128 Commits

Author SHA1 Message Date
Vladimir Oltean
e89a361d99 net: dsa: sja1105: fix -ENOSPC when replacing the same tc-cbs too many times
[ Upstream commit 894cafc5c62ccced758077bd4e970dc714c42637 ]

After running command [2] too many times in a row:

[1] $ tc qdisc add dev sw2p0 root handle 1: mqprio num_tc 8 \
	map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
[2] $ tc qdisc replace dev sw2p0 parent 1:1 cbs offload 1 \
	idleslope 120000 sendslope -880000 locredit -1320 hicredit 180

(aka more than priv->info->num_cbs_shapers times)

we start seeing the following error message:

Error: Specified device failed to setup cbs hardware offload.

This comes from the fact that ndo_setup_tc(TC_SETUP_QDISC_CBS) presents
the same API for the qdisc create and replace cases, and the sja1105
driver fails to distinguish between the 2. Thus, it always thinks that
it must allocate the same shaper for a {port, queue} pair, when it may
instead have to replace an existing one.

Fixes: 4d7525085a9b ("net: dsa: sja1105: offload the Credit-Based Shaper qdisc")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:20:27 +02:00
Vladimir Oltean
94a3117eff net: dsa: sja1105: fix bandwidth discrepancy between tc-cbs software and offload
[ Upstream commit 954ad9bf13c4f95a4958b5f8433301f2ab99e1f5 ]

More careful measurement of the tc-cbs bandwidth shows that the stream
bandwidth (effectively idleslope) increases, there is a larger and
larger discrepancy between the rate limit obtained by the software
Qdisc, and the rate limit obtained by its offloaded counterpart.

The discrepancy becomes so large, that e.g. at an idleslope of 40000
(40Mbps), the offloaded cbs does not actually rate limit anything, and
traffic will pass at line rate through a 100 Mbps port.

The reason for the discrepancy is that the hardware documentation I've
been following is incorrect. UM11040.pdf (for SJA1105P/Q/R/S) states
about IDLE_SLOPE that it is "the rate (in unit of bytes/sec) at which
the credit counter is increased".

Cross-checking with UM10944.pdf (for SJA1105E/T) and UM11107.pdf
(for SJA1110), the wording is different: "This field specifies the
value, in bytes per second times link speed, by which the credit counter
is increased".

So there's an extra scaling for link speed that the driver is currently
not accounting for, and apparently (empirically), that link speed is
expressed in Kbps.

I've pondered whether to pollute the sja1105_mac_link_up()
implementation with CBS shaper reprogramming, but I don't think it is
worth it. IMO, the UAPI exposed by tc-cbs requires user space to
recalculate the sendslope anyway, since the formula for that depends on
port_transmit_rate (see man tc-cbs), which is not an invariant from tc's
perspective.

So we use the offload->sendslope and offload->idleslope to deduce the
original port_transmit_rate from the CBS formula, and use that value to
scale the offload->sendslope and offload->idleslope to values that the
hardware understands.

Some numerical data points:

 40Mbps stream, max interfering frame size 1500, port speed 100M
 ---------------------------------------------------------------

 tc-cbs parameters:
 idleslope 40000 sendslope -60000 locredit -900 hicredit 600

 which result in hardware values:

 Before (doesn't work)           After (works)
 credit_hi    600                600
 credit_lo    900                900
 send_slope   7500000            75
 idle_slope   5000000            50

 40Mbps stream, max interfering frame size 1500, port speed 1G
 -------------------------------------------------------------

 tc-cbs parameters:
 idleslope 40000 sendslope -960000 locredit -1440 hicredit 60

 which result in hardware values:

 Before (doesn't work)           After (works)
 credit_hi    60                 60
 credit_lo    1440               1440
 send_slope   120000000          120
 idle_slope   5000000            5

 5.12Mbps stream, max interfering frame size 1522, port speed 100M
 -----------------------------------------------------------------

 tc-cbs parameters:
 idleslope 5120 sendslope -94880 locredit -1444 hicredit 77

 which result in hardware values:

 Before (doesn't work)           After (works)
 credit_hi    77                 77
 credit_lo    1444               1444
 send_slope   11860000           118
 idle_slope   640000             6

Tested on SJA1105T, SJA1105S and SJA1110A, at 1Gbps and 100Mbps.

Fixes: 4d7525085a9b ("net: dsa: sja1105: offload the Credit-Based Shaper qdisc")
Reported-by: Yanan Yang <yanan.yang@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:20:27 +02:00
Vladimir Oltean
1cad01aca1 net: dsa: sja1105: fix broken backpressure in .port_fdb_dump
[ Upstream commit 21b52fed928e96d2f75d2f6aa9eac7a4b0b55d22 ]

rtnl_fdb_dump() has logic to split a dump of PF_BRIDGE neighbors into
multiple netlink skbs if the buffer provided by user space is too small
(one buffer will typically handle a few hundred FDB entries).

When the current buffer becomes full, nlmsg_put() in
dsa_slave_port_fdb_do_dump() returns -EMSGSIZE and DSA saves the index
of the last dumped FDB entry, returns to rtnl_fdb_dump() up to that
point, and then the dump resumes on the same port with a new skb, and
FDB entries up to the saved index are simply skipped.

Since dsa_slave_port_fdb_do_dump() is pointed to by the "cb" passed to
drivers, then drivers must check for the -EMSGSIZE error code returned
by it. Otherwise, when a netlink skb becomes full, DSA will no longer
save newly dumped FDB entries to it, but the driver will continue
dumping. So FDB entries will be missing from the dump.

Fix the broken backpressure by propagating the "cb" return code and
allow rtnl_fdb_dump() to restart the FDB dump with a new skb.

Fixes: 291d1e72b756 ("net: dsa: sja1105: Add support for FDB and MDB management")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18 08:59:12 +02:00
Vladimir Oltean
e09dba75ca net: dsa: sja1105: match FDB entries regardless of inner/outer VLAN tag
[ Upstream commit 47c2c0c2312118a478f738503781de1d1a6020d2 ]

On SJA1105P/Q/R/S and SJA1110, the L2 Lookup Table entries contain a
maskable "inner/outer tag" bit which means:
- when set to 1: match single-outer and double tagged frames
- when set to 0: match untagged and single-inner tagged frames
- when masked off: match all frames regardless of the type of tag

This driver does not make any meaningful distinction between inner tags
(matches on TPID) and outer tags (matches on TPID2). In fact, all VLAN
table entries are installed as SJA1110_VLAN_D_TAG, which means that they
match on both inner and outer tags.

So it does not make sense that we install FDB entries with the IOTAG bit
set to 1.

In VLAN-unaware mode, we set both TPID and TPID2 to 0xdadb, so the
switch will see frames as outer-tagged or double-tagged (never inner).
So the FDB entries will match if IOTAG is set to 1.

In VLAN-aware mode, we set TPID to 0x8100 and TPID2 to 0x88a8. So the
switch will see untagged and 802.1Q-tagged packets as inner-tagged, and
802.1ad-tagged packets as outer-tagged. So untagged and 802.1Q-tagged
packets will not match FDB entries if IOTAG is set to 1, but 802.1ad
tagged packets will. Strange.

To fix this, simply mask off the IOTAG bit from FDB entries, and make
them match regardless of whether the VLAN tag is inner or outer.

