11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Martin KaFai Lau
|
85d33df357 |
bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS
The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value is a kernel struct with its func ptr implemented in bpf prog. This new map is the interface to register/unregister/introspect a bpf implemented kernel struct. The kernel struct is actually embedded inside another new struct (or called the "value" struct in the code). For example, "struct tcp_congestion_ops" is embbeded in: struct bpf_struct_ops_tcp_congestion_ops { refcount_t refcnt; enum bpf_struct_ops_state state; struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */ } The map value is "struct bpf_struct_ops_tcp_congestion_ops". The "bpftool map dump" will then be able to show the state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g. number of tcp_sock in the tcp_congestion_ops case). This "value" struct is created automatically by a macro. Having a separate "value" struct will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding "void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some initialization works before registering the struct_ops to the kernel subsystem). The libbpf will take care of finding and populating the "struct bpf_struct_ops_XYZ" from "struct XYZ". Register a struct_ops to a kernel subsystem: 1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s) 2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the running kernel. Instead of reusing the attr->btf_value_type_id, btf_vmlinux_value_type_id s added such that attr->btf_fd can still be used as the "user" btf which could store other useful sysadmin/debug info that may be introduced in the furture, e.g. creation-date/compiler-details/map-creator...etc. 3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described in the running kernel btf. Populate the value of this object. The function ptr should be populated with the prog fds. 4. Call BPF_MAP_UPDATE with the object created in (3) as the map value. The key is always "0". During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's args as an array of u64 is generated. BPF_MAP_UPDATE also allows the specific struct_ops to do some final checks in "st_ops->init_member()" (e.g. ensure all mandatory func ptrs are implemented). If everything looks good, it will register this kernel struct to the kernel subsystem. The map will not allow further update from this point. Unregister a struct_ops from the kernel subsystem: BPF_MAP_DELETE with key "0". Introspect a struct_ops: BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will have the prog _id_ populated as the func ptr. The map value state (enum bpf_struct_ops_state) will transit from: INIT (map created) => INUSE (map updated, i.e. reg) => TOBEFREE (map value deleted, i.e. unreg) The kernel subsystem needs to call bpf_struct_ops_get() and bpf_struct_ops_put() to manage the "refcnt" in the "struct bpf_struct_ops_XYZ". This patch uses a separate refcnt for the purose of tracking the subsystem usage. Another approach is to reuse the map->refcnt and then "show" (i.e. during map_lookup) the subsystem's usage by doing map->refcnt - map->usercnt to filter out the map-fd/pinned-map usage. However, that will also tie down the future semantics of map->refcnt and map->usercnt. The very first subsystem's refcnt (during reg()) holds one count to map->refcnt. When the very last subsystem's refcnt is gone, it will also release the map->refcnt. All bpf_prog will be freed when the map->refcnt reaches 0 (i.e. during map_free()). Here is how the bpftool map command will look like: [root@arch-fb-vm1 bpf]# bpftool map show 6: struct_ops name dctcp flags 0x0 key 4B value 256B max_entries 1 memlock 4096B btf_id 6 [root@arch-fb-vm1 bpf]# bpftool map dump id 6 [{ "value": { "refcnt": { "refs": { "counter": 1 } }, "state": 1, "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 2, "init": 24, "release": 0, "ssthresh": 25, "cong_avoid": 30, "set_state": 27, "cwnd_event": 28, "in_ack_event": 26, "undo_cwnd": 29, "pkts_acked": 0, "min_tso_segs": 0, "sndbuf_expand": 0, "cong_control": 0, "get_info": 0, "name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0 ], "owner": 0 } } } ] Misc Notes: * bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup. It does an inplace update on "*value" instead returning a pointer to syscall.c. Otherwise, it needs a separate copy of "zero" value for the BPF_STRUCT_OPS_STATE_INIT to avoid races. * The bpf_struct_ops_map_delete_elem() is also called without preempt_disable() from map_delete_elem(). It is because the "->unreg()" may requires sleepable context, e.g. the "tcp_unregister_congestion_control()". * "const" is added to some of the existing "struct btf_func_model *" function arg to avoid a compiler warning caused by this patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com |
