12444 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
7cf4bea77a |
for-6.6-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmUuntEACgkQxWXV+ddt WDssdQ/9Fo6tN+MCH5ISAcvsW6WvBUWT62MrDnzawh96QhUf3NYf9sjME7QqwHHv w60SDiqRlAd5UzxdIPC4Qa/6GVZZh2yFLzew3l8Fh6anxhjO5argdsfx1Wv4ADk/ FHI8zs6EZiTlk0JmEnHNclliZfaDutBRQiPL+HZx4+FCrJweS5U/4Jpg7vdfp/tp eWdJ51pDM8iyqGTsP7a7/VaL5wLoJhbdD9wYgupZUhvY6g2tCZ71/hNiWdbKtCK8 EyQxXiAlc+k1UflOx6Xip1HLIh6HmKwxntXxRy+yj4IvJ3PhI+KS5Nqdl35TszN9 6y9MRo3oCU+2y89Yay4HZZb6DLxcAi6VwpyswnntodFQ+ICXEw7ZaNi3rSO+FCO8 KxfhLniMD5gflRP4gy+o9iZxgVQ75nmiPgBt53r+sAKZ7lv86x84DJ/ZUqL8EV0e OJhxdzhoT0Ks8OstIuE87fgzUCjqMcgAavxcn1psKBC6/JY9v6OneA8qauSswkKs P+diJIqZHHOBQVKFedqdIrDU6AstivSBq0ToPBslbBlcy97EO4IRoiMIw+QgHPYn CHsPHtooBmxPyw+4HTFuzY1NIrSeUFYxTDAs9p5kMPmltkVAlLPcrpGZVya9tjds l/YuwY2f0C9Q1pjcAc9FcN8Y5kLRCYNEWMl0M1VpC22KgjRN6r0= =GrNu -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "Fix a bug in chunk size decision that could lead to suboptimal placement and filling patterns" * tag 'for-6.6-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix stripe length calculation for non-zoned data chunk allocation |
||
Zygo Blaxell
|
8a540e990d |
btrfs: fix stripe length calculation for non-zoned data chunk allocation
Commit f6fca3917b4d "btrfs: store chunk size in space-info struct" broke data chunk allocations on non-zoned multi-device filesystems when using default chunk_size. Commit 5da431b71d4b "btrfs: fix the max chunk size and stripe length calculation" partially fixed that, and this patch completes the fix for that case. After commit f6fca3917b4d and 5da431b71d4b, the sequence of events for a data chunk allocation on a non-zoned filesystem is: 1. btrfs_create_chunk calls init_alloc_chunk_ctl, which copies space_info->chunk_size (default 10 GiB) to ctl->max_stripe_len unmodified. Before f6fca3917b4d, ctl->max_stripe_len value was 1 GiB for non-zoned data chunks and not configurable. 2. btrfs_create_chunk calls gather_device_info which consumes and produces more fields of chunk_ctl. 3. gather_device_info multiplies ctl->max_stripe_len by ctl->dev_stripes (which is 1 in all cases except dup) and calls find_free_dev_extent with that number as num_bytes. 4. find_free_dev_extent locates the first dev_extent hole on a device which is at least as large as num_bytes. With default max_chunk_size from f6fca3917b4d, it finds the first hole which is longer than 10 GiB, or the largest hole if that hole is shorter than 10 GiB. This is different from the pre-f6fca3917b4d behavior, where num_bytes is 1 GiB, and find_free_dev_extent may choose a different hole. 5. gather_device_info repeats step 4 with all devices to find the first or largest dev_extent hole that can be allocated on each device. 6. gather_device_info sorts the device list by the hole size on each device, using total unallocated space on each device to break ties, then returns to btrfs_create_chunk with the list. 7. btrfs_create_chunk calls decide_stripe_size_regular. 8. decide_stripe_size_regular finds the largest stripe_len that fits across the first nr_devs device dev_extent holes that were found by gather_device_info (and satisfies other constraints on stripe_len that are not relevant here). 9. decide_stripe_size_regular caps the length of the stripe it computed at 1 GiB. This cap appeared in 5da431b71d4b to correct one of the other regressions introduced in f6fca3917b4d. 10. btrfs_create_chunk creates a new chunk with the above computed size and number of devices. At step 4, gather_device_info() has found a location where stripe up to 10 GiB in length could be allocated on several devices, and selected which devices should have a dev_extent allocated on them, but at step 9, only 1 GiB of the space that was found on each device can be used. This mismatch causes new suboptimal chunk allocation cases that did not occur in pre-f6fca3917b4d kernels. Consider a filesystem using raid1 profile with 3 devices. After some balances, device 1 has 10x 1 GiB unallocated space, while devices 2 and 3 have 1x 10 GiB unallocated space, i.e. the same total amount of space, but distributed across different numbers of dev_extent holes. For visualization, let's ignore all the chunks that were allocated before this point, and focus on the remaining holes: Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10x 1 GiB unallocated) Device 2: [__________] (10 GiB contig unallocated) Device 3: [__________] (10 GiB contig unallocated) Before f6fca3917b4d, the allocator would fill these optimally by allocating chunks with dev_extents on devices 1 and 2 ([12]), 1 and 3 ([13]), or 2 and 3 ([23]): [after 0 chunk allocations] Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10 GiB) Device 2: [__________] (10 GiB) Device 3: [__________] (10 GiB) [after 1 chunk allocation] Device 1: [12] [_] [_] [_] [_] [_] [_] [_] [_] [_] Device 2: [12] [_________] (9 GiB) Device 3: [__________] (10 GiB) [after 2 chunk allocations] Device 1: [12] [13] [_] [_] [_] [_] [_] [_] [_] [_] (8 GiB) Device 2: [12] [_________] (9 GiB) Device 3: [13] [_________] (9 GiB) [after 3 chunk allocations] Device 1: [12] [13] [12] [_] [_] [_] [_] [_] [_] [_] (7 GiB) Device 2: [12] [12] [________] (8 GiB) Device 3: [13] [_________] (9 GiB) [...] [after 12 chunk allocations] Device 1: [12] [13] [12] [13] [12] [13] [12] [13] [_] [_] (2 GiB) Device 2: [12] [12] [23] [23] [12] [12] [23] [23] [__] (2 GiB) Device 3: [13] [13] [23] [23] [13] [23] [13] [23] [__] (2 GiB) [after 13 chunk allocations] Device 1: [12] [13] [12] [13] [12] [13] [12] [13] [12] [_] (1 GiB) Device 2: [12] [12] [23] [23] [12] [12] [23] [23] [12] [_] (1 GiB) Device 3: [13] [13] [23] [23] [13] [23] [13] [23] [__] (2 GiB) [after 14 chunk allocations] Device 1: [12] [13] [12] [13] [12] [13] [12] [13] [12] [13] (full) Device 2: [12] [12] [23] [23] [12] [12] [23] [23] [12] [_] (1 GiB) Device 3: [13] [13] [23] [23] [13] [23] [13] [23] [13] [_] (1 GiB) [after 15 chunk allocations] Device 1: [12] [13] [12] [13] [12] [13] [12] [13] [12] [13] (full) Device 2: [12] [12] [23] [23] [12] [12] [23] [23] [12] [23] (full) Device 3: [13] [13] [23] [23] [13] [23] [13] [23] [13] [23] (full) This allocates all of the space with no waste. The sorting function used by gather_device_info considers free space holes above 1 GiB in length to be equal to 1 GiB, so once find_free_dev_extent locates a sufficiently long hole on each device, all the holes appear equal in the sort, and the comparison falls back to sorting devices by total free space. This keeps usable space on each device equal so they can all be filled completely. After f6fca3917b4d, the allocator prefers the devices with larger holes over the devices with more free space, so it makes bad allocation choices: [after 1 chunk allocation] Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10 GiB) Device 2: [23] [_________] (9 GiB) Device 3: [23] [_________] (9 GiB) [after 2 chunk allocations] Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10 GiB) Device 2: [23] [23] [________] (8 GiB) Device 3: [23] [23] [________] (8 GiB) [after 3 chunk allocations] Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10 GiB) Device 2: [23] [23] [23] [_______] (7 GiB) Device 3: [23] [23] [23] [_______] (7 GiB) [...] [after 9 chunk allocations] Device 1: [_] [_] [_] [_] [_] [_] [_] [_] [_] [_] (10 GiB) Device 2: [23] [23] [23] [23] [23] [23] [23] [23] [23] [_] (1 GiB) Device 3: [23] [23] [23] [23] [23] [23] [23] [23] [23] [_] (1 GiB) [after 10 chunk allocations] Device 1: [12] [_] [_] [_] [_] [_] [_] [_] [_] [_] (9 GiB) Device 2: [23] [23] [23] [23] [23] [23] [23] [23] [12] (full) Device 3: [23] [23] [23] [23] [23] [23] [23] [23] [_] (1 GiB) [after 11 chunk allocations] Device 1: [12] [13] [_] [_] [_] [_] [_] [_] [_] [_] (8 GiB) Device 2: [23] [23] [23] [23] [23] [23] [23] [23] [12] (full) Device 3: [23] [23] [23] [23] [23] [23] [23] [23] [13] (full) No further allocations are possible, with 8 GiB wasted (4 GiB of data space). The sort in gather_device_info now considers free space in holes longer than 1 GiB to be distinct, so it will prefer devices 2 and 3 over device 1 until all but 1 GiB is allocated on devices 2 and 3. At that point, with only 1 GiB unallocated on every device, the largest hole length on each device is equal at 1 GiB, so the sort finally moves to ordering the devices with the most free space, but by this time it is too late to make use of the free space on device 1. Note that it's possible to contrive a case where the pre-f6fca3917b4d allocator fails the same way, but these cases generally have extensive dev_extent fragmentation as a precondition (e.g. many holes of 768M in length on one device, and few holes 1 GiB in length on the others). With the regression in f6fca3917b4d, bad chunk allocation can occur even under optimal conditions, when all dev_extent holes are exact multiples of stripe_len in length, as in the example above. Also note that post-f6fca3917b4d kernels do treat dev_extent holes larger than 10 GiB as equal, so the bad behavior won't show up on a freshly formatted filesystem; however, as the filesystem ages and fills up, and holes ranging from 1 GiB to 10 GiB in size appear, the problem can show up as a failure to balance after adding or removing devices, or an unexpected shortfall in available space due to unequal allocation. To fix the regression and make data chunk allocation work again, set ctl->max_stripe_len back to the original SZ_1G, or space_info->chunk_size if that's smaller (the latter can happen if the user set space_info->chunk_size to less than 1 GiB via sysfs, or it's a 32 MiB system chunk with a hardcoded chunk_size and stripe_len). While researching the background of the earlier commits, I found that an identical fix was already proposed at: https://lore.kernel.org/linux-btrfs/de83ac46-a4a3-88d3-85ce-255b7abc5249@gmx.com/ The previous review missed one detail: ctl->max_stripe_len is used before decide_stripe_size_regular() is called, when it is too late for the changes in that function to have any effect. ctl->max_stripe_len is not used directly by decide_stripe_size_regular(), but the parameter does heavily influence the per-device free space data presented to the function. Fixes: f6fca3917b4d ("btrfs: store chunk size in space-info struct") CC: stable@vger.kernel.org # 6.1+ Link: https://lore.kernel.org/linux-btrfs/20231007051421.19657-1-ce3g8jdj@umail.furryterror.org/ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
759d1b653f |
for-6.6-rc5-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmUmbQMACgkQxWXV+ddt WDtBshAAqOwMrqRwOKOze/LQ4Kl9A8p0l+XxYdt7nRSY7n15xpN6uLVsc0gTwO5n HOquDe2ivrpdOXI6ArcujTTFHaBGX+mmubU/yi54MH0iwuCR32dYhj3j7mDUIf6F GpTEjgxIdE4AMUw7e7Rzqbdcmq//+H+bBdm+2YkNNEBmPP06483GYthjKJ7zWdrn pPksR9f611aHU4jZnKZJeHgZh4iVrIszIxkjeMD5NJ6KUb8LJmISLOOJzowkmugt JH8bd1F/+/53MmpntWGnHnURI9J6UxBL0cNnYW26FjY21N3RGR2BumotW73hYaD7 6fwuxs4ZWlLqHUtIOaAVUUSfEVse7k/i7m4+sDB1JLh26alqUHunqCFV+3ROTnOY jHwWW+qyQhxJnfgtHyDrwcybfW0V41hhmDIhoeezkSDtbnacNTMfwzXS2ELcp0KJ /13TCruweFN0g4lBR8HfbKJCCzPayxCirtubx1nIMRysHfo10aDWz1MSvr3mkOyo gwif/j9BMKN0+fg6l9eZNHWHfQ8qfL3dvSRBlvJcP5mnG5ZuVkxJUFH0m/UfdFbZ sbeJHSP9wex5tJKmG3kJPAuZWwGLHCiMMCnsWoq+02KV8IXrw3Ji5z/8Hhsb51Ps r7BGRO2A2rD9XLJtc9BCiwiV177/WknmTUtRpOyxHFfb37bKmHg= =Wz/9 -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A revert of recent mount option parsing fix, this breaks mounts with security options. The second patch is a flexible array annotation" * tag 'for-6.6-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: add __counted_by for struct btrfs_delayed_item and use struct_size() Revert "btrfs: reject unknown mount options early" |
