IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Jisheng Zhang <jszhang@kernel.org> says:
Currently, riscv defines ARCH_DMA_MINALIGN as L1_CACHE_BYTES, I.E
64Bytes, if CONFIG_RISCV_DMA_NONCOHERENT=y. To support unified kernel
Image, usually we have to enable CONFIG_RISCV_DMA_NONCOHERENT, thus
it brings some bad effects to coherent platforms:
Firstly, it wastes memory, kmalloc-96, kmalloc-32, kmalloc-16 and
kmalloc-8 slab caches don't exist any more, they are replaced with
either kmalloc-128 or kmalloc-64.
Secondly, larger than necessary kmalloc aligned allocations results
in unnecessary cache/TLB pressure.
This issue also exists on arm64 platforms. From last year, Catalin
tried to solve this issue by decoupling ARCH_KMALLOC_MINALIGN from
ARCH_DMA_MINALIGN, limiting kmalloc() minimum alignment to
dma_get_cache_alignment() and replacing ARCH_KMALLOC_MINALIGN usage
in various drivers with ARCH_DMA_MINALIGN etc.[1]
One fact we can make use of for riscv: if the CPU doesn't support
ZICBOM or T-HEAD CMO, we know the platform is coherent. Based on
Catalin's work and above fact, we can easily solve the kmalloc align
issue for riscv: we can override dma_get_cache_alignment(), then let
it return ARCH_DMA_MINALIGN at the beginning and return 1 once we know
the underlying HW neither supports ZICBOM nor supports T-HEAD CMO.
So what about if the CPU supports ZICBOM or T-HEAD CMO, but all the
devices are dma coherent? Well, we use ARCH_DMA_MINALIGN as the
kmalloc minimum alignment, nothing changed in this case. This case
can be improved in the future once we see such platforms in mainline.
After this patch, a simple test of booting to a small buildroot rootfs
on qemu shows:
kmalloc-96 5041 5041 96 ...
kmalloc-64 9606 9606 64 ...
kmalloc-32 5128 5128 32 ...
kmalloc-16 7682 7682 16 ...
kmalloc-8 10246 10246 8 ...
So we save about 1268KB memory. The saving will be much larger in normal
OS env on real HW platforms.
patch1 allows kmalloc() caches aligned to the smallest value.
patch2 enables DMA_BOUNCE_UNALIGNED_KMALLOC.
After this series:
As for coherent platforms, kmalloc-{8,16,32,96} caches come back on
coherent both RV32 and RV64 platforms, I.E !ZICBOM and !THEAD_CMO.
As for noncoherent RV32 platforms, nothing changed.
As for noncoherent RV64 platforms, I.E either ZICBOM or THEAD_CMO, the
above kmalloc caches also come back if > 4GB memory or users pass
"swiotlb=mmnn,force" to force swiotlb creation if <= 4GB memory. How
much mmnn should be depends on the specific platform, it needs to be
tried and tested all possible usage case on the specific hardware. For
example, I can use the minimal I/O TLB slabs on Sipeed M1S Dock.
* b4-shazam-merge:
riscv: enable DMA_BOUNCE_UNALIGNED_KMALLOC for !dma_coherent
riscv: allow kmalloc() caches aligned to the smallest value
Link: https://lore.kernel.org/linux-arm-kernel/20230524171904.3967031-1-catalin.marinas@arm.com/ [1]
Link: https://lore.kernel.org/r/20230718152214.2907-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Sami Tolvanen <samitolvanen@google.com> says:
This series adds KCFI support for RISC-V. KCFI is a fine-grained
forward-edge control-flow integrity scheme supported in Clang >=16,
which ensures indirect calls in instrumented code can only branch to
functions whose type matches the function pointer type, thus making
code reuse attacks more difficult.
Patch 1 implements a pt_regs based syscall wrapper to address
function pointer type mismatches in syscall handling. Patches 2 and 3
annotate indirectly called assembly functions with CFI types. Patch 4
implements error handling for indirect call checks. Patch 5 disables
CFI for arch/riscv/purgatory. Patch 6 finally allows CONFIG_CFI_CLANG
to be enabled for RISC-V.
Note that Clang 16 has a generic architecture-agnostic KCFI
implementation, which does work with the kernel, but doesn't produce
a stable code sequence for indirect call checks, which means
potential failures just trap and won't result in informative error
messages. Clang 17 includes a RISC-V specific back-end implementation
for KCFI, which emits a predictable code sequence for the checks and a
.kcfi_traps section with locations of the traps, which patch 5 uses to
produce more useful errors.
The type mismatch fixes and annotations in the first three patches
also become necessary in future if the kernel decides to support
fine-grained CFI implemented using the hardware landing pad
feature proposed in the in-progress Zicfisslp extension. Once the
specification is ratified and hardware support emerges, implementing
runtime patching support that replaces KCFI instrumentation with
Zicfisslp landing pads might also be feasible (similarly to KCFI to
FineIBT patching on x86_64), allowing distributions to ship a unified
kernel binary for all devices.
* b4-shazam-merge:
riscv: Allow CONFIG_CFI_CLANG to be selected
riscv/purgatory: Disable CFI
riscv: Add CFI error handling
riscv: Add ftrace_stub_graph
riscv: Add types to indirectly called assembly functions
riscv: Implement syscall wrappers
Link: https://lore.kernel.org/r/20230710183544.999540-8-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Chen Jiahao <chenjiahao16@huawei.com> says:
On riscv, the current crash kernel allocation logic is trying to
allocate within 32bit addressible memory region by default, if
failed, try to allocate without 4G restriction.
In need of saving DMA zone memory while allocating a relatively large
crash kernel region, allocating the reserved memory top down in
high memory, without overlapping the DMA zone, is a mature solution.
Hence this patchset introduces the parameter option crashkernel=X,[high,low].
