IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit b8ac29b401 ]
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.
This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1366992e16 upstream.
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4e8c11b6b3 upstream.
Even after commit e1d7ba8735 ("time: Always make sure wall_to_monotonic
isn't positive") it is still possible to make wall_to_monotonic positive
by running the following code:
int main(void)
{
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
time.tv_nsec = 0;
clock_settime(CLOCK_REALTIME, &time);
return 0;
}
The reason is that the second parameter of timespec64_compare(), ts_delta,
may be unnormalized because the delta is calculated with an open coded
substraction which causes the comparison of tv_sec to yield the wrong
result:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 }
That makes timespec64_compare() claim that wall_to_monotonic < ts_delta,
but actually the result should be wall_to_monotonic > ts_delta.
After normalization, the result of timespec64_compare() is correct because
the tv_sec comparison is not longer misleading:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 }
Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the
issue.
Fixes: e1d7ba8735 ("time: Always make sure wall_to_monotonic isn't positive")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull locking updates from Ingo Molnar:
"These are the locking updates for v5.10:
- Add deadlock detection for recursive read-locks.
The rationale is outlined in commit 224ec489d3 ("lockdep/
Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used
to switch between two copies of protected data. This allows the
read path, typically NMIs, to safely interrupt the write side
critical section.
We utilize this new variant for sched-clock, and to make x86 TSC
handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes"
* tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"
lockdep: Fix lockdep recursion
lockdep: Fix usage_traceoverflow
locking/atomics: Check atomic-arch-fallback.h too
locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc
lockdep: Optimize the memory usage of circular queue
seqlock: Unbreak lockdep
seqlock: PREEMPT_RT: Do not starve seqlock_t writers
seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support
seqlock: seqcount_t: Implement all read APIs as statement expressions
seqlock: Use unique prefix for seqcount_t property accessors
seqlock: seqcount_LOCKNAME_t: Standardize naming convention
seqlock: seqcount latch APIs: Only allow seqcount_latch_t
rbtree_latch: Use seqcount_latch_t
x86/tsc: Use seqcount_latch_t
timekeeping: Use seqcount_latch_t
time/sched_clock: Use seqcount_latch_t
seqlock: Introduce seqcount_latch_t
mm/swap: Do not abuse the seqcount_t latching API
time/sched_clock: Use raw_read_seqcount_latch() during suspend
...
Latch sequence counters are a multiversion concurrency control mechanism
where the seqcount_t counter even/odd value is used to switch between
two data storage copies. This allows the seqcount_t read path to safely
interrupt its write side critical section (e.g. from NMIs).
Initially, latch sequence counters were implemented as a single write
function, raw_write_seqcount_latch(), above plain seqcount_t. The read
path was expected to use plain seqcount_t raw_read_seqcount().
A specialized read function was later added, raw_read_seqcount_latch(),
and became the standardized way for latch read paths. Having unique read
and write APIs meant that latch sequence counters are basically a data
type of their own -- just inappropriately overloading plain seqcount_t.
The seqcount_latch_t data type was thus introduced at seqlock.h.
Use that new data type instead of seqcount_raw_spinlock_t. This ensures
that only latch-safe APIs are to be used with the sequence counter.
Note that the use of seqcount_raw_spinlock_t was not very useful in the
first place. Only the "raw_" subset of seqcount_t APIs were used at
timekeeping.c. This subset was created for contexts where lockdep cannot
be used. seqcount_LOCKTYPE_t's raison d'être -- verifying that the
seqcount_t writer serialization lock is held -- cannot thus be done.
References: 0c3351d451 ("seqlock: Use raw_ prefix instead of _no_lockdep")
References: 55f3560df9 ("seqlock: Extend seqcount API with associated locks")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-6-a.darwish@linutronix.de
printk wants to store various timestamps (MONOTONIC, REALTIME, BOOTTIME) to
make correlation of dmesg from several systems easier.
Provide an interface to retrieve all three timestamps in one go.