||
Gustavo A. R. Silva
|
75f5f60bf7 |
btrfs: add __counted_by for struct btrfs_delayed_item and use struct_size()
Prepare for the coming implementation by GCC and Clang of the __counted_by attribute. Flexible array members annotated with __counted_by can have their accesses bounds-checked at run-time via CONFIG_UBSAN_BOUNDS (for array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family functions). While there, use struct_size() helper, instead of the open-coded version, to calculate the size for the allocation of the whole flexible structure, including of course, the flexible-array member. This code was found with the help of Coccinelle, and audited and fixed manually. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
54f67decdd |
Revert "btrfs: reject unknown mount options early"
This reverts commit 5f521494cc73520ffac18ede0758883b9aedd018. The patch breaks mounts with security mount options like $ mount -o context=system_u:object_r:root_t:s0 /dev/sdX /mn mount: /mnt: wrong fs type, bad option, bad superblock on /dev/sdX, missing codepage or helper program, ... We cannot reject all unknown options in btrfs_parse_subvol_options() as intended, the security options can be present at this point and it's not possible to enumerate them in a future proof way. This means unknown mount options are silently accepted like before when the filesystem is mounted with either -o subvol=/path or as followup mounts of the same device. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
7de25c855b |
for-6.6-rc4-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmUe+t0ACgkQxWXV+ddt WDv6MA/7B31L45dH+qHM3XFUygJuTBk44OynDSRD/JrPS6ruycu3QpWCZ82+ozUz v8ULN3xJV4j2EWWa7w20CNfMITqEdOAvHHX6GAuXwTfLwy3ov+/L8tOt2OAQ44go kr6jiQULdBwfMxEp+6a5kMw0enVuEz3H+P8gWWUfQHuse+Cgk1TIdvLL8YuaoL0x mEphDtNLFh7UcsKxxVwgNXWowPxIO62xW/11hJKrF9ZpyFfER1TzfaO9kZStH2oe ylHYkWsVf6GdHtXlsVnvDSNdj+GW/KLRLWKouQNjbInSjmZzEBliBbVbXLCI1fvO /LpN1uu8T1XezBvxoEFw2JenkmFqMDg+ocl81owoG/IdJLOqPWCerUGb7VPtooT3 dLx3buXXVBhx70qRdCgg5SwsjNTSElV5Ub9AnYGP5oux5of8oLOb9dSpQsxcE7iE yJEltu6+A1X+uVFHiDI8IIGghyZRq2UXc6zVdE3cHFfjwwB22aOtcRKZDw4O3Qzn DMuACRWZk8WL9gpQZEPa07JmSS3VPN6iY1gq3CYeZpoHOW6BMMDYb2p5/f+yNbWW a2JkDW+BnorEqqssMUyB2tf5k3fbOn1M15LSAH5oVXKA/F7dlxnSQksa7AI/pfFK InAmPLWQhzcIuNhpUs/+FwZ2csc0mbAWroX+fIRF3S99GR2e9ag= =/WDi -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - reject unknown mount options - adjust transaction abort error message level - fix one more build warning with -Wmaybe-uninitialized - proper error handling in several COW-related cases * tag 'for-6.6-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: error out when reallocating block for defrag using a stale transaction btrfs: error when COWing block from a root that is being deleted btrfs: error out when COWing block using a stale transaction btrfs: always print transaction aborted messages with an error level btrfs: reject unknown mount options early btrfs: fix some -Wmaybe-uninitialized warnings in ioctl.c |
||
Filipe Manana
|
e36f949140 |
btrfs: error out when reallocating block for defrag using a stale transaction
At btrfs_realloc_node() we have these checks to verify we are not using a stale transaction (a past transaction with an unblocked state or higher), and the only thing we do is to trigger two WARN_ON(). This however is a critical problem, highly unexpected and if it happens it's most likely due to a bug, so we should error out and turn the fs into error state so that such issue is much more easily noticed if it's triggered. The problem is critical because in btrfs_realloc_node() we COW tree blocks, and using such stale transaction will lead to not persisting the extent buffers used for the COW operations, as allocating tree block adds the range of the respective extent buffers to the ->dirty_pages iotree of the transaction, and a stale transaction, in the unlocked state or higher, will not flush dirty extent buffers anymore, therefore resulting in not persisting the tree block and resource leaks (not cleaning the dirty_pages iotree for example). So do the following changes: 1) Return -EUCLEAN if we find a stale transaction; 2) Turn the fs into error state, with error -EUCLEAN, so that no transaction can be committed, and generate a stack trace; 3) Combine both conditions into a single if statement, as both are related and have the same error message; 4) Mark the check as unlikely, since this is not expected to ever happen. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
a2caab2988 |
btrfs: error when COWing block from a root that is being deleted
At btrfs_cow_block() we check if the block being COWed belongs to a root that is being deleted and if so we log an error message. However this is an unexpected case and it indicates a bug somewhere, so we should return an error and abort the transaction. So change this in the following ways: 1) Abort the transaction with -EUCLEAN, so that if the issue ever happens it can easily be noticed; 2) Change the logged message level from error to critical, and change the message itself to print the block's logical address and the ID of the root; 3) Return -EUCLEAN to the caller; 4) As this is an unexpected scenario, that should never happen, mark the check as unlikely, allowing the compiler to potentially generate better code. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
48774f3bf8 |
btrfs: error out when COWing block using a stale transaction
