IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add rules to ignore data-racy reads with only 1-bit value changes.
Details about the rules are captured in comments in
kernel/kcsan/permissive.h. More background follows.
While investigating a number of data races, we've encountered data-racy
accesses on flags variables to be very common. The typical pattern is a
reader masking all but one bit, and/or the writer setting/clearing only
1 bit (current->flags being a frequently encountered case; more examples
in mm/sl[au]b.c, which disable KCSAN for this reason).
Since these types of data-racy accesses are common (with the assumption
they are intentional and hard to miscompile) having the option (with
CONFIG_KCSAN_PERMISSIVE=y) to filter them will avoid forcing everyone to
mark them, and deliberately left to preference at this time.
One important motivation for having this option built-in is to move
closer to being able to enable KCSAN on CI systems or for testers
wishing to test the whole kernel, while more easily filtering
less interesting data races with higher probability.
For the implementation, we considered several alternatives, but had one
major requirement: that the rules be kept together with the Linux-kernel
tree. Adding them to the compiler would preclude us from making changes
quickly; if the rules require tweaks, having them part of the compiler
requires waiting another ~1 year for the next release -- that's not
realistic. We are left with the following options:
1. Maintain compiler plugins as part of the kernel-tree that
removes instrumentation for some accesses (e.g. plain-& with
1-bit mask). The analysis would be reader-side focused, as
no assumption can be made about racing writers.
Because it seems unrealistic to maintain 2 plugins, one for LLVM and
GCC, we would likely pick LLVM. Furthermore, no kernel infrastructure
exists to maintain LLVM plugins, and the build-system implications and
maintenance overheads do not look great (historically, plugins written
against old LLVM APIs are not guaranteed to work with newer LLVM APIs).
2. Find a set of rules that can be expressed in terms of
observed value changes, and make it part of the KCSAN runtime.
The analysis is writer-side focused, given we rely on observed
value changes.
The approach taken here is (2). While a complete approach requires both
(1) and (2), experiments show that the majority of data races involving
trivial bit operations on flags variables can be removed with (2) alone.
It goes without saying that the filtering of data races using (1) or (2)
does _not_ guarantee they are safe! Therefore, limiting ourselves to (2)
for now is the conservative choice for setups that wish to enable
CONFIG_KCSAN_PERMISSIVE=y.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Rework atomic.h into permissive.h to better reflect its purpose, and
introduce kcsan_ignore_address() and kcsan_ignore_data_race().
Introduce CONFIG_KCSAN_PERMISSIVE and update the stub functions in
preparation for subsequent changes.
As before, developers who choose to use KCSAN in "strict" mode will see
all data races and are not affected. Furthermore, by relying on the
value-change filter logic for kcsan_ignore_data_race(), even if the
permissive rules are enabled, the opt-outs in report.c:skip_report()
override them (such as for RCU-related functions by default).
The option CONFIG_KCSAN_PERMISSIVE is disabled by default, so that the
documented default behaviour of KCSAN does not change. Instead, like
CONFIG_KCSAN_IGNORE_ATOMICS, the option needs to be explicitly opted in.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>