There are some caveats:
1) Boot time and late sleep time injection
Boot time is a racy access on 32bit systems if the sleep time injection
happens late during resume and not in timekeeping_resume(). That could be
avoided by expanding struct tk_read_base with boot offset for 32bit and
adding more overhead to the update. As this is a hard to observe once per
resume event which can be filtered with reasonable effort using the
accurate mono/real timestamps, it's probably not worth the trouble.
Aside of that it might be possible on 32 and 64 bit to observe the
following when the sleep time injection happens late:
CPU 0 CPU 1
timekeeping_resume()
ktime_get_fast_timestamps()
mono, real = __ktime_get_real_fast()
inject_sleep_time()
update boot offset
boot = mono + bootoffset;
That means that boot time already has the sleep time adjustment, but
real time does not. On the next readout both are in sync again.
Preventing this for 64bit is not really feasible without destroying the
careful cache layout of the timekeeper because the sequence count and
struct tk_read_base would then need two cache lines instead of one.
2) Suspend/resume timestamps
Access to the time keeper clock source is disabled accross the innermost
steps of suspend/resume. The accessors still work, but the timestamps
are frozen until time keeping is resumed which happens very early.
For regular suspend/resume there is no observable difference vs. sched
clock, but it might affect some of the nasty low level debug printks.
OTOH, access to sched clock is not guaranteed accross suspend/resume on
all systems either so it depends on the hardware in use.
If that turns out to be a real problem then this could be mitigated by
using sched clock in a similar way as during early boot. But it's not as
trivial as on early boot because it needs some careful protection
against the clock monotonic timestamp jumping backwards on resume.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.159981360@linutronix.de
During early boot the NMI safe timekeeper returns 0 until the first
clocksource becomes available.
This prevents it from being used for printk or other facilities which today
use sched clock. sched clock can be available way before timekeeping is
initialized.
The obvious workaround for this is to utilize the early sched clock in the
default dummy clock read function until a clocksource becomes available.
After switching to the clocksource clock MONOTONIC and BOOTTIME will not
jump because the timekeeping_init() bases clock MONOTONIC on sched clock
and the offset between clock MONOTONIC and BOOTTIME is zero during boot.
Clock REALTIME cannot provide useful timestamps during early boot up to
the point where a persistent clock becomes available, which is either in
timekeeping_init() or later when the RTC driver which might depend on I2C
or other subsystems is initialized.
There is a minor difference to sched_clock() vs. suspend/resume. As the
timekeeper clock source might not be accessible during suspend, after
timekeeping_suspend() timestamps freeze up to the point where
timekeeping_resume() is invoked. OTOH this is true for some sched clock
implementations as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.041422402@linutronix.de
Pull timekeeping updates from Thomas Gleixner:
"A set of timekeeping/VDSO updates:
- Preparatory work to allow S390 to switch over to the generic VDSO
implementation.
S390 requires that the VDSO data pointer is handed in to the
counter read function when time namespace support is enabled.
Adding the pointer is a NOOP for all other architectures because
the compiler is supposed to optimize that out when it is unused in
the architecture specific inline. The change also solved a similar
problem for MIPS which fortunately has time namespaces not yet
enabled.
S390 needs to update clock related VDSO data independent of the
timekeeping updates. This was solved so far with yet another
sequence counter in the S390 implementation. A better solution is
to utilize the already existing VDSO sequence count for this. The
core code now exposes helper functions which allow to serialize
against the timekeeper code and against concurrent readers.
S390 needs extra data for their clock readout function. The initial
common VDSO data structure did not provide a way to add that. It
now has an embedded architecture specific struct embedded which
defaults to an empty struct.
Doing this now avoids tree dependencies and conflicts post rc1 and
allows all other architectures which work on generic VDSO support
to work from a common upstream base.
- A trivial comment fix"
* tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Delete repeated words in comments
lib/vdso: Allow to add architecture-specific vdso data
timekeeping/vsyscall: Provide vdso_update_begin/end()
vdso/treewide: Add vdso_data pointer argument to __arch_get_hw_counter()
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
Architectures can have the requirement to add additional architecture
specific data to the VDSO data page which needs to be updated independent
of the timekeeper updates.