At btrfs_cow_block() we have these checks to verify we are not using a stale transaction (a past transaction with an unblocked state or higher), and the only thing we do is to trigger a WARN with a message and a stack trace. This however is a critical problem, highly unexpected and if it happens it's most likely due to a bug, so we should error out and turn the fs into error state so that such issue is much more easily noticed if it's triggered. The problem is critical because using such stale transaction will lead to not persisting the extent buffer used for the COW operation, as allocating a tree block adds the range of the respective extent buffer to the ->dirty_pages iotree of the transaction, and a stale transaction, in the unlocked state or higher, will not flush dirty extent buffers anymore, therefore resulting in not persisting the tree block and resource leaks (not cleaning the dirty_pages iotree for example). So do the following changes: 1) Return -EUCLEAN if we find a stale transaction; 2) Turn the fs into error state, with error -EUCLEAN, so that no transaction can be committed, and generate a stack trace; 3) Combine both conditions into a single if statement, as both are related and have the same error message; 4) Mark the check as unlikely, since this is not expected to ever happen. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
f8d1b011ca |
btrfs: always print transaction aborted messages with an error level
Commit b7af0635c87f ("btrfs: print transaction aborted messages with an error level") changed the log level of transaction aborted messages from a debug level to an error level, so that such messages are always visible even on production systems where the log level is normally above the debug level (and also on some syzbot reports). Later, commit fccf0c842ed4 ("btrfs: move btrfs_abort_transaction to transaction.c") changed the log level back to debug level when the error number for a transaction abort should not have a stack trace printed. This happened for absolutely no reason. It's always useful to print transaction abort messages with an error level, regardless of whether the error number should cause a stack trace or not. So change back the log level to error level. Fixes: fccf0c842ed4 ("btrfs: move btrfs_abort_transaction to transaction.c") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
5f521494cc |
btrfs: reject unknown mount options early
[BUG] The following script would allow invalid mount options to be specified (although such invalid options would just be ignored): # mkfs.btrfs -f $dev # mount $dev $mnt1 <<< Successful mount expected # mount $dev $mnt2 -o junk <<< Failed mount expected # echo $? 0 [CAUSE] For the 2nd mount, since the fs is already mounted, we won't go through open_ctree() thus no btrfs_parse_options(), but only through btrfs_parse_subvol_options(). However we do not treat unrecognized options from valid but irrelevant options, thus those invalid options would just be ignored by btrfs_parse_subvol_options(). [FIX] Add the handling for Opt_err to handle invalid options and error out, while still ignore other valid options inside btrfs_parse_subvol_options(). Reported-by: Anand Jain <anand.jain@oracle.com> CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
9147b9ded4 |
btrfs: fix some -Wmaybe-uninitialized warnings in ioctl.c
Jens reported the following warnings from -Wmaybe-uninitialized recent Linus' branch. In file included from ./include/asm-generic/rwonce.h:26, from ./arch/arm64/include/asm/rwonce.h:71, from ./include/linux/compiler.h:246, from ./include/linux/export.h:5, from ./include/linux/linkage.h:7, from ./include/linux/kernel.h:17, from fs/btrfs/ioctl.c:6: In function ‘instrument_copy_from_user_before’, inlined from ‘_copy_from_user’ at ./include/linux/uaccess.h:148:3, inlined from ‘copy_from_user’ at ./include/linux/uaccess.h:183:7, inlined from ‘btrfs_ioctl_space_info’ at fs/btrfs/ioctl.c:2999:6, inlined from ‘btrfs_ioctl’ at fs/btrfs/ioctl.c:4616:10: ./include/linux/kasan-checks.h:38:27: warning: ‘space_args’ may be used uninitialized [-Wmaybe-uninitialized] 38 | #define kasan_check_write __kasan_check_write ./include/linux/instrumented.h:129:9: note: in expansion of macro ‘kasan_check_write’ 129 | kasan_check_write(to, n); | ^~~~~~~~~~~~~~~~~ ./include/linux/kasan-checks.h: In function ‘btrfs_ioctl’: ./include/linux/kasan-checks.h:20:6: note: by argument 1 of type ‘const volatile void *’ to ‘__kasan_check_write’ declared here 20 | bool __kasan_check_write(const volatile void *p, unsigned int size); | ^~~~~~~~~~~~~~~~~~~ fs/btrfs/ioctl.c:2981:39: note: ‘space_args’ declared here 2981 | struct btrfs_ioctl_space_args space_args; | ^~~~~~~~~~ In function ‘instrument_copy_from_user_before’, inlined from ‘_copy_from_user’ at ./include/linux/uaccess.h:148:3, inlined from ‘copy_from_user’ at ./include/linux/uaccess.h:183:7, inlined from ‘_btrfs_ioctl_send’ at fs/btrfs/ioctl.c:4343:9, inlined from ‘btrfs_ioctl’ at fs/btrfs/ioctl.c:4658:10: ./include/linux/kasan-checks.h:38:27: warning: ‘args32’ may be used uninitialized [-Wmaybe-uninitialized] 38 | #define kasan_check_write __kasan_check_write ./include/linux/instrumented.h:129:9: note: in expansion of macro ‘kasan_check_write’ 129 | kasan_check_write(to, n); | ^~~~~~~~~~~~~~~~~ ./include/linux/kasan-checks.h: In function ‘btrfs_ioctl’: ./include/linux/kasan-checks.h:20:6: note: by argument 1 of type ‘const volatile void *’ to ‘__kasan_check_write’ declared here 20 | bool __kasan_check_write(const volatile void *p, unsigned int size); | ^~~~~~~~~~~~~~~~~~~ fs/btrfs/ioctl.c:4341:49: note: ‘args32’ declared here 4341 | struct btrfs_ioctl_send_args_32 args32; | ^~~~~~ This was due to his config options and having KASAN turned on, which adds some extra checks around copy_from_user(), which then triggered the -Wmaybe-uninitialized checker for these cases. Fix the warnings by initializing the different structs we're copying into. Reported-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