Fixes: 1da73821343c ("net: dsa: sja1105: Add FDB operations for P/Q/R/S series")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12 13:22:06 +02:00
Vladimir Oltean
c0b14a0e61 net: dsa: sja1105: be stateless with FDB entries on SJA1105P/Q/R/S/SJA1110 too
[ Upstream commit 589918df93226a1e5f104306c185b6dcf2bd8051 ]

Similar but not quite the same with what was done in commit b11f0a4c0c81
("net: dsa: sja1105: be stateless when installing FDB entries") for
SJA1105E/T, it is desirable to drop the priv->vlan_aware check and
simply go ahead and install FDB entries in the VLAN that was given by
the bridge.

As opposed to SJA1105E/T, in SJA1105P/Q/R/S and SJA1110, the FDB is a
maskable TCAM, and we are installing VLAN-unaware FDB entries with the
VLAN ID masked off. However, such FDB entries might completely obscure
VLAN-aware entries where the VLAN ID is included in the search mask,
because the switch looks up the FDB from left to right and picks the
first entry which results in a masked match. So it depends on whether
the bridge installs first the VLAN-unaware or the VLAN-aware FDB entries.

Anyway, if we had a VLAN-unaware FDB entry towards one set of DESTPORTS
and a VLAN-aware one towards other set of DESTPORTS, the result is that
the packets in VLAN-aware mode will be forwarded towards the DESTPORTS
specified by the VLAN-unaware entry.

To solve this, simply do not use the masked matching ability of the FDB
for VLAN ID, and always match precisely on it. In VLAN-unaware mode, we
configure the switch for shared VLAN learning, so the VLAN ID will be
ignored anyway during lookup, so it is redundant to mask it off in the
TCAM.

This patch conflicts with net-next commit 0fac6aa098ed ("net: dsa: sja1105:
delete the best_effort_vlan_filtering mode") which changed this line:
	if (priv->vlan_state != SJA1105_VLAN_UNAWARE) {
into:
	if (priv->vlan_aware) {

When merging with net-next, the lines added by this patch should take
precedence in the conflict resolution (i.e. the "if" condition should be
deleted in both cases).

Fixes: 1da73821343c ("net: dsa: sja1105: Add FDB operations for P/Q/R/S series")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12 13:22:05 +02:00
Vladimir Oltean
00bf923dce net: dsa: sja1105: invalidate dynamic FDB entries learned concurrently with statically added ones
[ Upstream commit 6c5fc159e0927531707895709eee1f8bfa04289f ]

The procedure to add a static FDB entry in sja1105 is concurrent with
dynamic learning performed on all bridge ports and the CPU port.

The switch looks up the FDB from left to right, and also learns
dynamically from left to right, so it is possible that between the
moment when we pick up a free slot to install an FDB entry, another slot
to the left of that one becomes free due to an address ageing out, and
that other slot is then immediately used by the switch to learn
dynamically the same address as we're trying to add statically.

The result is that we succeeded to add our static FDB entry, but it is
being shadowed by a dynamic FDB entry to its left, and the switch will
behave as if our static FDB entry did not exist.

We cannot really prevent this from happening unless we make the entire
process to add a static FDB entry a huge critical section where address
learning is temporarily disabled on _all_ ports, and then re-enabled
according to the configuration done by sja1105_port_set_learning.
However, that is kind of disruptive for the operation of the network.

What we can do alternatively is to simply read back the FDB for dynamic
entries located before our newly added static one, and delete them.
This will guarantee that our static FDB entry is now operational. It
will still not guarantee that there aren't dynamic FDB entries to the
_right_ of that static FDB entry, but at least those entries will age
out by themselves since they aren't hit, and won't bother anyone.

Fixes: 291d1e72b756 ("net: dsa: sja1105: Add support for FDB and MDB management")
Fixes: 1da73821343c ("net: dsa: sja1105: Add FDB operations for P/Q/R/S series")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12 13:22:05 +02:00
Vladimir Oltean
de425f1c3a net: dsa: sja1105: overwrite dynamic FDB entries with static ones in .port_fdb_add
[ Upstream commit e11e865bf84e3c6ea91563ff3e858cfe0e184bd2 ]

The SJA1105 switch family leaves it up to software to decide where
within the FDB to install a static entry, and to concatenate destination
ports for already existing entries (the FDB is also used for multicast
entries), it is not as simple as just saying "please add this entry".

This means we first need to search for an existing FDB entry before
adding a new one. The driver currently manages to fool itself into
thinking that if an FDB entry already exists, there is nothing to be
done. But that FDB entry might be dynamically learned, case in which it
should be replaced with a static entry, but instead it is left alone.

This patch checks the LOCKEDS ("locked/static") bit from found FDB
entries, and lets the code "goto skip_finding_an_index;" if the FDB
entry was not static. So we also need to move the place where we set
LOCKEDS = true, to cover the new case where a dynamic FDB entry existed
but was dynamic.

Fixes: 291d1e72b756 ("net: dsa: sja1105: Add support for FDB and MDB management")
Fixes: 1da73821343c ("net: dsa: sja1105: Add FDB operations for P/Q/R/S series")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12 13:22:05 +02:00
Vladimir Oltean
c8ebf135c1 net: dsa: sja1105: make VID 4095 a bridge VLAN too
[ Upstream commit e40cba9490bab1414d45c2d62defc0ad4f6e4136 ]

This simple series of commands:

ip link add br0 type bridge vlan_filtering 1
ip link set swp0 master br0

fails on sja1105 with the following error:
[   33.439103] sja1105 spi0.1: vlan-lookup-table needs to have at least the default untagged VLAN
[   33.447710] sja1105 spi0.1: Invalid config, cannot upload
Warning: sja1105: Failed to change VLAN Ethertype.

For context, sja1105 has 3 operating modes:
- SJA1105_VLAN_UNAWARE: the dsa_8021q_vlans are committed to hardware
- SJA1105_VLAN_FILTERING_FULL: the bridge_vlans are committed to hardware
- SJA1105_VLAN_FILTERING_BEST_EFFORT: both the dsa_8021q_vlans and the
  bridge_vlans are committed to hardware

Swapping out a VLAN list and another in happens in
sja1105_build_vlan_table(), which performs a delta update procedure.
That function is called from a few places, notably from
sja1105_vlan_filtering() which is called from the
SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING handler.

The above set of 2 commands fails when run on a kernel pre-commit
8841f6e63f2c ("net: dsa: sja1105: make devlink property
best_effort_vlan_filtering true by default"). So the priv->vlan_state
transition that takes place is between VLAN-unaware and full VLAN
filtering. So the dsa_8021q_vlans are swapped out and the bridge_vlans
are swapped in.

So why does it fail?

Well, the bridge driver, through nbp_vlan_init(), first sets up the
SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING attribute, and only then
proceeds to call nbp_vlan_add for the default_pvid.

So when we swap out the dsa_8021q_vlans and swap in the bridge_vlans in
the SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING handler, there are no bridge
VLANs (yet). So we have wiped the VLAN table clean, and the low-level
static config checker complains of an invalid configuration. We _will_
add the bridge VLANs using the dynamic config interface, albeit later,
when nbp_vlan_add() calls us. So it is natural that it fails.

So why did it ever work?