To protect these updates vs. concurrent readers and a conflicting update
through timekeeping, provide helper functions to make such updates safe.
vdso_update_begin() takes the timekeeper_lock to protect against a
potential update from timekeeper code and increments the VDSO sequence
count to signal data inconsistency to concurrent readers. vdso_update_end()
makes the sequence count even again to signal data consistency and drops
the timekeeper lock.
[ Sven: Add interrupt disable handling to the functions ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200804150124.41692-3-svens@linux.ibm.com
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_raw_spinlock_t data type, which allows to associate
a raw spinlock with the sequence counter. This enables lockdep to verify
that the raw spinlock used for writer serialization is held when the
write side critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-18-a.darwish@linutronix.de
Mark the relevant functions noinstr, use the plain non-instrumented MSR
accessors. The only odd part is the instrumentation_begin()/end() pair around the
indirect machine_check_vector() call as objtool can't figure that out. The
possible invoked functions are annotated correctly.
Also use notrace variant of nmi_enter/exit(). If MCEs happen then hardware
latency tracing is the least of the worries.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.476734898@linutronix.de
Pull timekeeping and timer updates from Thomas Gleixner:
"Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which
is necessary to build the vDSO. These new headers are included from
the kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by
PPC.
- Cleanup and consolidation of the exit related code in posix CPU
timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the
place"
* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
vdso: Fix clocksource.h macro detection
um: Fix header inclusion
arm64: vdso32: Enable Clang Compilation
lib/vdso: Enable common headers
arm: vdso: Enable arm to use common headers
x86/vdso: Enable x86 to use common headers
mips: vdso: Enable mips to use common headers
arm64: vdso32: Include common headers in the vdso library
arm64: vdso: Include common headers in the vdso library
arm64: Introduce asm/vdso/processor.h
arm64: vdso32: Code clean up
linux/elfnote.h: Replace elf.h with UAPI equivalent
scripts: Fix the inclusion order in modpost
common: Introduce processor.h
linux/ktime.h: Extract common header for vDSO
linux/jiffies.h: Extract common header for vDSO
linux/time64.h: Extract common header for vDSO
linux/time32.h: Extract common header for vDSO
linux/time.h: Extract common header for vDSO
...
seqlock consists of a sequence counter and a spinlock_t which is used to
serialize the writers. spinlock_t is substituted by a "sleeping" spinlock
on PREEMPT_RT enabled kernels which breaks the usage in the timekeeping
code as the writers are executed in hard interrupt and therefore
non-preemptible context even on PREEMPT_RT.
The spinlock in seqlock cannot be unconditionally replaced by a
raw_spinlock_t as many seqlock users have nesting spinlock sections or
other code which is not suitable to run in truly atomic context on RT.
Instead of providing a raw_seqlock API for a single use case, open code the
seqlock for the jiffies use case and implement it with a raw_spinlock_t and
a sequence counter.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.120587764@linutronix.de
The VDSO update for CLOCK_BOOTTIME has a overflow issue as it shifts the
nanoseconds based boot time offset left by the clocksource shift. That
overflows once the boot time offset becomes large enough. As a consequence
CLOCK_BOOTTIME in the VDSO becomes a random number causing applications to
misbehave.
Fix it by storing a timespec64 representation of the offset when boot time
is adjusted and add that to the MONOTONIC base time value in the vdso data
page. Using the timespec64 representation avoids a 64bit division in the
update code.
Fixes: 44f57d788e ("timekeeping: Provide a generic update_vsyscall() implementation")
Reported-by: Chris Clayton <chris2553@googlemail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Chris Clayton <chris2553@googlemail.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908221257580.1983@nanos.tec.linutronix.de
While this doesn't actually amount to a real difference, since the macro
evaluates to the same thing, every place else operates on ktime_t using
these functions, so let's not break the pattern.