cac405a3bf |
for-6.6-rc3-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmURvloACgkQxWXV+ddt WDt+CQ/+NgBtQn7eyABsdHzXWPxpFyGZrdw5ldKnly3G+WDW2GKMaZ6CpDuEZGNQ vMAkSGX5LIHXvO79pDnGG0i+bRINWrc5HZVZ/p5Da6wplBTgIPlbLmxaZX9MJLbx j7Oz37GXiQJY8BxnVCnsb+bhhTrTbO9HFUQr/nxefIvu22OBdL1WXYcfuBOeEsFG qr/aeC52YqCVgXvt+8a5DqAKE0NWc4PFMFUMo4vlf1xuL652fvff7xiup1CAIgBh qsCa17E7q+qjri2phAhbFNadfpH5wGfyjTWScOlaFuXjRhW2v2oqz3WU5IQj4dmu PI+k++PLUzIxT0IcjD1YbZzRFaEI6fR2W0GA4LK08fjVehh2ao5jOjtRgLl8HlqG qC5fslAPzUxRmwMmCjSGfXF14sgtyLy8eVWf69xn06/1cbEmfHDrWNXP1QHuq6eT Jqy8Ywia3jRzzfZ1utABJPLBW4hFQKkyobtyd67fxslUFmtuLvLqGTiOdmVFiD9K o+BF2xjEz2n8O1+aRZk5SFNC9zcaASaRg/wQrhvSI9qxM18fh4TXgKQOniLzAK7v lZc+JkegFW4CVquCUpmbsdZAOpVNRXfPOJIt/w6G+oRbaiTvPUnrH+uyq8IGREbw E7d8XIP0qlF0DQBGK4Mw/riZz/e5MmEKNjza6M+fj2uglpfWTv4= =6WEW -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - delayed refs fixes: - fix race when refilling delayed refs block reserve - prevent transaction block reserve underflow when starting transaction - error message and value adjustments - fix build warnings with CONFIG_CC_OPTIMIZE_FOR_SIZE and -Wmaybe-uninitialized - fix for smatch report where uninitialized data from invalid extent buffer range could be returned to the caller - fix numeric overflow in statfs when calculating lower threshold for a full filesystem * tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize start_slot in btrfs_log_prealloc_extents btrfs: make sure to initialize start and len in find_free_dev_extent btrfs: reset destination buffer when read_extent_buffer() gets invalid range btrfs: properly report 0 avail for very full file systems btrfs: log message if extent item not found when running delayed extent op btrfs: remove redundant BUG_ON() from __btrfs_inc_extent_ref() btrfs: return -EUCLEAN for delayed tree ref with a ref count not equals to 1 btrfs: prevent transaction block reserve underflow when starting transaction btrfs: fix race when refilling delayed refs block reserve |
||
Linus Torvalds
|
b5cbe7c00a |
v6.6-rc3.vfs.ctime.revert
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZQsZLQAKCRCRxhvAZXjc op0vAP96hkSUnmXmxTr8GHId3yfElN8ZZ3aSfePeBdljjKEZVAEA2+cbHLy4GqRi TpjP1HNIdmtbVSC2ZnrgqkbwGageQgg= =s92y -----END PGP SIGNATURE----- Merge tag 'v6.6-rc3.vfs.ctime.revert' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull finegrained timestamp reverts from Christian Brauner: "Earlier this week we sent a few minor fixes for the multi-grained timestamp work in [1]. While we were polishing those up after Linus realized that there might be a nicer way to fix them we received a regression report in [2] that fine grained timestamps break gnulib tests and thus possibly other tools. The kernel will elide fine-grain timestamp updates when no one is actively querying for them to avoid performance impacts. So a sequence like write(f1) stat(f2) write(f2) stat(f2) write(f1) stat(f1) may result in timestamp f1 to be older than the final f2 timestamp even though f1 was last written too but the second write didn't update the timestamp. Such plotholes can lead to subtle bugs when programs compare timestamps. For example, the nap() function in [2] will estimate that it needs to wait one ns on a fine-grain timestamp enabled filesytem between subsequent calls to observe a timestamp change. But in general we don't update timestamps with more than one jiffie if we think that no one is actively querying for fine-grain timestamps to avoid performance impacts. While discussing various fixes the decision was to go back to the drawing board and ultimately to explore a solution that involves only exposing such fine-grained timestamps to nfs internally and never to userspace. As there are multiple solutions discussed the honest thing to do here is not to fix this up or disable it but to cleanly revert. The general infrastructure will probably come back but there is no reason to keep this code in mainline. The general changes to timestamp handling are valid and a good cleanup that will stay. The revert is fully bisectable" Link: https://lore.kernel.org/all/20230918-hirte-neuzugang-4c2324e7bae3@brauner [1] Link: https://lore.kernel.org/all/bf0524debb976627693e12ad23690094e4514303.camel@linuxfromscratch.org [2] * tag 'v6.6-rc3.vfs.ctime.revert' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: Revert "fs: add infrastructure for multigrain timestamps" Revert "btrfs: convert to multigrain timestamps" Revert "ext4: switch to multigrain timestamps" Revert "xfs: switch to multigrain timestamps" Revert "tmpfs: add support for multigrain timestamps" |
||
Josef Bacik
|
b4c639f699 |
btrfs: initialize start_slot in btrfs_log_prealloc_extents
Jens reported a compiler warning when using CONFIG_CC_OPTIMIZE_FOR_SIZE=y that looks like this fs/btrfs/tree-log.c: In function ‘btrfs_log_prealloc_extents’: fs/btrfs/tree-log.c:4828:23: warning: ‘start_slot’ may be used uninitialized [-Wmaybe-uninitialized] 4828 | ret = copy_items(trans, inode, dst_path, path, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4829 | start_slot, ins_nr, 1, 0); | ~~~~~~~~~~~~~~~~~~~~~~~~~ fs/btrfs/tree-log.c:4725:13: note: ‘start_slot’ was declared here 4725 | int start_slot; | ^~~~~~~~~~ The compiler is incorrect, as we only use this code when ins_len > 0, and when ins_len > 0 we have start_slot properly initialized. However we generally find the -Wmaybe-uninitialized warnings valuable, so initialize start_slot to get rid of the warning. Reported-by: Jens Axboe <axboe@kernel.dk> Tested-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
20218dfbaa |