Surprisingly, it looks like I only tested this configuration with 2
things set up in a particular way:
- a network manager that brings all ports up
- a kernel with CONFIG_VLAN_8021Q=y

It is widely known that commit ad1afb003939 ("vlan_dev: VLAN 0 should be
treated as "no vlan tag" (802.1p packet)") installs VID 0 to every net
device that comes up. DSA treats these VLANs as bridge VLANs, and
therefore, in my testing, the list of bridge_vlans was never empty.

However, if CONFIG_VLAN_8021Q is not enabled, or the port is not up when
it joins a VLAN-aware bridge, the bridge_vlans list will be temporarily
empty, and the sja1105_static_config_reload() call from
sja1105_vlan_filtering() will fail.

To fix this, the simplest thing is to keep VID 4095, the one used for
CPU-injected control packets since commit ed040abca4c1 ("net: dsa:
sja1105: use 4095 as the private VLAN for untagged traffic"), in the
list of bridge VLANs too, not just the list of tag_8021q VLANs. This
ensures that the list of bridge VLANs will never be empty.

Fixes: ec5ae61076d0 ("net: dsa: sja1105: save/restore VLANs using a delta commit method")
Reported-by: Radu Pirea (NXP OSS) <radu-nicolae.pirea@oss.nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-28 14:35:41 +02:00
Vladimir Oltean
4228c00e14 net: dsa: sja1105: fix NULL pointer dereference in sja1105_reload_cbs()
[ Upstream commit be7f62eebaff2f86c1467a2d33930a0a7a87675b ]

priv->cbs is an array of priv->info->num_cbs_shapers elements of type
struct sja1105_cbs_entry which only get allocated if CONFIG_NET_SCH_CBS
is enabled.

However, sja1105_reload_cbs() is called from sja1105_static_config_reload()
which in turn is called for any of the items in sja1105_reset_reasons,
therefore during the normal runtime of the driver and not just from a
code path which can be triggered by the tc-cbs offload.

The sja1105_reload_cbs() function does not contain a check whether the
priv->cbs array is NULL or not, it just assumes it isn't and proceeds to
iterate through the credit-based shaper elements. This leads to a NULL
pointer dereference.

The solution is to return success if the priv->cbs array has not been
allocated, since sja1105_reload_cbs() has nothing to do.

Fixes: 4d7525085a9b ("net: dsa: sja1105: offload the Credit-Based Shaper qdisc")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:56:29 +02:00
Vladimir Oltean
83999bf40c net: dsa: sja1105: call dsa_unregister_switch when allocating memory fails
commit dc596e3fe63f88e3d1e509f64e7f761cd4135538 upstream.

Unlike other drivers which pretty much end their .probe() execution with
dsa_register_switch(), the sja1105 does some extra stuff. When that
fails with -ENOMEM, the driver is quick to return that, forgetting to
call dsa_unregister_switch(). Not critical, but a bug nonetheless.

Fixes: 4d7525085a9b ("net: dsa: sja1105: offload the Credit-Based Shaper qdisc")
Fixes: a68578c20a96 ("net: dsa: Make deferred_xmit private to sja1105")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-03 09:00:38 +02:00
Vladimir Oltean
dd8609f203 net: dsa: sja1105: add error handling in sja1105_setup()
commit cec279a898a3b004411682f212215ccaea1cd0fb upstream.

If any of sja1105_static_config_load(), sja1105_clocking_setup() or
sja1105_devlink_setup() fails, we can't just return in the middle of
sja1105_setup() or memory will leak. Add a cleanup path.

Fixes: 0a7bdbc23d8a ("net: dsa: sja1105: move devlink param code to sja1105_devlink.c")
Fixes: 8aa9ebccae87 ("net: dsa: Introduce driver for NXP SJA1105 5-port L2 switch")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-03 09:00:38 +02:00
Vladimir Oltean
4a368bc25a net: dsa: sja1105: error out on unsupported PHY mode
commit 6729188d2646709941903052e4b78e1d82c239b9 upstream.

The driver continues probing when a port is configured for an
unsupported PHY interface type, instead it should stop.

Fixes: 8aa9ebccae87 ("net: dsa: Introduce driver for NXP SJA1105 5-port L2 switch")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-03 09:00:38 +02:00
Vladimir Oltean
4ef506c071 net: dsa: sja1105: use 4095 as the private VLAN for untagged traffic
commit ed040abca4c1db72dfd3b8483b6ed6bfb7c2571e upstream.

One thing became visible when writing the blamed commit, and that was
that STP and PTP frames injected by net/dsa/tag_sja1105.c using the
deferred xmit mechanism are always classified to the pvid of the CPU
port, regardless of whatever VLAN there might be in these packets.

So a decision needed to be taken regarding the mechanism through which
we should ensure that delivery of STP and PTP traffic is possible when
we are in a VLAN awareness mode that involves tag_8021q. This is because
tag_8021q is not concerned with managing the pvid of the CPU port, since
as far as tag_8021q is concerned, no traffic should be sent as untagged
from the CPU port. So we end up not actually having a pvid on the CPU
port if we only listen to tag_8021q, and unless we do something about it.

The decision taken at the time was to keep VLAN 1 in the list of
priv->dsa_8021q_vlans, and make it a pvid of the CPU port. This ensures
that STP and PTP frames can always be sent to the outside world.

However there is a problem. If we do the following while we are in
the best_effort_vlan_filtering=true mode:

ip link add br0 type bridge vlan_filtering 1
ip link set swp2 master br0
bridge vlan del dev swp2 vid 1

Then untagged and pvid-tagged frames should be dropped. But we observe
that they aren't, and this is because of the precaution we took that VID
1 is always installed on all ports.

So clearly VLAN 1 is not good for this purpose. What about VLAN 0?
Well, VLAN 0 is managed by the 8021q module, and that module wants to
ensure that 802.1p tagged frames are always received by a port, and are
always transmitted as VLAN-tagged (with VLAN ID 0). Whereas we want our
STP and PTP frames to be untagged if the stack sent them as untagged -
we don't want the driver to just decide out of the blue that it adds
VID 0 to some packets.

So what to do?

Well, there is one other VLAN that is reserved, and that is 4095:
$ ip link add link swp2 name swp2.4095 type vlan id 4095
Error: 8021q: Invalid VLAN id.
$ bridge vlan add dev swp2 vid 4095
Error: bridge: Vlan id is invalid.

After we made this change, VLAN 1 is indeed forwarded and/or dropped
according to the bridge VLAN table, there are no further alterations
done by the sja1105 driver.

Fixes: ec5ae61076d0 ("net: dsa: sja1105: save/restore VLANs using a delta commit method")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-03 09:00:38 +02:00
Vladimir Oltean
6f4b79217f net: dsa: sja1105: update existing VLANs from the bridge VLAN list
commit b38e659de966a122fe2cb178c1e39c9bea06bc62 upstream.

When running this sequence of operations:

ip link add br0 type bridge vlan_filtering 1
ip link set swp4 master br0
bridge vlan add dev swp4 vid 1

We observe the traffic sent on swp4 is still untagged, even though the
bridge has overwritten the existing VLAN entry:

port    vlan ids
swp4     1 PVID

br0      1 PVID Egress Untagged

This happens because we didn't consider that the 'bridge vlan add'
command just overwrites VLANs like it's nothing. We treat the 'vid 1
pvid untagged' and the 'vid 1' as two separate VLANs, and the first
still has precedence when calling sja1105_build_vlan_table. Obviously
there is a disagreement regarding semantics, and we end up doing
something unexpected from the PoV of the bridge.