One can reserve the crash kernel from high memory above DMA zone range
by explicitly passing "crashkernel=X,high"; or reserve a memory range
below 4G with "crashkernel=X,low". Besides, there are few rules need
to take notice:
1. "crashkernel=X,[high,low]" will be ignored if "crashkernel=size"
is specified.
2. "crashkernel=X,low" is valid only when "crashkernel=X,high" is passed
and there is enough memory to be allocated under 4G.
3. When allocating crashkernel above 4G and no "crashkernel=X,low" is
specified, a 128M low memory will be allocated automatically for
swiotlb bounce buffer.
See Documentation/admin-guide/kernel-parameters.txt for more information.
To verify loading the crashkernel, adapted kexec-tools is attached below:
https://github.com/chenjh005/kexec-tools/tree/build-test-riscv-v2
Following test cases have been performed as expected:
1) crashkernel=256M //low=256M
2) crashkernel=1G //low=1G
3) crashkernel=4G //high=4G, low=128M(default)
4) crashkernel=4G crashkernel=256M,high //high=4G, low=128M(default), high is ignored
5) crashkernel=4G crashkernel=256M,low //high=4G, low=128M(default), low is ignored
6) crashkernel=4G,high //high=4G, low=128M(default)
7) crashkernel=256M,low //low=0M, invalid
8) crashkernel=4G,high crashkernel=256M,low //high=4G, low=256M
9) crashkernel=4G,high crashkernel=4G,low //high=0M, low=0M, invalid
10) crashkernel=512M@0xd0000000 //low=512M
11) crashkernel=1G,high crashkernel=0M,low //high=1G, low=0M
* b4-shazam-merge:
docs: kdump: Update the crashkernel description for riscv
riscv: kdump: Implement crashkernel=X,[high,low]
Link: https://lore.kernel.org/r/20230726175000.2536220-1-chenjiahao16@huawei.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Nam Cao <namcaov@gmail.com> says:
Simulate some currently rejected instructions. Still to be simulated are:
- c.jal
- c.ebreak
* b4-shazam-merge:
riscv: kprobes: simulate c.beqz and c.bnez
riscv: kprobes: simulate c.jr and c.jalr instructions
riscv: kprobes: simulate c.j instruction
Link: https://lore.kernel.org/r/cover.1690704360.git.namcaov@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Some mv instructions were useful when first introduced to preserve a0 and
a1 before function calls. However the code has changed and they are now
redundant. Remove them.
Signed-off-by: Nam Cao <namcaov@gmail.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230725053835.138910-1-namcaov@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Currently, riscv defines ARCH_DMA_MINALIGN as L1_CACHE_BYTES, I.E
64Bytes, if CONFIG_RISCV_DMA_NONCOHERENT=y. To support unified kernel
Image, usually we have to enable CONFIG_RISCV_DMA_NONCOHERENT, thus
it brings some bad effects to coherent platforms:
Firstly, it wastes memory, kmalloc-96, kmalloc-32, kmalloc-16 and
kmalloc-8 slab caches don't exist any more, they are replaced with
either kmalloc-128 or kmalloc-64.
Secondly, larger than necessary kmalloc aligned allocations results
in unnecessary cache/TLB pressure.
This issue also exists on arm64 platforms. From last year, Catalin
tried to solve this issue by decoupling ARCH_KMALLOC_MINALIGN from
ARCH_DMA_MINALIGN, limiting kmalloc() minimum alignment to
dma_get_cache_alignment() and replacing ARCH_KMALLOC_MINALIGN usage
in various drivers with ARCH_DMA_MINALIGN etc.[1]
One fact we can make use of for riscv: if the CPU doesn't support
ZICBOM or T-HEAD CMO, we know the platform is coherent. Based on
Catalin's work and above fact, we can easily solve the kmalloc align
issue for riscv: we can override dma_get_cache_alignment(), then let
it return ARCH_DMA_MINALIGN at the beginning and return 1 once we know
the underlying HW neither supports ZICBOM nor supports T-HEAD CMO.
So what about if the CPU supports ZICBOM or T-HEAD CMO, but all the
devices are dma coherent? Well, we use ARCH_DMA_MINALIGN as the
kmalloc minimum alignment, nothing changed in this case. This case
can be improved in the future.
After this patch, a simple test of booting to a small buildroot rootfs
on qemu shows:
kmalloc-96 5041 5041 96 ...
kmalloc-64 9606 9606 64 ...
kmalloc-32 5128 5128 32 ...
kmalloc-16 7682 7682 16 ...
kmalloc-8 10246 10246 8 ...
So we save about 1268KB memory. The saving will be much larger in normal
OS env on real HW platforms.
Link: https://lore.kernel.org/linux-arm-kernel/20230524171904.3967031-1-catalin.marinas@arm.com/ [1]
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230718152214.2907-2-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Commit 883bbbffa5a4 ("ftrace,kcfi: Separate ftrace_stub() and
ftrace_stub_graph()") added a separate ftrace_stub_graph function for
CFI_CLANG. Add the stub to fix FUNCTION_GRAPH_TRACER compatibility
with CFI.
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230710183544.999540-11-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
With CONFIG_CFI_CLANG, assembly functions indirectly called
from C code must be annotated with type identifiers to pass CFI
checking. Use the SYM_TYPED_START macro to add types to the
relevant functions.
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230710183544.999540-10-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Commit f0bddf50586d ("riscv: entry: Convert to generic entry") moved
syscall handling to C code, which exposed function pointer type
mismatches that trip fine-grained forward-edge Control-Flow Integrity
(CFI) checks as syscall handlers are all called through the same
syscall_t pointer type. To fix the type mismatches, implement pt_regs
based syscall wrappers similarly to x86 and arm64.
This patch is based on arm64 syscall wrappers added in commit
4378a7d4be30 ("arm64: implement syscall wrappers"), where the main goal
was to minimize the risk of userspace-controlled values being used
under speculation. This may be a concern for riscv in future as well.