btrfs: make sure to initialize start and len in find_free_dev_extent
Jens reported a compiler error when using CONFIG_CC_OPTIMIZE_FOR_SIZE=y that looks like this In function ‘gather_device_info’, inlined from ‘btrfs_create_chunk’ at fs/btrfs/volumes.c:5507:8: fs/btrfs/volumes.c:5245:48: warning: ‘dev_offset’ may be used uninitialized [-Wmaybe-uninitialized] 5245 | devices_info[ndevs].dev_offset = dev_offset; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ fs/btrfs/volumes.c: In function ‘btrfs_create_chunk’: fs/btrfs/volumes.c:5196:13: note: ‘dev_offset’ was declared here 5196 | u64 dev_offset; This occurs because find_free_dev_extent is responsible for setting dev_offset, however if we get an -ENOMEM at the top of the function we'll return without setting the value. This isn't actually a problem because we will see the -ENOMEM in gather_device_info() and return and not use the uninitialized value, however we also just don't want the compiler warning so rework the code slightly in find_free_dev_extent() to make sure it's always setting *start and *len to avoid the compiler warning. Reported-by: Jens Axboe <axboe@kernel.dk> Tested-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
74ee79142c |
btrfs: reset destination buffer when read_extent_buffer() gets invalid range
Commit f98b6215d7d1 ("btrfs: extent_io: do extra check for extent buffer read write functions") changed how we handle invalid extent buffer range for read_extent_buffer(). Previously if the range is invalid we just set the destination to zero, but after the patch we do nothing and error out. This can lead to smatch static checker errors like: fs/btrfs/print-tree.c:186 print_uuid_item() error: uninitialized symbol 'subvol_id'. fs/btrfs/tests/extent-io-tests.c:338 check_eb_bitmap() error: uninitialized symbol 'has'. fs/btrfs/tests/extent-io-tests.c:353 check_eb_bitmap() error: uninitialized symbol 'has'. fs/btrfs/uuid-tree.c:203 btrfs_uuid_tree_remove() error: uninitialized symbol 'read_subid'. fs/btrfs/uuid-tree.c:353 btrfs_uuid_tree_iterate() error: uninitialized symbol 'subid_le'. fs/btrfs/uuid-tree.c:72 btrfs_uuid_tree_lookup() error: uninitialized symbol 'data'. fs/btrfs/volumes.c:7415 btrfs_dev_stats_value() error: uninitialized symbol 'val'. Fix those warnings by reverting back to the old memset() behavior. By this we keep the static checker happy and would still make a lot of noise when such invalid ranges are passed in. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: f98b6215d7d1 ("btrfs: extent_io: do extra check for extent buffer read write functions") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
58bfe2ccec |
btrfs: properly report 0 avail for very full file systems
A user reported some issues with smaller file systems that get very full. While investigating this issue I noticed that df wasn't showing 100% full, despite having 0 chunk space and having < 1MiB of available metadata space. This turns out to be an overflow issue, we're doing: total_available_metadata_space - SZ_4M < global_block_rsv_size to determine if there's not enough space to make metadata allocations, which overflows if total_available_metadata_space is < 4M. Fix this by checking to see if our available space is greater than the 4M threshold. This makes df properly report 100% usage on the file system. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
8ec0a4a577 |
btrfs: log message if extent item not found when running delayed extent op
When running a delayed extent operation, if we don't find the extent item in the extent tree we just return -EIO without any logged message. This indicates some bug or possibly a memory or fs corruption, so the return value should not be -EIO but -EUCLEAN instead, and since it's not expected to ever happen, print an informative error message so that if it happens we have some idea of what went wrong, where to look at. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
d2f79e6385 |
btrfs: remove redundant BUG_ON() from __btrfs_inc_extent_ref()
At __btrfs_inc_extent_ref() we are doing a BUG_ON() if we are dealing with a tree block reference that has a reference count that is different from 1, but we have already dealt with this case at run_delayed_tree_ref(), making it useless. So remove the BUG_ON(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
1bf76df3fe |
btrfs: return -EUCLEAN for delayed tree ref with a ref count not equals to 1
When running a delayed tree reference, if we find a ref count different from 1, we return -EIO. This isn't an IO error, as it indicates either a bug in the delayed refs code or a memory corruption, so change the error code from -EIO to -EUCLEAN. Also tag the branch as 'unlikely' as this is not expected to ever happen, and change the error message to print the tree block's bytenr without the parenthesis (and there was a missing space between the 'block' word and the opening parenthesis), for consistency as that's the style we used everywhere else. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
a7ddeeb079 |
btrfs: prevent transaction block reserve underflow when starting transaction