Let's actually consider an "existing VLAN" to be one which is on the
same port, and has the same VLAN ID, as one we already have, and update
it if it has different flags than we do.

The first blamed commit is the one introducing the bug, the second one
is the latest on top of which the bugfix still applies.

Fixes: ec5ae61076d0 ("net: dsa: sja1105: save/restore VLANs using a delta commit method")
Fixes: 5899ee367ab3 ("net: dsa: tag_8021q: add a context structure")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-03 09:00:38 +02:00
Vladimir Oltean
565b2d3ae2 net: dsa: sja1105: fix SGMII PCS being forced to SPEED_UNKNOWN instead of SPEED_10
commit 053d8ad10d585adf9891fcd049637536e2fe9ea7 upstream.

When using MLO_AN_PHY or MLO_AN_FIXED, the MII_BMCR of the SGMII PCS is
read before resetting the switch so it can be reprogrammed afterwards.
This works for the speeds of 1Gbps and 100Mbps, but not for 10Mbps,
because SPEED_10 is actually 0, so AND-ing anything with 0 is false,
therefore that last branch is dead code.

Do what others do (genphy_read_status_fixed, phy_mii_ioctl) and just
remove the check for SPEED_10, let it fall into the default case.

Fixes: ffe10e679cec ("net: dsa: sja1105: Add support for the SGMII port")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17 17:06:15 +01:00
Vladimir Oltean
2e554a7a5d net: dsa: propagate switchdev vlan_filtering prepare phase to drivers
A driver may refuse to enable VLAN filtering for any reason beyond what
the DSA framework cares about, such as:
- having tc-flower rules that rely on the switch being VLAN-aware
- the particular switch does not support VLAN, even if the driver does
  (the DSA framework just checks for the presence of the .port_vlan_add
  and .port_vlan_del pointers)
- simply not supporting this configuration to be toggled at runtime

Currently, when a driver rejects a configuration it cannot support, it
does this from the commit phase, which triggers various warnings in
switchdev.

So propagate the prepare phase to drivers, to give them the ability to
refuse invalid configurations cleanly and avoid the warnings.

Since we need to modify all function prototypes and check for the
prepare phase from within the drivers, take that opportunity and move
the existing driver restrictions within the prepare phase where that is
possible and easy.

Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Woojung Huh <woojung.huh@microchip.com>
Cc: Microchip Linux Driver Support <UNGLinuxDriver@microchip.com>
Cc: Sean Wang <sean.wang@mediatek.com>
Cc: Landen Chao <Landen.Chao@mediatek.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Vivien Didelot <vivien.didelot@gmail.com>
Cc: Jonathan McDowell <noodles@earth.li>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-05 05:56:48 -07:00
Vladimir Oltean
ff4cf8eae0 net: dsa: sja1105: implement .devlink_info_get
Return the driver name and ASIC ID so that generic user space
application are able to know they're looking at sja1105 devlink regions
when pretty-printing them.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-25 16:35:27 -07:00
Vladimir Oltean
0a7bdbc23d net: dsa: sja1105: move devlink param code to sja1105_devlink.c
We'll have more devlink code soon. Group it together in a separate
translation object.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-25 16:35:27 -07:00
Vladimir Oltean
bbed0bbddd net: dsa: tag_8021q: add VLANs to the master interface too
The whole purpose of tag_8021q is to send VLAN-tagged traffic to the
CPU, from which the driver can decode the source port and switch id.

Currently this only works if the VLAN filtering on the master is
disabled. Change that by explicitly adding code to tag_8021q.c to add
the VLANs corresponding to the tags to the filter of the master
interface.

Because we now need to call vlan_vid_add, then we also need to hold the
RTNL mutex. Propagate that requirement to the callers of dsa_8021q_setup
and modify the existing call sites as appropriate. Note that one call
path, sja1105_best_effort_vlan_filtering_set -> sja1105_vlan_filtering
-> sja1105_setup_8021q_tagging, was already holding this lock.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-20 19:01:34 -07:00
Vladimir Oltean
5899ee367a net: dsa: tag_8021q: add a context structure
While working on another tag_8021q driver implementation, some things
became apparent:

- It is not mandatory for a DSA driver to offload the tag_8021q VLANs by
  using the VLAN table per se. For example, it can add custom TCAM rules
  that simply encapsulate RX traffic, and redirect & decapsulate rules
  for TX traffic. For such a driver, it makes no sense to receive the
  tag_8021q configuration through the same callback as it receives the
  VLAN configuration from the bridge and the 8021q modules.

- Currently, sja1105 (the only tag_8021q user) sets a
  priv->expect_dsa_8021q variable to distinguish between the bridge
  calling, and tag_8021q calling. That can be improved, to say the
  least.

- The crosschip bridging operations are, in fact, stateful already. The
  list of crosschip_links must be kept by the caller and passed to the
  relevant tag_8021q functions.

So it would be nice if the tag_8021q configuration was more
self-contained. This patch attempts to do that.

Create a struct dsa_8021q_context which encapsulates a struct
dsa_switch, and has 2 function pointers for adding and deleting a VLAN.
These will replace the previous channel to the driver, which was through
the .port_vlan_add and .port_vlan_del callbacks of dsa_switch_ops.

Also put the list of crosschip_links into this dsa_8021q_context.
Drivers that don't support cross-chip bridging can simply omit to
initialize this list, as long as they dont call any cross-chip function.

The sja1105_vlan_add and sja1105_vlan_del functions are refactored into
a smaller sja1105_vlan_add_one, which now has 2 entry points:
- sja1105_vlan_add, from struct dsa_switch_ops
- sja1105_dsa_8021q_vlan_add, from the tag_8021q ops
But even this change is fairly trivial. It just reflects the fact that
for sja1105, the VLANs from these 2 channels end up in the same hardware
table. However that is not necessarily true in the general sense (and
that's the reason for making this change).

The rest of the patch is mostly plain refactoring of "ds" -> "ctx". The
dsa_8021q_context structure needs to be propagated because adding a VLAN
is now done through the ops function pointers inside of it.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11 17:30:43 -07:00
Vladimir Oltean
7e092af2f3 net: dsa: tag_8021q: setup tagging via a single function call
There is no point in calling dsa_port_setup_8021q_tagging for each
individual port. Additionally, it will become more difficult to do that
when we'll have a context structure to tag_8021q (next patch). So
refactor this now.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11 17:30:43 -07:00
Nathan Chancellor
5978fac03e net: dsa: sja1105: Do not use address of compatible member in sja1105_check_device_id
Clang warns:

drivers/net/dsa/sja1105/sja1105_main.c:3418:38: warning: address of
array 'match->compatible' will always evaluate to 'true'
[-Wpointer-bool-conversion]
        for (match = sja1105_dt_ids; match->compatible; match++) {
        ~~~                          ~~~~~~~^~~~~~~~~~
1 warning generated.

We should check the value of the first character in compatible to see if
it is empty or not. This matches how the rest of the tree iterates over
IDs.