Fixes: e3ff9c3678 ("timekeeping: Repair ktime_get_coarse*() granularity")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lkml.kernel.org/r/20190621203249.3909-1-Jason@zx2c4.com
Jason reported that the coarse ktime based time getters advance only once
per second and not once per tick as advertised.
The code reads only the monotonic base time, which advances once per
second. The nanoseconds are accumulated on every tick in xtime_nsec up to
a second and the regular time getters take this nanoseconds offset into
account, but the ktime_get_coarse*() implementation fails to do so.
Add the accumulated xtime_nsec value to the monotonic base time to get the
proper per tick advancing coarse tinme.
Fixes: b9ff604cff ("timekeeping: Add ktime_get_coarse_with_offset")
Reported-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906132136280.1791@nanos.tec.linutronix.de
Pull audit updates from Paul Moore:
"We've got a reasonably broad set of audit patches for the v5.2 merge
window, the highlights are below:
- The biggest change, and the source of all the arch/* changes, is
the patchset from Dmitry to help enable some of the work he is
doing around PTRACE_GET_SYSCALL_INFO.
To be honest, including this in the audit tree is a bit of a
stretch, but it does help move audit a little further along towards
proper syscall auditing for all arches, and everyone else seemed to
agree that audit was a "good" spot for this to land (or maybe they
just didn't want to merge it? dunno.).
- We can now audit time/NTP adjustments.
- We continue the work to connect associated audit records into a
single event"
* tag 'audit-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit: (21 commits)
audit: fix a memory leak bug
ntp: Audit NTP parameters adjustment
timekeeping: Audit clock adjustments
audit: purge unnecessary list_empty calls
audit: link integrity evm_write_xattrs record to syscall event
syscall_get_arch: add "struct task_struct *" argument
unicore32: define syscall_get_arch()
Move EM_UNICORE to uapi/linux/elf-em.h
nios2: define syscall_get_arch()
nds32: define syscall_get_arch()
Move EM_NDS32 to uapi/linux/elf-em.h
m68k: define syscall_get_arch()
hexagon: define syscall_get_arch()
Move EM_HEXAGON to uapi/linux/elf-em.h
h8300: define syscall_get_arch()
c6x: define syscall_get_arch()
arc: define syscall_get_arch()
Move EM_ARCOMPACT and EM_ARCV2 to uapi/linux/elf-em.h
audit: Make audit_log_cap and audit_copy_inode static
audit: connect LOGIN record to its syscall record
...
Emit an audit record every time selected NTP parameters are modified
from userspace (via adjtimex(2) or clock_adjtime(2)). These parameters
may be used to indirectly change system clock, and thus their
modifications should be audited.
Such events will now generate records of type AUDIT_TIME_ADJNTPVAL
containing the following fields:
- op -- which value was adjusted:
- offset -- corresponding to the time_offset variable
- freq -- corresponding to the time_freq variable
- status -- corresponding to the time_status variable
- adjust -- corresponding to the time_adjust variable
- tick -- corresponding to the tick_usec variable
- tai -- corresponding to the timekeeping's TAI offset
- old -- the old value
- new -- the new value
Example records:
type=TIME_ADJNTPVAL msg=audit(1530616044.507:7): op=status old=64 new=8256
type=TIME_ADJNTPVAL msg=audit(1530616044.511:11): op=freq old=0 new=49180377088000
The records of this type will be associated with the corresponding
syscall records.
