dev/sdd
mdadm /dev/md0 -a /dev/sdd
1. Without this patch:
cat /sys/block/md0/md/rd*/bad_blocks
299776 256
299776 256
2. With this patch:
cat /sys/block/md0/md/rd*/bad_blocks
300000 8
300000 8
Signed-off-by: Bian Yu <bianyu@kedacom.com>
Signed-off-by: NeilBrown <neilb@suse.de>
track empty inactive list count, so md_raid5_congested() can use it to make
decision.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
The dm-delay target uses a shared workqueue for multiple instances. This
can cause deadlock if two or more dm-delay targets are stacked on the top
of each other.
This patch changes dm-delay to use a per-instance workqueue.
Cc: stable@vger.kernel.org # 2.6.22+
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Pull trivial tree updates from Jiri Kosina:
"Usual earth-shaking, news-breaking, rocket science pile from
trivial.git"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
doc: usb: Fix typo in Documentation/usb/gadget_configs.txt
doc: add missing files to timers/00-INDEX
timekeeping: Fix some trivial typos in comments
mm: Fix some trivial typos in comments
irq: Fix some trivial typos in comments
NUMA: fix typos in Kconfig help text
mm: update 00-INDEX
doc: Documentation/DMA-attributes.txt fix typo
DRM: comment: `halve' -> `half'
Docs: Kconfig: `devlopers' -> `developers'
doc: typo on word accounting in kprobes.c in mutliple architectures
treewide: fix "usefull" typo
treewide: fix "distingush" typo
mm/Kconfig: Grammar s/an/a/
kexec: Typo s/the/then/
Documentation/kvm: Update cpuid documentation for steal time and pv eoi
treewide: Fix common typo in "identify"
__page_to_pfn: Fix typo in comment
Correct some typos for word frequency
clk: fixed-factor: Fix a trivial typo
...
Pull second round of block driver updates from Jens Axboe:
"As mentioned in the original pull request, the bcache bits were pulled
because of their dependency on the immutable bio vecs. Kent re-did
this part and resubmitted it, so here's the 2nd round of (mostly)
driver updates for 3.13. It contains:
- The bcache work from Kent.
- Conversion of virtio-blk to blk-mq. This removes the bio and request
path, and substitutes with the blk-mq path instead. The end result
almost 200 deleted lines. Patch is acked by Asias and Christoph, who
both did a bunch of testing.
- A removal of bootmem.h include from Grygorii Strashko, part of a
larger series of his killing the dependency on that header file.
- Removal of __cpuinit from blk-mq from Paul Gortmaker"
* 'for-linus' of git://git.kernel.dk/linux-block: (56 commits)
virtio_blk: blk-mq support
blk-mq: remove newly added instances of __cpuinit
bcache: defensively handle format strings
bcache: Bypass torture test
bcache: Delete some slower inline asm
bcache: Use ida for bcache block dev minor
bcache: Fix sysfs splat on shutdown with flash only devs
bcache: Better full stripe scanning
bcache: Have btree_split() insert into parent directly
bcache: Move spinlock into struct time_stats
bcache: Kill sequential_merge option
bcache: Kill bch_next_recurse_key()
bcache: Avoid deadlocking in garbage collection
bcache: Incremental gc
bcache: Add make_btree_freeing_key()
bcache: Add btree_node_write_sync()
bcache: PRECEDING_KEY()
bcache: bch_(btree|extent)_ptr_invalid()
bcache: Don't bother with bucket refcount for btree node allocations
bcache: Debug code improvements
...
Make this useful helper available for other users.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use this new function to make code more comprehensible, since we are
reinitialzing the completion, not initializing.
[akpm@linux-foundation.org: linux-next resyncs]
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org> (personally at LCE13)
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_active_stripe() is the last place we have lock contention. It has two
paths. One is stripe isn't found and new stripe is allocated, the other is
stripe is found.
The first path basically calls __find_stripe and init_stripe. It accesses
conf->generation, conf->previous_raid_disks, conf->raid_disks,
conf->prev_chunk_sectors, conf->chunk_sectors, conf->max_degraded,
conf->prev_algo, conf->algorithm, the stripe_hashtbl and inactive_list. Except
stripe_hashtbl and inactive_list, other fields are changed very rarely.
With this patch, we split inactive_list and add new hash locks. Each free
stripe belongs to a specific inactive list. Which inactive list is determined
by stripe's lock_hash. Note, even a stripe hasn't a sector assigned, it has a
lock_hash assigned. Stripe's inactive list is protected by a hash lock, which
is determined by it's lock_hash too. The lock_hash is derivied from current
stripe_hashtbl hash, which guarantees any stripe_hashtbl list will be assigned
to a specific lock_hash, so we can use new hash lock to protect stripe_hashtbl
list too. The goal of the new hash locks introduced is we can only use the new
locks in the first path of get_active_stripe(). Since we have several hash
locks, lock contention is relieved significantly.
The first path of get_active_stripe() accesses other fields, since they are
changed rarely, changing them now need take conf->device_lock and all hash
locks. For a slow path, this isn't a problem.
If we need lock device_lock and hash lock, we always lock hash lock first. The
tricky part is release_stripe and friends. We need take device_lock first.
Neil's suggestion is we put inactive stripes to a temporary list and readd it
to inactive_list after device_lock is released. In this way, we add stripes to
temporary list with device_lock hold and remove stripes from the list with hash
lock hold. So we don't allow concurrent access to the temporary list, which
means we need allocate temporary list for all participants of release_stripe.
One downside is free stripes are maintained in their inactive list, they can't
across between the lists. By default, we have total 256 stripes and 8 lists, so
each list will have 32 stripes. It's possible one list has free stripe but
other list hasn't. The chance should be rare because stripes allocation are
even distributed. And we can always allocate more stripes for cache, several
mega bytes memory isn't a big deal.
This completely removes the lock contention of the first path of
get_active_stripe(). It slows down the second code path a little bit though
because we now need takes two locks, but since the hash lock isn't contended,
the overhead should be quite small (several atomic instructions). The second
path of get_active_stripe() (basically sequential write or big request size
randwrite) still has lock contentions.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
If raid5_start_reshape errors out, we need to reset all the fields
that were updated (not just some), and need to use the seq_counter
to ensure make_request() doesn't use an inconsitent state.
Signed-off-by: NeilBrown <neilb@suse.de>
The various ->run routines of md personalities assume that the 'queue'
has been initialised by the blk_set_stacking_limits() call in
md_alloc().
However when the level is changed (by level_store()) the ->run routine
for the new level is called for an array which has already had the
stacking limits modified. This can result in incorrect final
settings.
So call blk_set_stacking_limits() before ->run in level_store().
A specific consequence of this bug is that it causes
discard_granularity to be set incorrectly when reshaping a RAID4 to a
RAID0.
This is suitable for any -stable kernel since 3.3 in which
blk_set_stacking_limits() was introduced.
Cc: stable@vger.kernel.org (3.3+)
Reported-and-tested-by: "Baldysiak, Pawel" <pawel.baldysiak@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
When release_stripe() is called in grow_one_stripe(), the
mddev->thread is null. So it will omit one wakeup this thread to
release stripe.
For this condition, use slow_path to release stripe.
Bug was introduced in 3.12
Cc: stable@vger.kernel.org (3.12+)
Fixes: 773ca82fa1ee58dd1bf88b
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>