Following other architectures, the syscall wrappers generate three
functions for each syscall; __riscv_<compat_>sys_<name> takes a pt_regs
pointer and extracts arguments from registers, __se_<compat_>sys_<name>
is a sign-extension wrapper that casts the long arguments to the
correct types for the real syscall implementation, which is named
__do_<compat_>sys_<name>.
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230710183544.999540-9-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
On riscv, the current crash kernel allocation logic is trying to
allocate within 32bit addressible memory region by default, if
failed, try to allocate without 4G restriction.
In need of saving DMA zone memory while allocating a relatively large
crash kernel region, allocating the reserved memory top down in
high memory, without overlapping the DMA zone, is a mature solution.
Here introduce the parameter option crashkernel=X,[high,low].
One can reserve the crash kernel from high memory above DMA zone range
by explicitly passing "crashkernel=X,high"; or reserve a memory range
below 4G with "crashkernel=X,low".
Signed-off-by: Chen Jiahao <chenjiahao16@huawei.com>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Link: https://lore.kernel.org/r/20230726175000.2536220-2-chenjiahao16@huawei.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
As it says on the tin, provide Kconfig option to control parsing the
"riscv,isa" devicetree property. If either option is used, the kernel
will fall back to parsing "riscv,isa", where "riscv,isa-base" and
"riscv,isa-extensions" are not present.
The Kconfig options are set up so that the default kernel configuration
will enable the fallback path, without needing the commandline option.
Suggested-by: Andrew Jones <ajones@ventanamicro.com>
Suggested-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-aviator-plausibly-a35662485c2c@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
To fully deprecate the kernel's use of "riscv,isa",
of_early_processor_hartid() needs to first try using the new properties,
before falling back to "riscv,isa".
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-tablet-jimmy-987fea0eb2e1@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add support for parsing the new riscv,isa-extensions property in
riscv_fill_hwcap(), by means of a new "property" member of the
riscv_isa_ext_data struct. For now, this shadows the name of the
extension for all users, however this may not be the case for all
extensions, based on how the dt-binding is written.
For the sake of backwards compatibility, fall back to the old scheme
if the new properties are not detected. For now, just inform, rather
than warn, when that happens.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-vocation-profane-39a74b3c2649@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Before adding more complexity to it, split riscv_fill_hwcap() into 3
distinct sections:
- riscv_fill_hwcap() still is the top level function, into which the
additional complexity will be added.
- riscv_fill_hwcap_from_isa_string() handles getting the information
from the riscv,isa/ACPI equivalent across harts & the various quirks
there
- riscv_parse_isa_string() does what it says on the tin.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-daylight-puritan-37aeb41a4d9b@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
So that riscv_fill_hwcap() can use riscv_isa_ext to probe for single
letter extensions, add them to it.
As a result, what gets spat out in /proc/cpuinfo will become borked, as
single letter extensions will be printed as part of the base extensions
and while printing from riscv_isa_arr. Take the opportunity to unify the
printing of the isa string, using the new member of riscv_isa_ext_data
in the process.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-despite-bright-de00ac888cc7@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
In riscv_fill_hwcap() riscv_isa_ext array can be looped over, rather
than duplicating the list of extensions with individual
SET_ISA_EXT_MAP() usage. While at it, drop the statement-of-the-obvious
comments from the struct, rename uprop to something more suitable for
its new use & constify the members.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-dastardly-affiliate-4cf819dccde2@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
To facilitate using one struct to define extensions, rather than having
several, shunt isa_ext_arr to cpufeature.c, where it will be used for
probing extension presence also.
As that scope of the array as widened, prefix it with riscv & drop the
type from the variable name.
Since the new array is const, print_isa() needs a wee bit of cleanup to
avoid complaints about losing the const qualifier.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Evan Green <evan@rivosinc.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-spirits-upside-a2c61c65fd5a@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
isa_ext_arr cannot be empty, as some of the extensions within it are
always built into the kernel. When this code was first added, back in
commit a9b202606c69 ("RISC-V: Improve /proc/cpuinfo output for ISA
extensions"), the array was empty and needed a dummy item & thus there
could be no extensions present. When the first multi-letter ones did
get added, it was Sscofpmf - which didn't have a Kconfig symbol to
disable it.
Remove this check, as it has been redundant since Sscofpmf was added.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-veggie-mug-3d3bf6787ae2@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When filling hwcap the kernel already expects the isa string to start with
rv32 if CONFIG_32BIT and rv64 if CONFIG_64BIT.
So when recreating the runtime isa-string we can also just go the other way
to get the correct starting point for it.
Signed-off-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Evan Green <evan@rivosinc.com>
Co-developed-by: Conor Dooley <conor.dooley@microchip.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230713-masculine-saddlebag-67a94966b091@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* A bunch of fixes/cleanups from the first part of the merge window,
mostly related to ACPI and vector as those were large.
* Some documentation improvements, mostly related to the new code.
* The "riscv,isa" DT key is deprecated.
* Support for link-time dead code elimination.
* Support for minor fault registration in userfaultd.