When starting a transaction, with a non-zero number of items, we reserve metadata space for that number of items and for delayed refs by doing a call to btrfs_block_rsv_add(), with the transaction block reserve passed as the block reserve argument. This reserves metadata space and adds it to the transaction block reserve. Later we migrate the space we reserved for delayed references from the transaction block reserve into the delayed refs block reserve, by calling btrfs_migrate_to_delayed_refs_rsv(). btrfs_migrate_to_delayed_refs_rsv() decrements the number of bytes to migrate from the source block reserve, and this however may result in an underflow in case the space added to the transaction block reserve ended up being used by another task that has not reserved enough space for its own use - examples are tasks doing reflinks or hole punching because they end up calling btrfs_replace_file_extents() -> btrfs_drop_extents() and may need to modify/COW a variable number of leaves/paths, so they keep trying to use space from the transaction block reserve when they need to COW an extent buffer, and may end up trying to use more space then they have reserved (1 unit/path only for removing file extent items). This can be avoided by simply reserving space first without adding it to the transaction block reserve, then add the space for delayed refs to the delayed refs block reserve and finally add the remaining reserved space to the transaction block reserve. This also makes the code a bit shorter and simpler. So just do that. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
2ed45c0f18 |
btrfs: fix race when refilling delayed refs block reserve
If we have two (or more) tasks attempting to refill the delayed refs block reserve we can end up with the delayed block reserve being over reserved, that is, with a reserved space greater than its size. If this happens, we are holding to more reserved space than necessary for a while. The race happens like this: 1) The delayed refs block reserve has a size of 8M and a reserved space of 6M for example; 2) Task A calls btrfs_delayed_refs_rsv_refill(); 3) Task B also calls btrfs_delayed_refs_rsv_refill(); 4) Task A sees there's a 2M difference between the size and the reserved space of the delayed refs rsv, so it will reserve 2M of space by calling btrfs_reserve_metadata_bytes(); 5) Task B also sees that 2M difference, and like task A, it reserves another 2M of metadata space; 6) Both task A and task B increase the reserved space of block reserve by 2M, by calling btrfs_block_rsv_add_bytes(), so the block reserve ends up with a size of 8M and a reserved space of 10M; 7) The extra, over reserved space will eventually be freed by some task calling btrfs_delayed_refs_rsv_release() -> btrfs_block_rsv_release() -> block_rsv_release_bytes(), as there we will detect the over reserve and release that space. So fix this by checking if we still need to add space to the delayed refs block reserve after reserving the metadata space, and if we don't, just release that space immediately. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
a229cf67ab |
for-6.6-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmULIZUACgkQxWXV+ddt WDv77Q//ZiKpmevPQmQfUtmV8WwMfD2a9zRlKBpGggwtrD4mf3CYRLnOpTm81MPO vFIuYacBn+9UXqp2j/IbvNWfQAPQNVDxSPXx66uba93RJc+bB1J3TydxcEyJ7fr4 dwhLLk01jttfk0+rnjF34fmXiHSTtI6D2WeaLCzUbaPLw4SZ+ul+GAdeF3P174iO OMNBUln7hK00Q7j8kFf4j6SW1yIIKMTl6MfOFJYanIqzx51PYFFVtKwoCr0Vt53v ZHbgrK582ZJO6pKF9kJF/1tqrY9/Df8jzgSypK8pew/SukMOrf7iVwrmhietuhKA 92j5sxKhCRyq6Qg6ZwC0jyk+oMqrT8r+q3r38a5qDJx/9Q279vkXBqQnACfLjmnH 6+sNdkY5/uBWnDMh/+d6yBtfbdW5DtuET4McYpJt1Nk2St/f3UzPaL4LcNkDXNPk t1Q4W4v0KS1V8TbsLfdD629CMghxQNKVs1XqyCAbUq9ub4LE2CtL3lDm730qZoZt +LM7+sAxEOJC6yqYfdEbcIc8l27Hl5nZEzamcvMrRz61N85/8Jx4Sq2b6VSE9TCE hNEWAL5sOjhuhmUPhatYC+KO1P6NDP+Yg99yZCZIT9s/P1oK5H+aETshWX+lvJ+Q Ai+qzKvp2ERHFcE+R5qIXs/uX7azpzjqsRZxY2/zdp70ugQDSXE= =0eEg -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more followup fixes to the directory listing. People have noticed different behaviour compared to other filesystems after changes in 6.5. This is now unified to more "logical" and expected behaviour while still within POSIX. And a few more fixes for stable. - change behaviour of readdir()/rewinddir() when new directory entries are created after opendir(), properly tracking the last entry - fix race in readdir when multiple threads can set the last entry index for a directory Additionally: - use exclusive lock when direct io might need to drop privs and call notify_change() - don't clear uptodate bit on page after an error, this may lead to a deadlock in subpage mode - fix waiting pattern when multiple readers block on Merkle tree data, switch to folios" * tag 'for-6.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix race between reading a directory and adding entries to it btrfs: refresh dir last index during a rewinddir(3) call btrfs: set last dir index to the current last index when opening dir btrfs: don't clear uptodate on write errors btrfs: file_remove_privs needs an exclusive lock in direct io write btrfs: convert btrfs_read_merkle_tree_page() to use a folio |
||
Christian Brauner
|
efd34f0316
|
Revert "btrfs: convert to multigrain timestamps"
This reverts commit 50e9ceef1d4f644ee0049e82e360058a64ec284c. Users reported regressions due to enabling multi-grained timestamps unconditionally. As no clear consensus on a solution has come up and the discussion has gone back to the drawing board revert the infrastructure changes for. If it isn't code that's here to stay, make it go away. Message-ID: <20230920-keine-eile-c9755b5825db@brauner> Acked-by: Jan Kara <jack@suse.cz> Acked-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org> |
||
Filipe Manana
|
8e7f82deb0 |
btrfs: fix race between reading a directory and adding entries to it