An overview of parameter changes that can be done via do_adjtimex()
(based on information from Miroslav Lichvar) and whether they are
audited:
__timekeeping_set_tai_offset() -- sets the offset from the
International Atomic Time
(AUDITED)
NTP variables:
time_offset -- can adjust the clock by up to 0.5 seconds per call
and also speed it up or slow down by up to about
0.05% (43 seconds per day) (AUDITED)
time_freq -- can speed up or slow down by up to about 0.05%
(AUDITED)
time_status -- can insert/delete leap seconds and it also enables/
disables synchronization of the hardware real-time
clock (AUDITED)
time_maxerror, time_esterror -- change error estimates used to
inform userspace applications
(NOT AUDITED)
time_constant -- controls the speed of the clock adjustments that
are made when time_offset is set (NOT AUDITED)
time_adjust -- can temporarily speed up or slow down the clock by up
to 0.05% (AUDITED)
tick_usec -- a more extreme version of time_freq; can speed up or
slow down the clock by up to 10% (AUDITED)
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Emit an audit record whenever the system clock is changed (i.e. shifted
by a non-zero offset) by a syscall from userspace. The syscalls than can
(at the time of writing) trigger such record are:
- settimeofday(2), stime(2), clock_settime(2) -- via
do_settimeofday64()
- adjtimex(2), clock_adjtime(2) -- via do_adjtimex()
The new records have type AUDIT_TIME_INJOFFSET and contain the following
fields:
- sec -- the 'seconds' part of the offset
- nsec -- the 'nanoseconds' part of the offset
Example record (time was shifted backwards by ~15.875 seconds):
type=TIME_INJOFFSET msg=audit(1530616049.652:13): sec=-16 nsec=124887145
The records of this type will be associated with the corresponding
syscall records.
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
[PM: fixed a line width problem in __audit_tk_injoffset()]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Several people reported testing failures after setting CLOCK_REALTIME close
to the limits of the kernel internal representation in nanoseconds,
i.e. year 2262.
The failures are exposed in subsequent operations, i.e. when arming timers
or when the advancing CLOCK_MONOTONIC makes the calculation of
CLOCK_REALTIME overflow into negative space.
Now people start to paper over the underlying problem by clamping
calculations to the valid range, but that's just wrong because such
workarounds will prevent detection of real issues as well.
It is reasonable to force an upper bound for the various methods of setting
CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum
uptime of 30 years which is plenty enough even for esoteric embedded
systems. That results in an upper bound of year 2232 for setting the time.
Once that limit is reached in reality this limit is only a small part of
the problem space. But until then this stops people from trying to paper
over the problem at the wrong places.
Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Reported-by: Hongbo Yao <yaohongbo@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.de
struct timex is not y2038 safe.
Replace all uses of timex with y2038 safe __kernel_timex.
Note that struct __kernel_timex is an ABI interface definition.
We could define a new structure based on __kernel_timex that
is only available internally instead. Right now, there isn't
a strong motivation for this as the structure is isolated to
a few defined struct timex interfaces and such a structure would
be exactly the same as struct timex.
The patch was generated by the following coccinelle script:
virtual patch
@depends on patch forall@
identifier ts;
expression e;
@@
(
- struct timex ts;
+ struct __kernel_timex ts;
|
- struct timex ts = {};
+ struct __kernel_timex ts = {};
|
- struct timex ts = e;
+ struct __kernel_timex ts = e;
|
- struct timex *ts;
+ struct __kernel_timex *ts;
|
(memset \| copy_from_user \| copy_to_user \)(...,
- sizeof(struct timex))
+ sizeof(struct __kernel_timex))
)
@depends on patch forall@
identifier ts;
identifier fn;
@@
fn(...,
- struct timex *ts,
+ struct __kernel_timex *ts,
...) {
...
}
@depends on patch forall@
identifier ts;
identifier fn;
@@
fn(...,
- struct timex *ts) {
+ struct __kernel_timex *ts) {
...
}
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: linux-alpha@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull y2038 updates from Arnd Bergmann:
"More syscalls and cleanups
This concludes the main part of the system call rework for 64-bit
time_t, which has spread over most of year 2018, the last six system
calls being
- ppoll
- pselect6
- io_pgetevents
- recvmmsg
- futex
- rt_sigtimedwait
As before, nothing changes for 64-bit architectures, while 32-bit
architectures gain another entry point that differs only in the layout
of the timespec structure. Hopefully in the next release we can wire
up all 22 of those system calls on all 32-bit architectures, which
gives us a baseline version for glibc to start using them.