* A handful of cleanups around CMO alternatives.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmSoLx8THHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiSlbD/9SVAxWKL/9oGh/qDtf7As24ngAKmsy
YfC1LgDwvFOjVz8+YUD7HgUG1Sath2D5e5h2QpVBa16WezIzJUbDvvnYElB28i0J
cZ1sCuI/S62kQbqrP3ITqSt0yj3A1OFVyuF3x+5m6pNqjjhkx5HxYs+omFGJYf4e
K9JE1Rzi1QXNf+uZeuHhK6FqQYdNIsCXmMRnjZTF5FwwzYk1zVkUR4jntZMJV0sf
aP1DfXXgPUEG0LzqTdMLSyT2qnQ2hux5/9ayknt45G0Bm4IYZfGd4Twtab8LOPY9
6nJq9UHFne8xFAeUp+GGY3vQLR7Y892vXHDprblhiAP2FzH3E1HOC1g24xd1lID5
80rgTB8ttY8LgOamr2HxeRKLQkWxDeng9IcAwSwe4T0QVIvqA1hjFTezXYWrD30e
GA0gqvz11ERb7KKS4aJhEljS+ux81PXKPdKIeqp6KnM2N3Ch+LBRIY2v7JZQ0rcT
eAb7uU2MRLwNDevoWkB7iFTkfd+frJGotRDFQZE9atXrx3j3UUNlnFGz8aKtSLX7
b0PFP2iqxYgVPVejqxw03VlEzgV19kJrT/o8Hh7mCGjFQPSbZKIBQb7yHYXKlWWT
eTM8d+ETOlV+yRpWnJSnOX18scsriUmfQj9GhcImwCFsfh9XPLw8CHj82xZiUxFf
645zqiuRJi6yJw==
=jBYf
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.5-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull more RISC-V updates from Palmer Dabbelt:
- A bunch of fixes/cleanups from the first part of the merge window,
mostly related to ACPI and vector as those were large
- Some documentation improvements, mostly related to the new code
- The "riscv,isa" DT key is deprecated
- Support for link-time dead code elimination
- Support for minor fault registration in userfaultd
- A handful of cleanups around CMO alternatives
* tag 'riscv-for-linus-6.5-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (23 commits)
riscv: mm: mark noncoherent_supported as __ro_after_init
riscv: mm: mark CBO relate initialization funcs as __init
riscv: errata: thead: only set cbom size & noncoherent during boot
riscv: Select HAVE_ARCH_USERFAULTFD_MINOR
RISC-V: Document the ISA string parsing rules for ACPI
risc-v: Fix order of IPI enablement vs RCU startup
mm: riscv: fix an unsafe pte read in huge_pte_alloc()
dt-bindings: riscv: deprecate riscv,isa
RISC-V: drop error print from riscv_hartid_to_cpuid()
riscv: Discard vector state on syscalls
riscv: move memblock_allow_resize() after linear mapping is ready
riscv: Enable ARCH_SUSPEND_POSSIBLE for s2idle
riscv: vdso: include vdso/vsyscall.h for vdso_data
selftests: Test RISC-V Vector's first-use handler
riscv: vector: clear V-reg in the first-use trap
riscv: vector: only enable interrupts in the first-use trap
RISC-V: Fix up some vector state related build failures
RISC-V: Document that V registers are clobbered on syscalls
riscv: disable HAVE_LD_DEAD_CODE_DATA_ELIMINATION for LLD
riscv: enable HAVE_LD_DEAD_CODE_DATA_ELIMINATION
...
Conor reports that risc-v tries to enable IPIs before telling the
core code to enable RCU. With the introduction of the mapple tree
as a backing store for the irq descriptors, this results in
a very shouty boot sequence, as RCU is legitimately upset.
Restore some sanity by moving the risc_ipi_enable() call after
notify_cpu_starting(), which explicitly enables RCU on the calling
CPU.
Fixes: 832f15f42646 ("RISC-V: Treat IPIs as normal Linux IRQs")
Reported-by: Conor Dooley <conor@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230703-dupe-frying-79ae2ccf94eb@spud
Cc: Anup Patel <apatel@ventanamicro.com>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230703183126.1567625-1-maz@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
As of commit 2ac874343749 ("RISC-V: split early & late of_node to
hartid mapping") my CI complains about newly added pr_err() messages
during boot, for example:
[ 0.000000] Couldn't find cpu id for hartid [0]
[ 0.000000] riscv-intc: unable to find hart id for /cpus/cpu@0/interrupt-controller
Before the split, riscv_of_processor_hartid() contained a check for
whether the cpu was "available", before calling riscv_hartid_to_cpuid(),
but after the split riscv_of_processor_hartid() can be called for cpus
that are disabled.
Most callers of riscv_hartid_to_cpuid() already report custom errors
where it falls, making this print superfluous in those case. In other
places, the print adds nothing - see riscv_intc_init() for example.
Fixes: 2ac874343749 ("RISC-V: split early & late of_node to hartid mapping")
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230629-paternity-grafted-b901b76d04a0@wendy
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The RISC-V vector specification states:
Executing a system call causes all caller-saved vector registers
(v0-v31, vl, vtype) and vstart to become unspecified.
The vector registers are set to all 1s, vill is set (invalid), and the
vector status is set to Dirty.
That way we can prevent userspace from accidentally relying on the
stated save.
Rémi pointed out [1] that writing to the registers might be
superfluous, and setting vill is sufficient.
Link: https://lore.kernel.org/linux-riscv/12784326.9UPPK3MAeB@basile.remlab.net/ # [1]
Suggested-by: Darius Rad <darius@bluespec.com>
Suggested-by: Palmer Dabbelt <palmer@rivosinc.com>
Suggested-by: Rémi Denis-Courmont <remi@remlab.net>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20230629142228.1125715-1-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add include of <vdso/vsyscall.h> to pull in the defition of vdso_data
to remove the following sparse warning:
arch/riscv/kernel/vdso.c:39:18: warning: symbol 'vdso_data' was not declared. Should it be static?
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Link: https://lore.kernel.org/r/20230616114357.159601-1-ben.dooks@codethink.co.uk
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
If there is no context switch happens after we enable V for a process,
then we return to user space with whatever left on the CPU's V registers
accessible to the process. The leaked data could belong to another
process's V-context saved from last context switch, impacting process's
confidentiality on the system.
To prevent this from happening, we clear V registers by restoring
zero'd V context after turining on V.
Fixes: cd054837243b ("riscv: Allocate user's vector context in the first-use trap")
Signed-off-by: Andy Chiu <andy.chiu@sifive.com>
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20230627015556.12329-2-andy.chiu@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The function irqentry_exit_to_user_mode() must be called with interrupt
disabled. The caller of do_trap_insn_illegal() also assumes running
without interrupts. So, we should turn off interrupts after
riscv_v_first_use_handler() returns.
