IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In preparation for the removal of the multiorder radix tree code,
convert item_delete_rcu() to use the XArray so it can still be called
for XArrays containing multi-index entries.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The remaining tests are not suitable for moving in-kernel, so move
item_insert_order() into multiorder.c, make it static and make it use
the XArray.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
With no code left in the kernel using the multiorder radix tree, convert
the iteration test from the radix tree to the XArray. It's unlikely to
suffer the same bug as the radix tree, but this test will prevent that
bug from ever creeping into the XArray implementation.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The tag_tagged_items() function is supposed to test the page-writeback
tagging code. Since that has been converted to the XArray, there's
not much point in testing the radix tree's tagging code. This requires
using the pthread mutex embedded in the xarray instead of an external
lock, so remove the pthread mutexes which protect xarrays/radix trees.
Also remove radix_tree_iter_tag_set() as this was the last user.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
This is a 1:1 conversion. The major part of this patch is converting
the test framework from userspace to kernel space and mirroring the
algorithm now used in find_swap_entry().
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The xa_load function brings with it a lot of infrastructure; xa_empty(),
xa_is_err(), and large chunks of the XArray advanced API that are used
to implement xa_load.
As the test-suite demonstrates, it is possible to use the XArray functions
on a radix tree. The radix tree functions depend on the GFP flags being
stored in the root of the tree, so it's not possible to use the radix
tree functions on an XArray.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Add a test which shows a race in the multi-order iteration code. This
test reliably hits the race in under a second on my machine, and is the
result of a real bug report against kernel a production v4.15 based
kernel (4.15.6-300.fc27.x86_64). With a real kernel this issue is hit
when using order 9 PMD DAX radix tree entries.
The race has to do with how we tear down multi-order sibling entries
when we are removing an item from the tree. Remember that an order 2
entry looks like this:
struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling]
where 'entry' is in some slot in the struct radix_tree_node, and the
three slots following 'entry' contain sibling pointers which point back
to 'entry.'
When we delete 'entry' from the tree, we call :
radix_tree_delete()
radix_tree_delete_item()
__radix_tree_delete()
replace_slot()
replace_slot() first removes the siblings in order from the first to the
last, then at then replaces 'entry' with NULL. This means that for a
brief period of time we end up with one or more of the siblings removed,
so:
struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling]
This causes an issue if you have a reader iterating over the slots in
the tree via radix_tree_for_each_slot() while only under
rcu_read_lock()/rcu_read_unlock() protection. This is a common case in
mm/filemap.c.
The issue is that when __radix_tree_next_slot() => skip_siblings() tries
to skip over the sibling entries in the slots, it currently does so with
an exact match on the slot directly preceding our current slot.
Normally this works:
V preceding slot
struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling]
^ current slot
This lets you find the first sibling, and you skip them all in order.
But in the case where one of the siblings is NULL, that slot is skipped
and then our sibling detection is interrupted:
V preceding slot
struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling]
^ current slot
This means that the sibling pointers aren't recognized since they point
all the way back to 'entry', so we think that they are normal internal
radix tree pointers. This causes us to think we need to walk down to a
struct radix_tree_node starting at the address of 'entry'.
In a real running kernel this will crash the thread with a GP fault when
you try and dereference the slots in your broken node starting at
'entry'.
In the radix tree test suite this will be caught by the address
sanitizer:
==27063==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x60c0008ae400 at pc 0x00000040ce4f bp 0x7fa89b8fcad0 sp 0x7fa89b8fcac0
READ of size 8 at 0x60c0008ae400 thread T3
#0 0x40ce4e in __radix_tree_next_slot /home/rzwisler/project/linux/tools/testing/radix-tree/radix-tree.c:1660
#1 0x4022cc in radix_tree_next_slot linux/../../../../include/linux/radix-tree.h:567
#2 0x4022cc in iterator_func /home/rzwisler/project/linux/tools/testing/radix-tree/multiorder.c:655
#3 0x7fa8a088d50a in start_thread (/lib64/libpthread.so.0+0x750a)
#4 0x7fa8a03bd16e in clone (/lib64/libc.so.6+0xf516e)
Link: http://lkml.kernel.org/r/20180503192430.7582-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: CR, Sapthagirish <sapthagirish.cr@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the lifetime of "struct item" entries in the radix tree are
not controlled by RCU, but are instead deleted inline as they are
removed from the tree.