Fixes: 0b0e299720bb ("net: dsa: sja1105: use detected device id instead of DT one on mismatch")
Link: https://github.com/ClangBuiltLinux/linux/issues/1139
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-24 16:13:25 -07:00
Vladimir Oltean
0b0e299720 net: dsa: sja1105: use detected device id instead of DT one on mismatch
Although we can detect the chip revision 100% at runtime, it is useful
to specify it in the device tree compatible string too, because
otherwise there would be no way to assess the correctness of device tree
bindings statically, without booting a board (only some switch versions
have internal RGMII delays and/or an SGMII port).

But for testing the P/Q/R/S support, what I have is a reworked board
with the SJA1105T replaced by a pin-compatible SJA1105Q, and I don't
want to keep a separate device tree blob just for this one-off board.
Since just the chip has been replaced, its RGMII delay setup is
inherently the same (meaning: delays added by the PHY on the slave
ports, and by PCB traces on the fixed-link CPU port).

For this board, I'd rather have the driver shout at me, but go ahead and
use what it found even if it doesn't match what it's been told is there.

[    2.970826] sja1105 spi0.1: Device tree specifies chip SJA1105T but found SJA1105Q, please fix it!
[    2.980010] sja1105 spi0.1: Probed switch chip: SJA1105Q
[    3.005082] sja1105 spi0.1: Enabled switch tagging

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-05 12:20:55 -07:00
Po Liu
5f035af76e net:qos: police action offloading parameter 'burst' change to the original value
Since 'tcfp_burst' with TICK factor, driver side always need to recover
it to the original value, this patch moves the generic calculation and
recover to the 'burst' original value before offloading to device driver.

Signed-off-by: Po Liu <po.liu@nxp.com>
Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-29 17:33:42 -07:00
Vladimir Oltean
aef31718a9 net: dsa: sja1105: avoid invalid state in sja1105_vlan_filtering
Be there 2 switches spi/spi2.0 and spi/spi2.1 in a cross-chip setup,
both under the same VLAN-filtering bridge, both in the
SJA1105_VLAN_BEST_EFFORT state.

If we try to change the VLAN state of one of the switches (to
SJA1105_VLAN_FILTERING_FULL) we get the following error:

devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value
false cmode runtime
[   38.325683] sja1105 spi2.1: Not allowed to overcommit frame memory.
               L2 memory partitions and VL memory partitions share the
               same space. The sum of all 16 memory partitions is not
               allowed to be larger than 929 128-byte blocks (or 910
               with retagging). Please adjust
               l2-forwarding-parameters-table.part_spc and/or
               vl-forwarding-parameters-table.partspc.
[   38.356803] sja1105 spi2.1: Invalid config, cannot upload

This is because the spi/spi2.1 switch doesn't support tagging anymore in
the SJA1105_VLAN_FILTERING_FULL state, so it doesn't need to have any
retagging rules defined. Great, so it can use more frame memory
(retagging consumes extra memory).

But the built-in low-level static config checker from the sja1105 driver
says "not so fast, you've increased the frame memory to non-retagging
values, but you still kept the retagging rules in the static config".

So we need to rebuild the VLAN table immediately before re-uploading the
static config, operation which will take care, based on the new VLAN
state, of removing the retagging rules.

Fixes: 3f01c91aab92 ("net: dsa: sja1105: implement VLAN retagging for dsa_8021q sub-VLANs")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-29 16:49:50 -07:00
Vladimir Oltean
4d7525085a net: dsa: sja1105: offload the Credit-Based Shaper qdisc
SJA1105, being AVB/TSN switches, provide hardware assist for the
Credit-Based Shaper as described in the IEEE 8021Q-2018 document.

First generation has 10 shapers, freely assignable to any of the 4
external ports and 8 traffic classes, and second generation has 16
shapers.

The Credit-Based Shaper tables are accessed through the dynamic
reconfiguration interface, so we have to restore them manually after a
switch reset. The tables are backed up by the static config only on
P/Q/R/S, and we don't want to add custom code only for that family,
since the procedure that is in place now works for both.

Tested with the following commands:

data_rate_kbps=67000
port_transmit_rate_kbps=1000000
idleslope=$data_rate_kbps
sendslope=$(($idleslope - $port_transmit_rate_kbps))
locredit=$((-0x80000000))
hicredit=$((0x7fffffff))
tc qdisc add dev swp2 root handle 1: mqprio hw 0 num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7
tc qdisc replace dev swp2 parent 1:1 cbs \
        idleslope $idleslope \
        sendslope $sendslope \
        hicredit $hicredit \
        locredit $locredit \
        offload 1

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-28 11:01:22 -07:00
Vladimir Oltean
3f01c91aab net: dsa: sja1105: implement VLAN retagging for dsa_8021q sub-VLANs
Expand the delta commit procedure for VLANs with additional logic for
treating bridge_vlans in the newly introduced operating mode,
SJA1105_VLAN_BEST_EFFORT.

For every bridge VLAN on every user port, a sub-VLAN index is calculated
and retagging rules are installed towards a dsa_8021q rx_vid that
encodes that sub-VLAN index. This way, the tagger can identify the
original VLANs.

Extra care is taken for VLANs to still work as intended in cross-chip
scenarios. Retagging may have unintended consequences for these because
a sub-VLAN encoding that works for the CPU does not make any sense for a
front-panel port.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
aaa270c638 net: dsa: sja1105: implement a common frame memory partitioning function
There are 2 different features that require some reserved frame memory
space: VLAN retagging and virtual links. Create a central function that
modifies the static config and ensures frame memory is never
overcommitted.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
2cafa72e51 net: dsa: sja1105: add a new best_effort_vlan_filtering devlink parameter
This devlink parameter enables the handling of DSA tags when enslaved to
a bridge with vlan_filtering=1. There are very good reasons to want
this, but there are also very good reasons for not enabling it by
default. So a devlink param named best_effort_vlan_filtering, currently
driver-specific and exported only by sja1105, is used to configure this.

In practice, this is perhaps the way that most users are going to use
the switch in. It assumes that no more than 7 VLANs are needed per port.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
84eeb5d460 net: dsa: tag_sja1105: implement sub-VLAN decoding
Create a subvlan_map as part of each port's tagger private structure.
This keeps reverse mappings of bridge-to-dsa_8021q VLAN retagging rules.

Note that as of this patch, this piece of code is never engaged, due to
the fact that the driver hasn't installed any retagging rule, so we'll
always see packets with a subvlan code of 0 (untagged).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
38b5beeae7 net: dsa: sja1105: prepare tagger for handling DSA tags and VLAN simultaneously
In VLAN-unaware mode, sja1105 uses VLAN tags with a custom TPID of
0xdadb. While in the yet-to-be introduced best_effort_vlan_filtering
mode, it needs to work with normal VLAN TPID values.

A complication arises when we must transmit a VLAN-tagged packet to the
switch when it's in VLAN-aware mode. We need to construct a packet with
2 VLAN tags, and the switch will use the outer header for routing and
pop it on egress. But sadly, here the 2 hardware generations don't
behave the same:

- E/T switches won't pop an ETH_P_8021AD tag on egress, it seems
  (packets will remain double-tagged).
- P/Q/R/S switches will drop a packet with 2 ETH_P_8021Q tags (it looks
  like it tries to prevent VLAN hopping).

But looks like the reverse is also true:

- E/T switches have no problem popping the outer tag from packets with
  2 ETH_P_8021Q tags.
- P/Q/R/S will have no problem popping a single tag even if that is
  ETH_P_8021AD.

So it is clear that if we want the hardware to work with dsa_8021q
tagging in VLAN-aware mode, we need to send different TPIDs depending on
revision. Keep that information in priv->info->qinq_tpid.