Fixes: cd054837243b ("riscv: Allocate user's vector context in the first-use trap")
Signed-off-by: Andy Chiu <andy.chiu@sifive.com>
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20230625155416.18629-1-andy.chiu@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Jisheng Zhang <jszhang@kernel.org> says:
When trying to run linux with various opensource riscv core on
resource limited FPGA platforms, for example, those FPGAs with less
than 16MB SDRAM, I want to save mem as much as possible. One of the
major technologies is kernel size optimizations, I found that riscv
does not currently support HAVE_LD_DEAD_CODE_DATA_ELIMINATION, which
passes -fdata-sections, -ffunction-sections to CFLAGS and passes the
--gc-sections flag to the linker.
This not only benefits my case on FPGA but also benefits defconfigs.
Here are some notable improvements from enabling this with defconfigs:
nommu_k210_defconfig:
text data bss dec hex
1112009 410288 59837 1582134 182436 before
962838 376656 51285 1390779 1538bb after
rv32_defconfig:
text data bss dec hex
8804455 2816544 290577 11911576 b5c198 before
8692295 2779872 288977 11761144 b375f8 after
defconfig:
text data bss dec hex
9438267 3391332 485333 13314932 cb2b74 before
9285914 3350052 483349 13119315 c82f53 after
patch1 and patch2 are clean ups.
patch3 fixes a typo.
patch4 finally enable HAVE_LD_DEAD_CODE_DATA_ELIMINATION for riscv.
* b4-shazam-merge:
riscv: disable HAVE_LD_DEAD_CODE_DATA_ELIMINATION for LLD
riscv: enable HAVE_LD_DEAD_CODE_DATA_ELIMINATION
vmlinux.lds.h: use correct .init.data.* section name
riscv: vmlinux-xip.lds.S: remove .alternative section
riscv: move options to keep entries sorted
riscv: Fix orphan section warnings caused by kernel/pi
Link: https://lore.kernel.org/r/20230523165502.2592-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
- Add new feature to have function graph tracer record the return value.
Adds a new option: funcgraph-retval ; when set, will show the return
value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer lat
tracer traces. The application can also read this file to find out how
it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives the
address of where the fentry/mcount jump/nop is. This is used by BPF to
make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZJy6ixQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnzRAPsEI2YgjaJSHnuPoGRHbrNil6pq66wY
LYaLizGI4Jv9BwEAqdSdcYcMiWo1SFBAO8QxEDM++BX3zrRyVgW8ahaTNgs=
=TF0C
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Add new feature to have function graph tracer record the return
value. Adds a new option: funcgraph-retval ; when set, will show the
return value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer
lat tracer traces. The application can also read this file to find
out how it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives
the address of where the fentry/mcount jump/nop is. This is used by
BPF to make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
* tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix warnings when building htmldocs for function graph retval
riscv: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing/boot: Replace strlcpy with strscpy
tracing/timerlat: Add user-space interface
tracing/osnoise: Skip running osnoise if all instances are off
tracing/osnoise: Switch from PF_NO_SETAFFINITY to migrate_disable
ftrace: Show all functions with addresses in available_filter_functions_addrs
selftests/ftrace: Add funcgraph-retval test case
LoongArch: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
x86/ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing: Add documentation for funcgraph-retval and funcgraph-retval-hex
function_graph: Support recording and printing the return value of function
fgraph: Add declaration of "struct fgraph_ret_regs"
* Support for ACPI.
* Various cleanups to the ISA string parsing, including making them
case-insensitive
* Support for the vector extension.
* Support for independent irq/softirq stacks.
* Our CPU DT binding now has "unevaluatedProperties: false"
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmSe70ATHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiWNPD/0ZfSdQ0A/gMVOzAD4zFKPEqQ6ffW2V
Zy6Jo7UDNqKsiai7QA4XB1uyYIv/y1yUKJ0oeBVcA9Nzyq+TW9QDcApDBTabxAUI
agY19YKw6VVZ+p7I9sMsf6EbdJdkNfSAzcQACPxb4ScEoaf9X+oAK5qgXuRuWluh
qQuVkkJlgWc/t1cuUkrRdJmHQYvjP3zL7z4o344q2IVpXJkNNu0GeP+HbF8BYKcA
+I/TTA5JY3kCIaxkpF2rU6pE6T5T9xrPmRYZ7bZoPUPnbL+M8As/jx3ym52Y4WGp
kf8pgkxixOjU64kVJOH66CA8GaOiaAH/ptjQb0ZmCaGrHhr7aOT9HrkX4rU1lS8T
stPphfM4gGPcCoPgRqSl+mEhBzjII8maOBLtbricAoQi6efRq8fzoOGaif/QpCbc
6n0LGS4nQPGVyD3rAPfHxxfrlGJR+SsgyDvjZoDhqauFglims14GnK+eBeO8zrui
Aj/uuAS63VIYprJWC1NOBJlU2WKZiOGhCANpZ6W6SH21PYn2WjsVILqaGh+WN8ZO
KOHxZNaN8fQag0Yg7oNAUb7l6S0DHYtJIksFnFW2Rf2+VT58RAMYRQbpbhr7Tqr+
jLgIR8PkFrBERHE49IqLGhAxGDnNzAUysMRw9pIk7WIre2Jt4wPqUdl+ee+5ErIX
jiYfSFZw9q28UA==
=Fpq8
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.5-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for ACPI
- Various cleanups to the ISA string parsing, including making them
case-insensitive
- Support for the vector extension
- Support for independent irq/softirq stacks
- Our CPU DT binding now has "unevaluatedProperties: false"
* tag 'riscv-for-linus-6.5-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (78 commits)
riscv: hibernate: remove WARN_ON in save_processor_state
dt-bindings: riscv: cpus: switch to unevaluatedProperties: false
dt-bindings: riscv: cpus: add a ref the common cpu schema
riscv: stack: Add config of thread stack size
riscv: stack: Support HAVE_SOFTIRQ_ON_OWN_STACK
riscv: stack: Support HAVE_IRQ_EXIT_ON_IRQ_STACK
RISC-V: always report presence of extensions formerly part of the base ISA
dt-bindings: riscv: explicitly mention assumption of Zicntr & Zihpm support
RISC-V: remove decrement/increment dance in ISA string parser
RISC-V: rework comments in ISA string parser
RISC-V: validate riscv,isa at boot, not during ISA string parsing
RISC-V: split early & late of_node to hartid mapping
RISC-V: simplify register width check in ISA string parsing
perf: RISC-V: Limit the number of counters returned from SBI
riscv: replace deprecated scall with ecall
riscv: uprobes: Restore thread.bad_cause
riscv: mm: try VMA lock-based page fault handling first
riscv: mm: Pre-allocate PGD entries for vmalloc/modules area
RISC-V: hwprobe: Expose Zba, Zbb, and Zbs
RISC-V: Track ISA extensions per hart
...