||
Daniel Borkmann
|
2beee5f574 |
bpf: Move owner type, jited info into array auxiliary data
We're going to extend this with further information which is only relevant for prog array at this point. Given this info is not used in critical path, move it into its own structure such that the main array map structure can be kept on diet. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net |
||
Andrii Nakryiko
|
1e0bd5a091 |
bpf: Switch bpf_map ref counter to atomic64_t so bpf_map_inc() never fails
92117d8443bc ("bpf: fix refcnt overflow") turned refcounting of bpf_map into potentially failing operation, when refcount reaches BPF_MAX_REFCNT limit (32k). Due to using 32-bit counter, it's possible in practice to overflow refcounter and make it wrap around to 0, causing erroneous map free, while there are still references to it, causing use-after-free problems. But having a failing refcounting operations are problematic in some cases. One example is mmap() interface. After establishing initial memory-mapping, user is allowed to arbitrarily map/remap/unmap parts of mapped memory, arbitrarily splitting it into multiple non-contiguous regions. All this happening without any control from the users of mmap subsystem. Rather mmap subsystem sends notifications to original creator of memory mapping through open/close callbacks, which are optionally specified during initial memory mapping creation. These callbacks are used to maintain accurate refcount for bpf_map (see next patch in this series). The problem is that open() callback is not supposed to fail, because memory-mapped resource is set up and properly referenced. This is posing a problem for using memory-mapping with BPF maps. One solution to this is to maintain separate refcount for just memory-mappings and do single bpf_map_inc/bpf_map_put when it goes from/to zero, respectively. There are similar use cases in current work on tcp-bpf, necessitating extra counter as well. This seems like a rather unfortunate and ugly solution that doesn't scale well to various new use cases. Another approach to solve this is to use non-failing refcount_t type, which uses 32-bit counter internally, but, once reaching overflow state at UINT_MAX, stays there. This utlimately causes memory leak, but prevents use after free. But given refcounting is not the most performance-critical operation with BPF maps (it's not used from running BPF program code), we can also just switch to 64-bit counter that can't overflow in practice, potentially disadvantaging 32-bit platforms a tiny bit. This simplifies semantics and allows above described scenarios to not worry about failing refcount increment operation. In terms of struct bpf_map size, we are still good and use the same amount of space: BEFORE (3 cache lines, 8 bytes of padding at the end): struct bpf_map { const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */ struct bpf_map * inner_map_meta; /* 8 8 */ void * security; /* 16 8 */ enum bpf_map_type map_type; /* 24 4 */ u32 key_size; /* 28 4 */ u32 value_size; /* 32 4 */ u32 max_entries; /* 36 4 */ u32 map_flags; /* 40 4 */ int spin_lock_off; /* 44 4 */ u32 id; /* 48 4 */ int numa_node; /* 52 4 */ u32 btf_key_type_id; /* 56 4 */ u32 btf_value_type_id; /* 60 4 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct btf * btf; /* 64 8 */ struct bpf_map_memory memory; /* 72 16 */ bool unpriv_array; /* 88 1 */ bool frozen; /* 89 1 */ /* XXX 38 bytes hole, try to pack */ /* --- cacheline 2 boundary (128 bytes) --- */ atomic_t refcnt __attribute__((__aligned__(64))); /* 128 4 */ atomic_t usercnt; /* 132 4 */ struct work_struct work; /* 136 32 */ char name[16]; /* 168 16 */ /* size: 192, cachelines: 3, members: 21 */ /* sum members: 146, holes: 1, sum holes: 38 */ /* padding: 8 */ /* forced alignments: 2, forced holes: 1, sum forced holes: 38 */ } __attribute__((__aligned__(64))); AFTER (same 3 cache lines, no extra padding now): struct bpf_map { const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */ struct bpf_map * inner_map_meta; /* 8 8 */ void * security; /* 16 8 */ enum bpf_map_type map_type; /* 24 4 */ u32 key_size; /* 28 4 */ u32 value_size; /* 32 4 */ u32 max_entries; /* 36 4 */ u32 map_flags; /* 40 4 */ int spin_lock_off; /* 44 4 */ u32 id; /* 48 4 */ int numa_node; /* 52 4 */ u32 btf_key_type_id; /* 56 4 */ u32 btf_value_type_id; /* 60 4 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct btf * btf; /* 64 8 */ struct bpf_map_memory memory; /* 72 16 */ bool unpriv_array; /* 88 1 */ bool frozen; /* 89 1 */ /* XXX 38 bytes hole, try to pack */ /* --- cacheline 2 boundary (128 bytes) --- */ atomic64_t refcnt __attribute__((__aligned__(64))); /* 128 8 */ atomic64_t usercnt; /* 136 8 */ struct work_struct work; /* 144 32 */ char name[16]; /* 176 16 */ /* size: 192, cachelines: 3, members: 21 */ /* sum members: 154, holes: 1, sum holes: 38 */ /* forced alignments: 2, forced holes: 1, sum forced holes: 38 */ } __attribute__((__aligned__(64))); This patch, while modifying all users of bpf_map_inc, also cleans up its interface to match bpf_map_put with separate operations for bpf_map_inc and bpf_map_inc_with_uref (to match bpf_map_put and bpf_map_put_with_uref, respectively). Also, given there are no users of bpf_map_inc_not_zero specifying uref=true, remove uref flag and default to uref=false internally. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191117172806.2195367-2-andriin@fb.com |
||
Thomas Gleixner
|
25763b3c86 |
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 206
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of version 2 of the gnu general public license as published by the free software foundation extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 107 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190528171438.615055994@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Yonghong Song
|
a115d0ed72 |
bpf: set inner_map_meta->spin_lock_off correctly
Commit d83525ca62cf ("bpf: introduce bpf_spin_lock") introduced bpf_spin_lock and the field spin_lock_off in kernel internal structure bpf_map has the following meaning: >=0 valid offset, <0 error For every map created, the kernel will ensure spin_lock_off has correct value. Currently, bpf_map->spin_lock_off is not copied from the inner map to the map_in_map inner_map_meta during a map_in_map type map creation, so inner_map_meta->spin_lock_off = 0. This will give verifier wrong information that inner_map has bpf_spin_lock and the bpf_spin_lock is defined at offset 0. An access to offset 0 of a value pointer will trigger the following error: bpf_spin_lock cannot be accessed directly by load/store This patch fixed the issue by copy inner map's spin_lock_off value to inner_map_meta->spin_lock_off. Fixes: d83525ca62cf ("bpf: introduce bpf_spin_lock") Signed-off-by: Yonghong Song <yhs@fb.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Alexei Starovoitov
|
d83525ca62 |
bpf: introduce bpf_spin_lock
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let bpf program serialize access to other variables. Example: struct hash_elem { int cnt; struct bpf_spin_lock lock; }; struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key); if (val) { bpf_spin_lock(&val->lock); val->cnt++; bpf_spin_unlock(&val->lock); } Restrictions and safety checks: - bpf_spin_lock is only allowed inside HASH and ARRAY maps. - BTF description of the map is mandatory for safety analysis. - bpf program can take one bpf_spin_lock at a time, since two or more can cause dead locks. - only one 'struct bpf_spin_lock' is allowed per map element. It drastically simplifies implementation yet allows bpf program to use any number of bpf_spin_locks. - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed. - bpf program must bpf_spin_unlock() before return. - bpf program can access 'struct bpf_spin_lock' only via bpf_spin_lock()/bpf_spin_unlock() helpers. - load/store into 'struct bpf_spin_lock lock;' field is not allowed. - to use bpf_spin_lock() helper the BTF description of map value must be a struct and have 'struct bpf_spin_lock anyname;' field at the top level. Nested lock inside another struct is not allowed. - syscall map_lookup doesn't copy bpf_spin_lock field to user space. - syscall map_update and program map_update do not update bpf_spin_lock field. - bpf_spin_lock cannot be on the stack or inside