The per-port tagger structure will hold an xmit_tpid value that depends
not only upon the qinq_tpid, but also upon the VLAN awareness state
itself (in case we must transmit using 0xdadb).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
cfa36b1fff net: dsa: sja1105: exit sja1105_vlan_filtering when called multiple times
VLAN filtering is a global property for sja1105, and that means that we
rely on the DSA core to not call us more than once.

But we need to introduce some per-port state for the tagger, namely the
xmit_tpid, and the best place to do that is where the xmit_tpid changes,
namely in sja1105_vlan_filtering. So at the moment, exit early from the
function to avoid unnecessarily resetting the switch for each port call.
Then we'll change the xmit_tpid prior to the early exit in the next
patch.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
fa83e5d918 net: dsa: sja1105: allow VLAN configuration from the bridge in all states
Let the DSA core call our .port_vlan_add methods every time the bridge
layer requests so. We will deal internally with saving/restoring VLANs
depending on our VLAN awareness state.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
ec5ae61076 net: dsa: sja1105: save/restore VLANs using a delta commit method
Managing the VLAN table that is present in hardware will become very
difficult once we add a third operating state
(best_effort_vlan_filtering). That is because correct cleanup (not too
little, not too much) becomes virtually impossible, when VLANs can be
added from the bridge layer, from dsa_8021q for basic tagging, for
cross-chip bridging, as well as retagging rules for sub-VLANs and
cross-chip sub-VLANs. So we need to rethink VLAN interaction with the
switch in a more scalable way.

In preparation for that, use the priv->expect_dsa_8021q boolean to
classify any VLAN request received through .port_vlan_add or
.port_vlan_del towards either one of 2 internal lists: bridge VLANs and
dsa_8021q VLANs.

Then, implement a central sja1105_build_vlan_table method that creates a
VLAN configuration from scratch based on the 2 lists of VLANs kept by
the driver, and based on the VLAN awareness state. Currently, if we are
VLAN-unaware, install the dsa_8021q VLANs, otherwise the bridge VLANs.

Then, implement a delta commit procedure that identifies which VLANs
from this new configuration are actually different from the config
previously committed to hardware. We apply the delta through the dynamic
configuration interface (we don't reset the switch). The result is that
the hardware should see the exact sequence of operations as before this
patch.

This also helps remove the "br" argument passed to
dsa_8021q_crosschip_bridge_join, which it was only using to figure out
whether it should commit the configuration back to us or not, based on
the VLAN awareness state of the bridge. We can simplify that, by always
allowing those VLANs inside of our dsa_8021q_vlans list, and committing
those to hardware when necessary.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
60b33aeb7e net: dsa: sja1105: deny alterations of dsa_8021q VLANs from the bridge
At the moment, this can never happen. The 2 modes that we operate in do
not permit that:

 - SJA1105_VLAN_UNAWARE: we are guarded from bridge VLANs added by the
   user by the DSA core. We will later lift this restriction by setting
   ds->vlan_bridge_vtu = true, and that is where we'll need it.

 - SJA1105_VLAN_FILTERING_FULL: in this mode, dsa_8021q configuration is
   disabled. So the user is free to add these VLANs in the 1024-3071
   range.

The reason for the patch is that we'll introduce a third VLAN awareness
state, where both dsa_8021q as well as the bridge are going to call our
.port_vlan_add and .port_vlan_del methods.

For that, we need a good way to discriminate between the 2. The easiest
(and less intrusive way for upper layers) is to recognize the fact that
dsa_8021q configurations are always driven by our driver - we _know_
when a .port_vlan_add method will be called from dsa_8021q because _we_
initiated it.

So introduce an expect_dsa_8021q boolean which is only used, at the
moment, for blacklisting VLANs in range 1024-3071 in the modes when
dsa_8021q is active.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:08 -07:00
Vladimir Oltean
7f14937fac net: dsa: sja1105: keep the VLAN awareness state in a driver variable
Soon we'll add a third operating mode to the driver. Introduce a
vlan_state to make things more easy to manage, and use it where
applicable.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12 13:08:07 -07:00
Vladimir Oltean
ac02a451a6 net: dsa: sja1105: implement cross-chip bridging operations
sja1105 uses dsa_8021q for DSA tagging, a format which is VLAN at heart
and which is compatible with cascading. A complete description of this
tagging format is in net/dsa/tag_8021q.c, but a quick summary is that
each external-facing port tags incoming frames with a unique pvid, and
this special VLAN is transmitted as tagged towards the inside of the
system, and as untagged towards the exterior. The tag encodes the switch
id and the source port index.

This means that cross-chip bridging for dsa_8021q only entails adding
the dsa_8021q pvids of one switch to the RX filter of the other
switches. Everything else falls naturally into place, as long as the
bottom-end of ports (the leaves in the tree) is comprised exclusively of
dsa_8021q-compatible (i.e. sja1105 switches). Otherwise, there would be
a chance that a front-panel switch transmits a packet tagged with a
dsa_8021q header, header which it wouldn't be able to remove, and which
would hence "leak" out.

The only use case I tested (due to lack of board availability) was when
the sja1105 switches are part of disjoint trees (however, this doesn't
change the fact that multiple sja1105 switches still need unique switch
identifiers in such a system). But in principle, even "true" single-tree
setups (with DSA links) should work just as fine, except for a small
change which I can't test: dsa_towards_port should be used instead of
dsa_upstream_port (I made the assumption that the routing port that any
sja1105 should use towards its neighbours is the CPU port. That might
not hold true in other setups).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 19:52:33 -07:00
Vladimir Oltean
834f8933d5 net: dsa: sja1105: implement tc-gate using time-triggered virtual links
Restrict the TTEthernet hardware support on this switch to operate as
closely as possible to IEEE 802.1Qci as possible. This means that it can
perform PTP-time-based ingress admission control on streams identified
by {DMAC, VID, PCP}, which is useful when trying to ensure the
determinism of traffic scheduled via IEEE 802.1Qbv.

The oddity comes from the fact that in hardware (and in TTEthernet at
large), virtual links always need a full-blown action, including not
only the type of policing, but also the list of destination ports. So in
practice, a single tc-gate action will result in all packets getting
dropped. Additional actions (either "trap" or "redirect") need to be
specified in the same filter rule such that the conforming packets are
actually forwarded somewhere.

Apart from the VL Lookup, Policing and Forwarding tables which need to
be programmed for each flow (virtual link), the Schedule engine also
needs to be told to open/close the admission gates for each individual
virtual link. A fairly accurate (and detailed) description of how that
works is already present in sja1105_tas.c, since it is already used to
trigger the egress gates for the tc-taprio offload (IEEE 802.1Qbv). Key
point here, we remember that the schedule engine supports 8
"subschedules" (execution threads that iterate through the global
schedule in parallel, and that no 2 hardware threads must execute a
schedule entry at the same time). For tc-taprio, each egress port used
one of these 8 subschedules, leaving a total of 4 subschedules unused.
In principle we could have allocated 1 subschedule for the tc-gate
offload of each ingress port, but actually the schedules of all virtual
links installed on each ingress port would have needed to be merged
together, before they could have been programmed to hardware. So
simplify our life and just merge the entire tc-gate configuration, for
all virtual links on all ingress ports, into a single subschedule. Be
sure to check that against the usual hardware scheduling conflicts, and
program it to hardware alongside any tc-taprio subschedule that may be
present.