- Parallel CPU bringup
The reason why people are interested in parallel bringup is to shorten
the (kexec) reboot time of cloud servers to reduce the downtime of the
VM tenants.
The current fully serialized bringup does the following per AP:
1) Prepare callbacks (allocate, intialize, create threads)
2) Kick the AP alive (e.g. INIT/SIPI on x86)
3) Wait for the AP to report alive state
4) Let the AP continue through the atomic bringup
5) Let the AP run the threaded bringup to full online state
There are two significant delays:
#3 The time for an AP to report alive state in start_secondary() on
x86 has been measured in the range between 350us and 3.5ms
depending on vendor and CPU type, BIOS microcode size etc.
#4 The atomic bringup does the microcode update. This has been
measured to take up to ~8ms on the primary threads depending on
the microcode patch size to apply.
On a two socket SKL server with 56 cores (112 threads) the boot CPU
spends on current mainline about 800ms busy waiting for the APs to come
up and apply microcode. That's more than 80% of the actual onlining
procedure.
This can be reduced significantly by splitting the bringup mechanism
into two parts:
1) Run the prepare callbacks and kick the AP alive for each AP which
needs to be brought up.
The APs wake up, do their firmware initialization and run the low
level kernel startup code including microcode loading in parallel
up to the first synchronization point. (#1 and #2 above)
2) Run the rest of the bringup code strictly serialized per CPU
(#3 - #5 above) as it's done today.
Parallelizing that stage of the CPU bringup might be possible in
theory, but it's questionable whether required surgery would be
justified for a pretty small gain.
If the system is large enough the first AP is already waiting at the
first synchronization point when the boot CPU finished the wake-up of
the last AP. That reduces the AP bringup time on that SKL from ~800ms
to ~80ms, i.e. by a factor ~10x.
The actual gain varies wildly depending on the system, CPU, microcode
patch size and other factors. There are some opportunities to reduce
the overhead further, but that needs some deep surgery in the x86 CPU
bringup code.
For now this is only enabled on x86, but the core functionality
obviously works for all SMP capable architectures.
- Enhancements for SMP function call tracing so it is possible to locate
the scheduling and the actual execution points. That allows to measure
IPI delivery time precisely.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZb/YTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRoOD/9vAiGI3IhGyZcX/RjXxauSHf8Pmqll
05jUubFi5Vi3tKI1ubMOsnMmJTw2yy5xDyS/iGj7AcbRLq9uQd3iMtsXXHNBzo/X
FNxnuWTXYUj0vcOYJ+j4puBumFzzpRCprqccMInH0kUnSWzbnaQCeelicZORAf+w
zUYrswK4HpBXHDOnvPw6Z7MYQe+zyDQSwjSftstLyROzu+lCEw/9KUaysY2epShJ
wHClxS2XqMnpY4rJ/CmJAlRhD0Plb89zXyo6k9YZYVDWoAcmBZy6vaTO4qoR171L
37ApqrgsksMkjFycCMnmrFIlkeb7bkrYDQ5y+xqC3JPTlYDKOYmITV5fZ83HD77o
K7FAhl/CgkPq2Ec+d82GFLVBKR1rijbwHf7a0nhfUy0yMeaJCxGp4uQ45uQ09asi
a/VG2T38EgxVdseC92HRhcdd3pipwCb5wqjCH/XdhdlQrk9NfeIeP+TxF4QhADhg
dApp3ifhHSnuEul7+HNUkC6U+Zc8UeDPdu5lvxSTp2ooQ0JwaGgC5PJq3nI9RUi2
Vv826NHOknEjFInOQcwvp6SJPfcuSTF75Yx6xKz8EZ3HHxpvlolxZLq+3ohSfOKn
2efOuZO5bEu4S/G2tRDYcy+CBvNVSrtZmCVqSOS039c8quBWQV7cj0334cjzf+5T
TRiSzvssbYYmaw==
=Y8if
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP updates from Thomas Gleixner:
"A large update for SMP management:
- Parallel CPU bringup
The reason why people are interested in parallel bringup is to
shorten the (kexec) reboot time of cloud servers to reduce the
downtime of the VM tenants.
The current fully serialized bringup does the following per AP:
1) Prepare callbacks (allocate, intialize, create threads)
2) Kick the AP alive (e.g. INIT/SIPI on x86)
3) Wait for the AP to report alive state
4) Let the AP continue through the atomic bringup
5) Let the AP run the threaded bringup to full online state
There are two significant delays:
#3 The time for an AP to report alive state in start_secondary()
on x86 has been measured in the range between 350us and 3.5ms
depending on vendor and CPU type, BIOS microcode size etc.
#4 The atomic bringup does the microcode update. This has been
measured to take up to ~8ms on the primary threads depending
on the microcode patch size to apply.
On a two socket SKL server with 56 cores (112 threads) the boot CPU
spends on current mainline about 800ms busy waiting for the APs to
come up and apply microcode. That's more than 80% of the actual
onlining procedure.