This does not include the clock_adjtime, getrusage/waitid, and
getitimer/setitimer system calls. I still plan to have new versions of
those as well, but they are not required for correct operation of the
C library since they can be emulated using the old 32-bit time_t based
system calls.
Aside from the system calls, there are also a few cleanups here,
removing old kernel internal interfaces that have become unused after
all references got removed. The arch/sh cleanups are part of this,
there were posted several times over the past year without a reaction
from the maintainers, while the corresponding changes made it into all
other architectures"
* tag 'y2038-for-4.21' of ssh://gitolite.kernel.org:/pub/scm/linux/kernel/git/arnd/playground:
timekeeping: remove obsolete time accessors
vfs: replace current_kernel_time64 with ktime equivalent
timekeeping: remove timespec_add/timespec_del
timekeeping: remove unused {read,update}_persistent_clock
sh: remove board_time_init() callback
sh: remove unused rtc_sh_get/set_time infrastructure
sh: sh03: rtc: push down rtc class ops into driver
sh: dreamcast: rtc: push down rtc class ops into driver
y2038: signal: Add compat_sys_rt_sigtimedwait_time64
y2038: signal: Add sys_rt_sigtimedwait_time32
y2038: socket: Add compat_sys_recvmmsg_time64
y2038: futex: Add support for __kernel_timespec
y2038: futex: Move compat implementation into futex.c
io_pgetevents: use __kernel_timespec
pselect6: use __kernel_timespec
ppoll: use __kernel_timespec
signal: Add restore_user_sigmask()
signal: Add set_user_sigmask()
After arch/sh has removed the last reference to these functions,
we can remove them completely and just rely on the 64-bit time_t
based versions. This cleans up a rather ugly use of __weak
functions.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: John Stultz <john.stultz@linaro.org>
get_seconds() and do_gettimeofday() are only used by a few modules now any
more (waiting for the respective patches to get accepted), and they are
among the last holdouts of code that is not y2038 safe in the core kernel.
Move the implementation into the timekeeping32.h header to clean up
the core kernel and isolate the old interfaces further.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
On some hardware with multiple clocksources, we have coarse grained
clocksources that support the CLOCK_SOURCE_SUSPEND_NONSTOP flag, but
which are less than ideal for timekeeping whereas other clocksources
can be better candidates but halt on suspend.
Currently, the timekeeping core only supports timing suspend using
CLOCK_SOURCE_SUSPEND_NONSTOP clocksources if that clocksource is the
current clocksource for timekeeping.
As a result, some architectures try to implement read_persistent_clock64()
using those non-stop clocksources, but isn't really ideal, which will
introduce more duplicate code. To fix this, provide logic to allow a
registered SUSPEND_NONSTOP clocksource, which isn't the current
clocksource, to be used to calculate the suspend time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
[jstultz: minor tweaks to merge with previous resume changes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Currently, there exists a corner case assuming when there is
only one clocksource e.g RTC, and system failed to go to
suspend mode. While resume rtc_resume() injects the sleeptime
as timekeeping_rtc_skipresume() returned 'false' (default value
of sleeptime_injected) due to which we can see mismatch in
timestamps.
This issue can also come in a system where more than one
clocksource are present and very first suspend fails.
Success case:
------------
{sleeptime_injected=false}
rtc_suspend() => timekeeping_suspend() => timekeeping_resume() =>
(sleeptime injected)
rtc_resume()
Failure case:
------------
{failure in sleep path} {sleeptime_injected=false}
rtc_suspend() => rtc_resume()
{sleeptime injected again which was not required as the suspend failed}
Fix this by handling the boolean logic properly.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pull timekeeping updates from John Stultz:
- Make the timekeeping update more precise when NTP frequency is set
directly by updating the multiplier.
- Adjust selftests
When the NTP frequency is set directly from userspace using the
ADJ_FREQUENCY or ADJ_TICK timex mode, immediately update the
timekeeper's multiplier instead of waiting for the next tick.