The following scenarios were tested:

1. Quantitative testing:

   tc qdisc add dev swp2 clsact
   tc filter add dev swp2 ingress flower skip_sw \
           dst_mac 42:be:24:9b:76:20 \
           action gate index 1 base-time 0 \
           sched-entry OPEN 1200 -1 -1 \
           sched-entry CLOSE 1200 -1 -1 \
           action trap

   ping 192.168.1.2 -f
   PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
   .............................
   --- 192.168.1.2 ping statistics ---
   948 packets transmitted, 467 received, 50.7384% packet loss, time 9671ms

2. Qualitative testing (with a phase-aligned schedule - the clocks are
   synchronized by ptp4l, not shown here):

   Receiver (sja1105):

   tc qdisc add dev swp2 clsact
   now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \
           sec=$(echo $now | awk -F. '{print $1}') && \
           base_time="$(((sec + 2) * 1000000000))" && \
           echo "base time ${base_time}"
   tc filter add dev swp2 ingress flower skip_sw \
           dst_mac 42:be:24:9b:76:20 \
           action gate base-time ${base_time} \
           sched-entry OPEN  60000 -1 -1 \
           sched-entry CLOSE 40000 -1 -1 \
           action trap

   Sender (enetc):
   now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \
           sec=$(echo $now | awk -F. '{print $1}') && \
           base_time="$(((sec + 2) * 1000000000))" && \
           echo "base time ${base_time}"
   tc qdisc add dev eno0 parent root taprio \
           num_tc 8 \
           map 0 1 2 3 4 5 6 7 \
           queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
           base-time ${base_time} \
           sched-entry S 01  50000 \
           sched-entry S 00  50000 \
           flags 2

   ping -A 192.168.1.1
   PING 192.168.1.1 (192.168.1.1): 56 data bytes
   ...
   ^C
   --- 192.168.1.1 ping statistics ---
   1425 packets transmitted, 1424 packets received, 0% packet loss
   round-trip min/avg/max = 0.322/0.361/0.990 ms

   And just for comparison, with the tc-taprio schedule deleted:

   ping -A 192.168.1.1
   PING 192.168.1.1 (192.168.1.1): 56 data bytes
   ...
   ^C
   --- 192.168.1.1 ping statistics ---
   33 packets transmitted, 19 packets received, 42% packet loss
   round-trip min/avg/max = 0.336/0.464/0.597 ms

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-07 17:31:57 -07:00
Vladimir Oltean
dfacc5a23e net: dsa: sja1105: support flow-based redirection via virtual links
Implement tc-flower offloads for redirect, trap and drop using
non-critical virtual links.

Commands which were tested to work are:

  # Send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the
  # CPU and to swp3. This type of key (DA only) when the port's VLAN
  # awareness state is off.
  tc qdisc add dev swp2 clsact
  tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \
          action mirred egress redirect dev swp3 \
          action trap

  # Drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID
  # of 100 and a PCP of 0.
  tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
          dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop

Under the hood, all rules match on DMAC, VID and PCP, but when VLAN
filtering is disabled, those are set internally by the driver to the
port-based defaults. Because we would be put in an awkward situation if
the user were to change the VLAN filtering state while there are active
rules (packets would no longer match on the specified keys), we simply
deny changing vlan_filtering unless the list of flows offloaded via
virtual links is empty. Then the user can re-add new rules.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-07 17:31:57 -07:00
Vladimir Oltean
a6af77637a net: dsa: sja1105: add broadcast and per-traffic class policers
This patch adds complete support for manipulating the L2 Policing Tables
from this switch. There are 45 table entries, one entry per each port
and traffic class, and one dedicated entry for broadcast traffic for
each ingress port.

Policing entries are shareable, and we use this functionality to support
shared block filters.

We are modeling broadcast policers as simple tc-flower matches on
dst_mac. As for the traffic class policers, the switch only deduces the
traffic class from the VLAN PCP field, so it makes sense to model this
as a tc-flower match on vlan_prio.

How to limit broadcast traffic coming from all front-panel ports to a
cumulated total of 10 Mbit/s:

tc qdisc add dev sw0p0 ingress_block 1 clsact
tc qdisc add dev sw0p1 ingress_block 1 clsact
tc qdisc add dev sw0p2 ingress_block 1 clsact
tc qdisc add dev sw0p3 ingress_block 1 clsact
tc filter add block 1 flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \
	action police rate 10mbit burst 64k

How to limit traffic with VLAN PCP 0 (also includes untagged traffic) to
100 Mbit/s on port 0 only:

tc filter add dev sw0p0 ingress protocol 802.1Q flower skip_sw \
	vlan_prio 0 action police rate 100mbit burst 64k

The broadcast, VLAN PCP and port policers are compatible with one
another (can be installed at the same time on a port).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30 11:44:01 -07:00
Vladimir Oltean
a7cc081cab net: dsa: sja1105: add configuration of port policers
This adds partial configuration support for the L2 Policing Table. Out
of the 45 policing entries, only 5 are used (one for each port), in a
shared manner. All 8 traffic classes, and the broadcast policer, are
redirected to a common instance which belongs to the ingress port.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30 11:44:00 -07:00
Vladimir Oltean
c279c7261a net: dsa: sja1105: implement the port MTU callbacks
On this switch, the frame length enforcements are performed by the
ingress policers. There are 2 types of those: regular L2 (also called
best-effort) and Virtual Link policers (an ARINC664/AFDX concept for
defining L2 streams with certain QoS abilities). To avoid future
confusion, I prefer to call the reset reason "Best-effort policers",
even though the VL policers are not yet supported.

We also need to change the setup of the initial static config, such that
DSA calls to .change_mtu (which are expensive) become no-ops and don't
reset the switch 5 times.

A driver-level decision is to unconditionally allow single VLAN-tagged
traffic on all ports. The CPU port must accept an additional VLAN header
for the DSA tag, which is again a driver-level decision.

The policers actually count bytes not only from the SDU, but also from
the Ethernet header and FCS, so those need to be accounted for as well.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 16:07:25 -07:00
Vladimir Oltean
747e5eb31d net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.

On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.

The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
 - When emitting a oneshot pulse, instead of being told when to emit it,
   the switch just does it "now" and tells you later what time it was,
   via the PTPSYNCTS register. [ Incidentally, this is the same register
   that the slave uses to collect the ext_ts timestamp from, too. ]
 - On the sync slave, there is no interrupt mechanism on reception of a
   new extts, and no FIFO to buffer them, because in the foreseen use
   case, software is in control of both the master and the slave pins,
   so it "knows" when there's something to collect.

These 2 problems mean that:
 - We don't support (at least yet) the quirky oneshot mode exposed by
   the hardware, just normal periodic output.
 - We abuse the hardware a little bit when we expose generic extts.
   Because there's no interrupt mechanism, we need to poll at double the
   frequency we expect to receive a pulse. Currently that means a
   non-configurable "twice a second".

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:15:07 -07:00
Vladimir Oltean
79d5511cc0 net: dsa: sja1105: unconditionally set DESTMETA and SRCMETA in AVB table
These fields configure the destination and source MAC address that the
switch will put in the Ethernet frames sent towards the CPU port that
contain RX timestamps for PTP.