This can be reduced significantly by splitting the bringup
mechanism into two parts:
1) Run the prepare callbacks and kick the AP alive for each AP
which needs to be brought up.
The APs wake up, do their firmware initialization and run the
low level kernel startup code including microcode loading in
parallel up to the first synchronization point. (#1 and #2
above)
2) Run the rest of the bringup code strictly serialized per CPU
(#3 - #5 above) as it's done today.
Parallelizing that stage of the CPU bringup might be possible
in theory, but it's questionable whether required surgery
would be justified for a pretty small gain.
If the system is large enough the first AP is already waiting at
the first synchronization point when the boot CPU finished the
wake-up of the last AP. That reduces the AP bringup time on that
SKL from ~800ms to ~80ms, i.e. by a factor ~10x.
The actual gain varies wildly depending on the system, CPU,
microcode patch size and other factors. There are some
opportunities to reduce the overhead further, but that needs some
deep surgery in the x86 CPU bringup code.
For now this is only enabled on x86, but the core functionality
obviously works for all SMP capable architectures.
- Enhancements for SMP function call tracing so it is possible to
locate the scheduling and the actual execution points. That allows
to measure IPI delivery time precisely"
* tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
trace,smp: Add tracepoints for scheduling remotelly called functions
trace,smp: Add tracepoints around remotelly called functions
MAINTAINERS: Add CPU HOTPLUG entry
x86/smpboot: Fix the parallel bringup decision
x86/realmode: Make stack lock work in trampoline_compat()
x86/smp: Initialize cpu_primary_thread_mask late
cpu/hotplug: Fix off by one in cpuhp_bringup_mask()
x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils
x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
x86/smpboot: Support parallel startup of secondary CPUs
x86/smpboot: Implement a bit spinlock to protect the realmode stack
x86/apic: Save the APIC virtual base address
cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE
x86/apic: Provide cpu_primary_thread mask
x86/smpboot: Enable split CPU startup
cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism
cpu/hotplug: Reset task stack state in _cpu_up()
cpu/hotplug: Remove unused state functions
riscv: Switch to hotplug core state synchronization
parisc: Switch to hotplug core state synchronization
...
Select CONFIG_HAVE_LD_DEAD_CODE_DATA_ELIMINATION for RISC-V, allowing
the user to enable dead code elimination. In order for this to work,
ensure that we keep the alternative table by annotating them with KEEP.
This boots well on qemu with both rv32_defconfig & rv64 defconfig, but
it only shrinks their builds by ~1%, a smaller config is thereforce
customized to test this feature:
| rv32 | rv64
--------|------------------------|---------------------
No DCE | 4460684 | 4893488
DCE | 3986716 | 4376400
Shrink | 473968 (~10.6%) | 517088 (~10.5%)
The config used above only reserves necessary options to boot on qemu
with serial console, more like the size-critical embedded scenes:
- rv64 config: https://pastebin.com/crz82T0s
- rv32 config: rv64 config + 32-bit.config
Here is Jisheng's original commit-msg:
When trying to run linux with various opensource riscv core on
resource limited FPGA platforms, for example, those FPGAs with less
than 16MB SDRAM, I want to save mem as much as possible. One of the
major technologies is kernel size optimizations, I found that riscv
does not currently support HAVE_LD_DEAD_CODE_DATA_ELIMINATION, which
passes -fdata-sections, -ffunction-sections to CFLAGS and passes the
--gc-sections flag to the linker.
This not only benefits my case on FPGA but also benefits defconfigs.
Here are some notable improvements from enabling this with defconfigs:
nommu_k210_defconfig:
text data bss dec hex
1112009 410288 59837 1582134 182436 before
962838 376656 51285 1390779 1538bb after
rv32_defconfig:
text data bss dec hex
8804455 2816544 290577 11911576 b5c198 before
8692295 2779872 288977 11761144 b375f8 after
defconfig:
text data bss dec hex
9438267 3391332 485333 13314932 cb2b74 before
9285914 3350052 483349 13119315 c82f53 after
Signed-off-by: Zhangjin Wu <falcon@tinylab.org>
Co-developed-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Guo Ren <guoren@kernel.org>
Tested-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com> # build
Link: https://lore.kernel.org/r/20230523165502.2592-5-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
ALTERNATIVE mechanism can't work on XIP, and this is also reflected by
below Kconfig dependency:
RISCV_ALTERNATIVE
...
depends on !XIP_KERNEL
...
So there's no .alternative section at all for XIP case, remove it.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Guo Ren <guoren@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com> # build
Link: https://lore.kernel.org/r/20230523165502.2592-3-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
During hibernation or restoration, freeze_secondary_cpus
checks num_online_cpus via BUG_ON, and the subsequent
save_processor_state also does the checking with WARN_ON.
In the case of CONFIG_PM_SLEEP_SMP=n, freeze_secondary_cpus
is not defined, but the sole possible condition to disable
CONFIG_PM_SLEEP_SMP is !SMP where num_online_cpus is always 1.
We also don't have to check it in save_processor_state.
So remove the unnecessary checking in save_processor_state.
Fixes: c0317210012e ("RISC-V: Add arch functions to support hibernation/suspend-to-disk")
Signed-off-by: Song Shuai <songshuaishuai@tinylab.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230609075049.2651723-4-songshuaishuai@tinylab.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
guoren@kernel.org <guoren@kernel.org> says:
From: Guo Ren <guoren@linux.alibaba.com>
This patch series adds independent irq/softirq stacks to decrease the
press of the thread stack. Also, add a thread STACK_SIZE config for
users to adjust the proper size during compile time.