In the following patches we add a test which has threads iterating over
items pulled from the tree and verifying them in an
rcu_read_lock()/rcu_read_unlock() section. This means that though an
item has been removed from the tree it could still be being worked on by
other threads until the RCU grace period expires. So, we need to
actually free the "struct item" structures at the end of the grace
period, just as we do with "struct radix_tree_node" items.
Link: http://lkml.kernel.org/r/20180503192430.7582-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: CR, Sapthagirish <sapthagirish.cr@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's a relatively rare race where we look at the per-cpu preallocated
IDA bitmap, see it's NULL, allocate a new one, and atomically update it.
If the kmalloc() happened to sleep and we were rescheduled to a different
CPU, or an interrupt came in at the exact right time, another task
might have successfully allocated a bitmap and already deposited it.
I forgot what the semantics of cmpxchg() were and ended up freeing the
wrong bitmap leading to KASAN reporting a use-after-free.
Dmitry found the bug with syzkaller & wrote the patch. I wrote the test
case that will reproduce the bug without his patch being applied.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
The IDR is very similar to the radix tree. It has some functionality that
the radix tree did not have (alloc next free, cyclic allocation, a
callback-based for_each, destroy tree), which is readily implementable on
top of the radix tree. A few small changes were needed in order to use a
tag to represent nodes with free space below them. More extensive
changes were needed to support storing NULL as a valid entry in an IDR.
Plain radix trees still interpret NULL as a not-present entry.
The IDA is reimplemented as a client of the newly enhanced radix tree. As
in the current implementation, it uses a bitmap at the last level of the
tree.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The random iteration test only inserts order-0 entries currently.
Update it to insert entries of order between 7 and 0. Also make the
maximum index configurable, make some variables static, make the test
duration variable, remove some useless spinning, and add a fifth thread
which calls tag_tagged_items().
Link: http://lkml.kernel.org/r/1480369871-5271-62-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calculate how many nodes we need to allocate to split an old_order entry
into multiple entries, each of size new_order. The test suite checks
that we allocated exactly the right number of nodes; neither too many
(checked by rtp->nr == 0), nor too few (checked by comparing
nr_allocated before and after the call to radix_tree_split()).
Link: http://lkml.kernel.org/r/1480369871-5271-60-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an exceptionally complicated function with just one caller
(tag_pages_for_writeback). We devote a large portion of the runtime of
the test suite to testing this one function which has one caller. By
introducing the new function radix_tree_iter_tag_set(), we can eliminate
all of the complexity while keeping the performance. The caller can now
use a fairly standard radix_tree_for_each() loop, and it doesn't need to
worry about tricksy things like 'start' wrapping.
The test suite continues to spend a large amount of time investigating
this function, but now it's testing the underlying primitives such as
radix_tree_iter_resume() and the radix_tree_for_each_tagged() iterator
which are also used by other parts of the kernel.
Link: http://lkml.kernel.org/r/1480369871-5271-57-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This rather complicated function can be better implemented as an
iterator. It has only one caller, so move the functionality to the only
place that needs it. Update the test suite to follow the same pattern.
Link: http://lkml.kernel.org/r/1480369871-5271-56-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes several interlinked problems with the iterators in the
presence of multiorder entries.
1. radix_tree_iter_next() would only advance by one slot, which would
result in the iterators returning the same entry more than once if
there were sibling entries.
2. radix_tree_next_slot() could return an internal pointer instead of
a user pointer if a tagged multiorder entry was immediately followed by
an entry of lower order.
3. radix_tree_next_slot() expanded to a lot more code than it used to
when multiorder support was compiled in. And I wasn't comfortable with
entry_to_node() being in a header file.
Fixing radix_tree_iter_next() for the presence of sibling entries
necessarily involves examining the contents of the radix tree, so we now
need to pass 'slot' to radix_tree_iter_next(), and we need to change the
calling convention so it is called *before* dropping the lock which
protects the tree. Also rename it to radix_tree_iter_resume(), as some
people thought it was necessary to call radix_tree_iter_next() each time
around the loop.
radix_tree_next_slot() becomes closer to how it looked before multiorder
support was introduced. It only checks to see if the next entry in the
chunk is a sibling entry or a pointer to a node; this should be rare
enough that handling this case out of line is not a performance impact
(and such impact is amortised by the fact that the entry we just
processed was a multiorder entry). Also, radix_tree_next_slot() used to
force a new chunk lookup for untagged entries, which is more expensive
than the out of line sibling entry skipping.
Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This probably doubles the size of each item allocated by the test suite
but it lets us check a few more things, and may be needed for upcoming
API changes that require the caller pass in the order of the entry.
Link: http://lkml.kernel.org/r/1480369871-5271-46-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds simple benchmark for iterator similar to one I've used for
commit 78c1d78488a3 ("radix-tree: introduce bit-optimized iterator")
Building with make BENCHMARK=1 set radix tree order to 6, this allows to
get performance comparable to in kernel performance.
Link: http://lkml.kernel.org/r/1480369871-5271-43-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can be a source of mild concern when the test suite shows that we're
leaking nodes. While poring over the source code looking for leaks can
lead to some fascinating bugs being discovered, sometimes the leak is
simply that these nodes were preallocated and are sitting on the per-CPU
list. Free them by calling the CPU dead callback.
Link: http://lkml.kernel.org/r/1480369871-5271-40-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are four cases I can see where we could end up with a NULL 'slot' in
radix_tree_next_slot(). This unit test exercises all four of them, making
sure that if in the future we have an unsafe path through
radix_tree_next_slot(), we'll catch it.
Here are details on the four cases:
1) radix_tree_iter_retry() via a non-tagged iteration like
radix_tree_for_each_slot(). In this case we currently aren't seeing a bug
because radix_tree_iter_retry() sets
iter->next_index = iter->index;
which means that in in the else case in radix_tree_next_slot(), 'count' is
zero, so we skip over the while() loop and effectively just return NULL
without ever dereferencing 'slot'.
2) radix_tree_iter_retry() via tagged iteration like
radix_tree_for_each_tagged(). This case was giving us NULL pointer
dereferences in testing, and was fixed with this commit:
commit 3cb9185c6730 ("radix-tree: fix radix_tree_iter_retry() for tagged
iterators.")
This fix doesn't explicitly check for 'slot' being NULL, though, it works
around the NULL pointer dereference by instead zeroing iter->tags in
radix_tree_iter_retry(), which makes us bail out of the if() case in
radix_tree_next_slot() before we dereference 'slot'.
3) radix_tree_iter_next() via via a non-tagged iteration like
radix_tree_for_each_slot(). This currently happens in shmem_tag_pins()
and shmem_partial_swap_usage().
As with non-tagged iteration, 'count' in the else case of
radix_tree_next_slot() is zero, so we skip over the while() loop and
effectively just return NULL without ever dereferencing 'slot'.
4) radix_tree_iter_next() via tagged iteration like
radix_tree_for_each_tagged(). This happens in shmem_wait_for_pins().
radix_tree_iter_next() zeros out iter->tags, so we end up exiting
radix_tree_next_slot() here:
if (flags & RADIX_TREE_ITER_TAGGED) {
void *canon = slot;
iter->tags >>= 1;
if (unlikely(!iter->tags))
return NULL;
Link: http://lkml.kernel.org/r/20160815194237.25967-3-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mirrors the earlier commit introducing node_to_entry().
Also change the type returned to be a struct radix_tree_node pointer.
That lets us simplify a couple of places in the radix tree shrink &
extend paths where we could convert an entry into a pointer, modify the
node, then convert the pointer back into an entry.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
verify_node() can use node->shift instead of the height.
tree_verify_min_height() can be converted over to using node_maxindex()
and shift_maxindex() instead of radix_tree_maxindex().
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Print which indices are covered by every leaf entry
- Print sibling entries
- Print the node pointer instead of the slot entry
- Build by default in userspace, and make it accessible to the test-suite
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test suite infrastructure for working with multiorder entries.
The test itself is pretty basic: Add an entry, check that all expected
indices return that entry and that indices around that entry don't
return an entry. Then delete the entry and check no index returns that
entry. Tests a few edge conditions including the multiorder entry at
index 0 and at a higher index. Also tests deleting through an alias as
well as through the canonical index.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code is mostly from Andrew Morton and Nick Piggin; tarball downloaded
from http://ozlabs.org/~akpm/rtth.tar.gz with sha1sum
0ce679db9ec047296b5d1ff7a1dfaa03a7bef1bd
Some small modifications were necessary to the test harness to fix the
build with the current Linux source code.
I also made minor modifications to automatically test the radix-tree.c
and radix-tree.h files that are in the current source tree, as opposed
to a copied and slightly modified version. I am sure more could be done
to tidy up the harness, as well as adding more tests.
[koct9i@gmail.com: fix compilation]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>