These fields do not enable the feature itself, that is configured via
SEND_META0 and SEND_META1 in the General Params table.

The implication of this patch is that the AVB Params table will always
be present in the static config. Which doesn't really hurt.

This is needed because in a future patch, we will add another field from
this table, CAS_MASTER, for configuring the PTP_CLK pin function. That
can be configured irrespective of whether RX timestamping is enabled or
not, so always having this table present is going to simplify things a
bit.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:15:07 -07:00
Vladimir Oltean
ffe10e679c net: dsa: sja1105: Add support for the SGMII port
SJA1105 switches R and S have one SerDes port with an 802.3z
quasi-compatible PCS, hardwired on port 4. The other ports are still
MII/RMII/RGMII. The PCS performs rate adaptation to lower link speeds;
the MAC on this port is hardwired at gigabit. Only full duplex is
supported.

The SGMII port can be configured as part of the static config tables, as
well as through a dedicated SPI address region for its pseudo-clause-22
registers. However it looks like the static configuration is not
able to change some out-of-reset values (like the value of MII_BMCR), so
at the end of the day, having code for it is utterly pointless. We are
just going to use the pseudo-C22 interface.

Because the PCS gets reset when the switch resets, we have to add even
more restoration logic to sja1105_static_config_reload, otherwise the
SGMII port breaks after operations such as enabling PTP timestamping
which require a switch reset.

>From PHYLINK perspective, the switch supports *only* SGMII (it doesn't
support 1000Base-X). It also doesn't expose access to the raw config
word for in-band AN in registers MII_ADV/MII_LPA.
It is able to work in the following modes:
 - Forced speed
 - SGMII in-band AN slave (speed received from PHY)
 - SGMII in-band AN master (acting as a PHY)

The latter mode is not supported by this patch. It is even unclear to me
how that would be described. There is some code for it left in the
patch, but 'an_master' is always passed as false.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-20 08:55:21 -07:00
Vladimir Oltean
ee9d0cb6c4 net: dsa: sja1105: Avoid error message for unknown PHY mode on disabled ports
When sja1105_init_mii_settings iterates over the port list, it prints
this message for disabled ports, because they don't have a valid
phy-mode:

[    4.778702] sja1105 spi2.0: Unsupported PHY mode unknown!

Suggested-by: Andrew Lunn <andrew@lunn.ch>
Suggested-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-19 21:37:40 -07:00
Vladimir Oltean
ec8582d134 net: dsa: sja1105: move MAC configuration to .phylink_mac_link_up
The switches supported so far by the driver only have non-SerDes ports,
so they should be configured in the PHYLINK callback that provides the
resolved PHY link parameters.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-14 20:49:48 -07:00
David S. Miller
1d34357931 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Minor overlapping changes, nothing serious.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-12 22:34:48 -07:00
Oleksij Rempel
ca68e1384f net: dsa: sja1105: add 100baseT1_Full support
Validate 100baseT1_Full to make this driver work with TJA1102 PHY.

Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Acked-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03 14:54:05 -08:00
Vladimir Oltean
52c0d4e306 net: dsa: sja1105: Don't destroy not-yet-created xmit_worker
Fixes the following NULL pointer dereference on PHY connect error path
teardown:

[    2.291010] sja1105 spi0.1: Probed switch chip: SJA1105T
[    2.310044] sja1105 spi0.1: Enabled switch tagging
[    2.314970] fsl-gianfar soc:ethernet@2d90000 eth2: error -19 setting up slave phy
[    2.322463] 8<--- cut here ---
[    2.325497] Unable to handle kernel NULL pointer dereference at virtual address 00000018
[    2.333555] pgd = (ptrval)
[    2.336241] [00000018] *pgd=00000000
[    2.339797] Internal error: Oops: 5 [#1] SMP ARM
[    2.344384] Modules linked in:
[    2.347420] CPU: 1 PID: 64 Comm: kworker/1:1 Not tainted 5.5.0-rc5 #1
[    2.353820] Hardware name: Freescale LS1021A
[    2.358070] Workqueue: events deferred_probe_work_func
[    2.363182] PC is at kthread_destroy_worker+0x4/0x74
[    2.368117] LR is at sja1105_teardown+0x70/0xb4
[    2.372617] pc : [<c036cdd4>]    lr : [<c0b89238>]    psr: 60000013
[    2.378845] sp : eeac3d30  ip : eeab1900  fp : eef45480
[    2.384036] r10: eef4549c  r9 : 00000001  r8 : 00000000
[    2.389227] r7 : eef527c0  r6 : 00000034  r5 : ed8ddd0c  r4 : ed8ddc40
[    2.395714] r3 : 00000000  r2 : 00000000  r1 : eef4549c  r0 : 00000000
[    2.402204] Flags: nZCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment none
[    2.409297] Control: 10c5387d  Table: 8020406a  DAC: 00000051
[    2.415008] Process kworker/1:1 (pid: 64, stack limit = 0x(ptrval))
[    2.421237] Stack: (0xeeac3d30 to 0xeeac4000)
[    2.612635] [<c036cdd4>] (kthread_destroy_worker) from [<c0b89238>] (sja1105_teardown+0x70/0xb4)
[    2.621379] [<c0b89238>] (sja1105_teardown) from [<c10717fc>] (dsa_switch_teardown.part.1+0x48/0x74)
[    2.630467] [<c10717fc>] (dsa_switch_teardown.part.1) from [<c1072438>] (dsa_register_switch+0x8b0/0xbf4)
[    2.639984] [<c1072438>] (dsa_register_switch) from [<c0b89c30>] (sja1105_probe+0x2ac/0x464)
[    2.648378] [<c0b89c30>] (sja1105_probe) from [<c0b11a5c>] (spi_drv_probe+0x7c/0xa0)
[    2.656081] [<c0b11a5c>] (spi_drv_probe) from [<c0a26ab8>] (really_probe+0x208/0x480)
[    2.663871] [<c0a26ab8>] (really_probe) from [<c0a26f0c>] (driver_probe_device+0x78/0x1c4)
[    2.672093] [<c0a26f0c>] (driver_probe_device) from [<c0a24c48>] (bus_for_each_drv+0x80/0xc4)
[    2.680574] [<c0a24c48>] (bus_for_each_drv) from [<c0a26810>] (__device_attach+0xd0/0x168)
[    2.688794] [<c0a26810>] (__device_attach) from [<c0a259d8>] (bus_probe_device+0x84/0x8c)
[    2.696927] [<c0a259d8>] (bus_probe_device) from [<c0a25f24>] (deferred_probe_work_func+0x84/0xc4)
[    2.705842] [<c0a25f24>] (deferred_probe_work_func) from [<c03667b0>] (process_one_work+0x22c/0x560)
[    2.714926] [<c03667b0>] (process_one_work) from [<c0366d8c>] (worker_thread+0x2a8/0x5d4)
[    2.723059] [<c0366d8c>] (worker_thread) from [<c036cf94>] (kthread+0x150/0x154)
[    2.730416] [<c036cf94>] (kthread) from [<c03010e8>] (ret_from_fork+0x14/0x2c)

Checking for NULL pointer is correct because the per-port xmit kernel
threads are created in sja1105_probe immediately after calling
dsa_register_switch.

Fixes: a68578c20a96 ("net: dsa: Make deferred_xmit private to sja1105")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29 21:58:46 -08:00