* b4-shazam-merge:
riscv: stack: Add config of thread stack size
riscv: stack: Support HAVE_SOFTIRQ_ON_OWN_STACK
riscv: stack: Support HAVE_IRQ_EXIT_ON_IRQ_STACK
Link: https://lore.kernel.org/r/20230614013018.2168426-1-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Conor Dooley <conor@kernel.org> says:
From: Conor Dooley <conor.dooley@microchip.com>
Here are some bits that were discussed with Drew on the "should we
allow caps" threads that I have now created patches for:
- splitting of riscv_of_processor_hartid() into two distinct functions,
one for use purely during early boot, prior to the establishment of
the possible-cpus mask & another to fit the other current use-cases
- that then allows us to then completely skip some validation of the
hartid in the parser
- the biggest diff in the series is a rework of the comments in the
parser, as I have mostly found the existing (sparse) ones to not be
all that helpful whenever I have to go back and look at it
- from writing the comments, I found a conditional doing a bit of a
dance that I found counter-intuitive, so I've had a go at making that
match what I would expect a little better
- `i` implies 4 other extensions, so add them as extensions and set
them for the craic. Sure why not like...
* b4-shazam-merge:
RISC-V: always report presence of extensions formerly part of the base ISA
dt-bindings: riscv: explicitly mention assumption of Zicntr & Zihpm support
RISC-V: remove decrement/increment dance in ISA string parser
RISC-V: rework comments in ISA string parser
RISC-V: validate riscv,isa at boot, not during ISA string parsing
RISC-V: split early & late of_node to hartid mapping
RISC-V: simplify register width check in ISA string parsing
Link: https://lore.kernel.org/r/20230607-audacity-overhaul-82bb867a825f@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add the HAVE_SOFTIRQ_ON_OWN_STACK feature for the IRQ_STACKS config, and
the irq and softirq use the same irq_stack of percpu.
Tested-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Guo Ren <guoren@linux.alibaba.com>
Signed-off-by: Guo Ren <guoren@kernel.org>
Link: https://lore.kernel.org/r/20230614013018.2168426-3-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The previous patch ("function_graph: Support recording and printing
the return value of function") has laid the groundwork for the for
the funcgraph-retval, and this modification makes it available on
the RISC-V platform.
We introduce a new structure called fgraph_ret_regs for the RISC-V
platform to hold return registers and the frame pointer. We then
fill its content in the return_to_handler and pass its address to
the function ftrace_return_to_handler to record the return value.
Link: https://lore.kernel.org/linux-trace-kernel/a8d71b12259f90e7e63d0ea654fcac95b0232bbc.1680954589.git.pengdonglin@sangfor.com.cn
Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Of these four extensions, two were part of the base ISA when the port was
written and are required by the kernel. The other two are implied when
`i` is in riscv,isa on DT systems.
There's not much that userspace can do with this extra information, but
there is no harm in reporting an ISA string that closer resembles the
current versions of the specifications either.
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230607-nest-collision-5796b6be8be6@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
While expanding on the comments in the ISA string parsing code, I
noticed that the conditional decrement of `isa` at the end of the loop
was a bit odd.
The parsing code expects that at the start of the for loop, `isa` will
point to the first character of the next unparsed extension.
However, depending on what the next extension is, this may not be true.
Unless the next extension is a multi-letter extension preceded by an
underscore, `isa` will either point to the string's null-terminator or
to the first character of the next extension, once the switch statement
has been evaluated.
Obviously incrementing `isa` at the end of the loop could cause it to
increment past the null terminator or miss a single letter extension, so
`isa` is conditionally decremented, just so that the loop can increment
it again.
It's easier to understand the code if, instead of this decrement +
increment dance, we instead use a while loop & rely on the handling of
individual extension types to leave `isa` pointing to the first
character of the next extension.
As already mentioned, this won't be the case where the following
extension is multi-letter & preceded by an underscore. To handle that,
invert the check and increment rather than decrement.
Hopefully this eliminates a "huh?!?" moment the next time somebody tries
to understand this code.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
Link: https://lore.kernel.org/r/20230607-estate-left-f20faabefb89@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
I have found these comments to not be at all helpful whenever I look at
the parser. Further, the comments in the default case (single letter
parser) are not quite right either.
Group the comments into a larger one at the start of each case, that
attempts to explain things at a higher level.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230607-headpiece-tannery-83ed5cc4856a@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Since riscv_fill_hwcap() now only iterates over possible cpus, the
basic validation of whether riscv,isa contains "rv<width>" can be moved
to riscv_early_of_processor_hartid().
Further, "ima" support is required by the kernel, so reject any CPU not
fitting the bill.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
Link: https://lore.kernel.org/r/20230607-guts-blurry-67e711acf328@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Some back and forth with Drew [1] about riscv_fill_hwcap() resulted in
the realisation that it is not very useful to parse the DT & perform
validation of riscv,isa every time we would like to get the id for a
hart.
Although it is no longer called in riscv_fill_hwcap(),
riscv_of_processor_hartid() is called in several other places.
Notably in setup_smp() it forms part of the logic for filling the mask
of possible CPUs. Since a possible CPU must have passed this basic
validation of riscv,isa, a repeat validation is not required.
Rename riscv_of_processor_id() to riscv_early_of_processor_id(),
which will be called from setup_smp() & introduce a new
riscv_of_processor_id() which makes use of the pre-populated mask of
possible cpus.
Link: https://lore.kernel.org/linux-riscv/xvdswl3iyikwvamny7ikrxo2ncuixshtg3f6uucjahpe3xpc5c@ud4cz4fkg5dj/ [1]
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
Link: https://lore.kernel.org/r/20230607-glade-pastel-d8cbd9d9f3c6@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Saving off the `isa` pointer to a temp variable, followed by checking if
it has been incremented is a bit of an odd pattern. Perhaps it was done
to avoid a funky looking if statement mixed with the ifdeffery.
Now that we use IS_ENABLED() here just return from the parser as soon as
we detect a mismatch between the string and the currently running
kernel.
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
Link: https://lore.kernel.org/r/20230607-splatter-bacterium-a75bb9f0d0b7@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>