networking packet. bpf_spin_lock can only be inside HASH or ARRAY map value. - bpf_spin_lock is available to root only and to all program types. - bpf_spin_lock is not allowed in inner maps of map-in-map. - ld_abs is not allowed inside spin_lock-ed region. - tracing progs and socket filter progs cannot use bpf_spin_lock due to insufficient preemption checks Implementation details: - cgroup-bpf class of programs can nest with xdp/tc programs. Hence bpf_spin_lock is equivalent to spin_lock_irqsave. Other solutions to avoid nested bpf_spin_lock are possible. Like making sure that all networking progs run with softirq disabled. spin_lock_irqsave is the simplest and doesn't add overhead to the programs that don't use it. - arch_spinlock_t is used when its implemented as queued_spin_lock - archs can force their own arch_spinlock_t - on architectures where queued_spin_lock is not available and sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used. - presence of bpf_spin_lock inside map value could have been indicated via extra flag during map_create, but specifying it via BTF is cleaner. It provides introspection for map key/value and reduces user mistakes. Next steps: - allow bpf_spin_lock in other map types (like cgroup local storage) - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper to request kernel to grab bpf_spin_lock before rewriting the value. That will serialize access to map elements. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Daniel Borkmann
|
9d5564ddcf |
bpf: fix inner map masking to prevent oob under speculation
During review I noticed that inner meta map setup for map in map is buggy in that it does not propagate all needed data from the reference map which the verifier is later accessing. In particular one such case is index masking to prevent out of bounds access under speculative execution due to missing the map's unpriv_array/index_mask field propagation. Fix this such that the verifier is generating the correct code for inlined lookups in case of unpriviledged use. Before patch (test_verifier's 'map in map access' dump): # bpftool prog dump xla id 3 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:4] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking for 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+11 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | Index masking missing (!) 22: (35) if r0 >= 0x1 goto pc+3 | for inner map despite 23: (67) r0 <<= 3 | map->unpriv_array set. 24: (0f) r0 += r1 | 25: (05) goto pc+1 | 26: (b7) r0 = 0 | 27: (b7) r0 = 0 28: (95) exit After patch: # bpftool prog dump xla id 1 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:2] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Same inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking due to 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+12 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | 22: (35) if r0 >= 0x1 goto pc+4 | Now fixed inlined inner map 23: (54) (u32) r0 &= (u32) 0 | lookup with proper index masking 24: (67) r0 <<= 3 | for map->unpriv_array. 25: (0f) r0 += r1 | 26: (05) goto pc+1 | 27: (b7) r0 = 0 | 28: (b7) r0 = 0 29: (95) exit Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Roman Gushchin
|
c6fdcd6e0c |
bpf: don't allow create maps of per-cpu cgroup local storages
Explicitly forbid creating map of per-cpu cgroup local storages. This behavior matches the behavior of shared cgroup storages. Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Roman Gushchin
|
7b5dd2bde7 |
bpf: don't allow create maps of cgroup local storages
As there is one-to-one relation between a bpf program and cgroup local storage map, there is no sense in creating a map of cgroup local storage maps. Forbid it explicitly to avoid possible side effects. Signed-off-by: Roman Gushchin <guro@fb.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Martin KaFai Lau
|
14dc6f04f4 |
bpf: Add syscall lookup support for fd array and htab
This patch allows userspace to do BPF_MAP_LOOKUP_ELEM on BPF_MAP_TYPE_PROG_ARRAY, BPF_MAP_TYPE_ARRAY_OF_MAPS and BPF_MAP_TYPE_HASH_OF_MAPS. The lookup returns a prog-id or map-id to the userspace. The userspace can then use the BPF_PROG_GET_FD_BY_ID or BPF_MAP_GET_FD_BY_ID to get a fd. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Martin KaFai Lau
|
56f668dfe0 |
bpf: Add array of maps support
This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> |