This removes a hidden non-deterministic delay in setting of the
frequency and allows an extremely tight control of the system clock
with update rates close to or even exceeding the kernel HZ.
The update is limited to archs using modern timekeeping
(!ARCH_USES_GETTIMEOFFSET).
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
I have run into a couple of drivers using current_kernel_time()
suffering from the y2038 problem, and they could be converted
to using ktime_t, but don't have interfaces that skip the nanosecond
calculation at the moment.
This introduces ktime_get_coarse_with_offset() as a simpler
variant of ktime_get_with_offset(), and adds wrappers for the
three time domains we support with the existing function.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-5-arnd@arndb.de
The current_kernel_time64, get_monotonic_coarse64, getrawmonotonic64,
get_monotonic_boottime64 and timekeeping_clocktai64 interfaces have
rather inconsistent naming, and they differ in the calling conventions
by passing the output either by reference or as a return value.
Rename them to ktime_get_coarse_real_ts64, ktime_get_coarse_ts64,
ktime_get_raw_ts64, ktime_get_boottime_ts64 and ktime_get_clocktai_ts64
respectively, and provide the interfaces with macros or inline
functions as needed.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-4-arnd@arndb.de
Revert commits
92af4dcb4e ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f43 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
7250a4047a ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
d6c7270e91 ("timekeeping: Remove boot time specific code")
f2d6fdbfd2 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
d6ed449afd ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
72199320d4 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")
As stated in the pull request for the unification of CLOCK_MONOTONIC and
CLOCK_BOOTTIME, it was clear that we might have to revert the change.
As reported by several folks systemd and other applications rely on the
documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
changes. After resume daemons time out and other timeout related issues are
observed. Rafael compiled this list:
* systemd kills daemons on resume, after >WatchdogSec seconds
of suspending (Genki Sky). [Verified that that's because systemd uses
CLOCK_MONOTONIC and expects it to not include the suspend time.]
* systemd-journald misbehaves after resume:
systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
corrupted or uncleanly shut down, renaming and replacing.
(Mike Galbraith).
* NetworkManager reports "networking disabled" and networking is broken
after resume 50% of the time (Pavel). [May be because of systemd.]
* MATE desktop dims the display and starts the screensaver right after
system resume (Pavel).
* Full system hang during resume (me). [May be due to systemd or NM or both.]
That happens on debian and open suse systems.
It's sad, that these problems were neither catched in -next nor by those
folks who expressed interest in this change.
Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reported-by: Genki Sky <sky@genki.is>,
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The reason why the
MONOTONIC clock is not forwarded is historical: the original Linux
implementation was using jiffies as a base for the MONOTONIC clock and
jiffies have never been advanced after resume.
At some point when timekeeping was unified in the core code, the
MONONOTIC clock was advanced after resume which also advanced jiffies causing
interesting side effects. As a consequence the the MONOTONIC clock forwarding
was disabled again and the BOOTTIME clock was introduced, which allows to read
time since boot.
Back then it was not possible to completely distangle the MONOTONIC clock and
jiffies because there were still interfaces which exposed the MONOTONIC clock
behaviour based on the timer wheel and therefore jiffies.
As of today none of the MONOTONIC clock facilities depends on jiffies
anymore so the forwarding can be done seperately. This is achieved by
forwarding the variables which are used for the jiffies update after resume
before the tick is restarted,
In timekeeping resume, the change is rather simple. Instead of updating the
offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
spent in suspend.
The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
the REALTIME and the MONOTONIC clocks is the same as before suspend.
There might be side effects in applications, which rely on the
(unfortunately) well documented behaviour of the MONOTONIC clock, but the
downsides of the existing behaviour are probably worse.
There is one obvious issue. Up to now it was possible to retrieve the time
spent in suspend by observing the delta between the MONOTONIC clock and the
BOOTTIME clock. This is not longer available, but the previously introduced
mechanism to read the active non-suspended monotonic time can mitigate that
in a detectable fashion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>