When opening a directory (opendir(3)) or rewinding it (rewinddir(3)), we are not holding the directory's inode locked, and this can result in later attempting to add two entries to the directory with the same index number, resulting in a transaction abort, with -EEXIST (-17), when inserting the second delayed dir index. This results in a trace like the following: Sep 11 22:34:59 myhostname kernel: BTRFS error (device dm-3): err add delayed dir index item(name: cockroach-stderr.log) into the insertion tree of the delayed node(root id: 5, inode id: 4539217, errno: -17) Sep 11 22:34:59 myhostname kernel: ------------[ cut here ]------------ Sep 11 22:34:59 myhostname kernel: kernel BUG at fs/btrfs/delayed-inode.c:1504! Sep 11 22:34:59 myhostname kernel: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI Sep 11 22:34:59 myhostname kernel: CPU: 0 PID: 7159 Comm: cockroach Not tainted 6.4.15-200.fc38.x86_64 #1 Sep 11 22:34:59 myhostname kernel: Hardware name: ASUS ESC500 G3/P9D WS, BIOS 2402 06/27/2018 Sep 11 22:34:59 myhostname kernel: RIP: 0010:btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: Code: eb dd 48 (...) Sep 11 22:34:59 myhostname kernel: RSP: 0000:ffffa9980e0fbb28 EFLAGS: 00010282 Sep 11 22:34:59 myhostname kernel: RAX: 0000000000000000 RBX: ffff8b10b8f4a3c0 RCX: 0000000000000000 Sep 11 22:34:59 myhostname kernel: RDX: 0000000000000000 RSI: ffff8b177ec21540 RDI: ffff8b177ec21540 Sep 11 22:34:59 myhostname kernel: RBP: ffff8b110cf80888 R08: 0000000000000000 R09: ffffa9980e0fb938 Sep 11 22:34:59 myhostname kernel: R10: 0000000000000003 R11: ffffffff86146508 R12: 0000000000000014 Sep 11 22:34:59 myhostname kernel: R13: ffff8b1131ae5b40 R14: ffff8b10b8f4a418 R15: 00000000ffffffef Sep 11 22:34:59 myhostname kernel: FS: 00007fb14a7fe6c0(0000) GS:ffff8b177ec00000(0000) knlGS:0000000000000000 Sep 11 22:34:59 myhostname kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Sep 11 22:34:59 myhostname kernel: CR2: 000000c00143d000 CR3: 00000001b3b4e002 CR4: 00000000001706f0 Sep 11 22:34:59 myhostname kernel: Call Trace: Sep 11 22:34:59 myhostname kernel: <TASK> Sep 11 22:34:59 myhostname kernel: ? die+0x36/0x90 Sep 11 22:34:59 myhostname kernel: ? do_trap+0xda/0x100 Sep 11 22:34:59 myhostname kernel: ? btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: ? do_error_trap+0x6a/0x90 Sep 11 22:34:59 myhostname kernel: ? btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: ? exc_invalid_op+0x50/0x70 Sep 11 22:34:59 myhostname kernel: ? btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: ? asm_exc_invalid_op+0x1a/0x20 Sep 11 22:34:59 myhostname kernel: ? btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: ? btrfs_insert_delayed_dir_index+0x1da/0x260 Sep 11 22:34:59 myhostname kernel: btrfs_insert_dir_item+0x200/0x280 Sep 11 22:34:59 myhostname kernel: btrfs_add_link+0xab/0x4f0 Sep 11 22:34:59 myhostname kernel: ? ktime_get_real_ts64+0x47/0xe0 Sep 11 22:34:59 myhostname kernel: btrfs_create_new_inode+0x7cd/0xa80 Sep 11 22:34:59 myhostname kernel: btrfs_symlink+0x190/0x4d0 Sep 11 22:34:59 myhostname kernel: ? schedule+0x5e/0xd0 Sep 11 22:34:59 myhostname kernel: ? __d_lookup+0x7e/0xc0 Sep 11 22:34:59 myhostname kernel: vfs_symlink+0x148/0x1e0 Sep 11 22:34:59 myhostname kernel: do_symlinkat+0x130/0x140 Sep 11 22:34:59 myhostname kernel: __x64_sys_symlinkat+0x3d/0x50 Sep 11 22:34:59 myhostname kernel: do_syscall_64+0x5d/0x90 Sep 11 22:34:59 myhostname kernel: ? syscall_exit_to_user_mode+0x2b/0x40 Sep 11 22:34:59 myhostname kernel: ? do_syscall_64+0x6c/0x90 Sep 11 22:34:59 myhostname kernel: entry_SYSCALL_64_after_hwframe+0x72/0xdc The race leading to the problem happens like this: 1) Directory inode X is loaded into memory, its ->index_cnt field is initialized to (u64)-1 (at btrfs_alloc_inode()); 2) Task A is adding a new file to directory X, holding its vfs inode lock, and calls btrfs_set_inode_index() to get an index number for the entry. Because the inode's index_cnt field is set to (u64)-1 it calls btrfs_inode_delayed_dir_index_count() which fails because no dir index entries were added yet to the delayed inode and then it calls btrfs_set_inode_index_count(). This functions finds the last dir index key and then sets index_cnt to that index value + 1. It found that the last index key has an offset of 100. However before it assigns a value of 101 to index_cnt... 3) Task B calls opendir(3), ending up at btrfs_opendir(), where the VFS lock for inode X is not taken, so it calls btrfs_get_dir_last_index() and sees index_cnt still with a value of (u64)-1. Because of that it calls btrfs_inode_delayed_dir_index_count() which fails since no dir index entries were added to the delayed inode yet, and then it also calls btrfs_set_inode_index_count(). This also finds that the last index key has an offset of 100, and before it assigns the value 101 to the index_cnt field of inode X... 4) Task A assigns a value of 101 to index_cnt. And then the code flow goes to btrfs_set_inode_index() where it increments index_cnt from 101 to 102. Task A then creates a delayed dir index entry with a sequence number of 101 and adds it to the delayed inode; 5) Task B assigns 101 to the index_cnt field of inode X; 6) At some later point when someone tries to add a new entry to the directory, btrfs_set_inode_index() will return 101 again and shortly after an attempt to add another delayed dir index key with index number 101 will fail with -EEXIST resulting in a transaction abort. Fix this by locking the inode at btrfs_get_dir_last_index(), which is only only used when opening a directory or attempting to lseek on it. Reported-by: ken <ken@bllue.org> Link: https://lore.kernel.org/linux-btrfs/CAE6xmH+Lp=Q=E61bU+v9eWX8gYfLvu6jLYxjxjFpo3zHVPR0EQ@mail.gmail.com/ Reported-by: syzbot+d13490c82ad5353c779d@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000036e1290603e097e0@google.com/ Fixes: 9b378f6ad48c ("btrfs: fix infinite directory reads") CC: stable@vger.kernel.org # 6.5+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
e60aa5da14 |
btrfs: refresh dir last index during a rewinddir(3) call
When opening a directory we find what's the index of its last entry and then store it in the directory's file handle private data (struct btrfs_file_private::last_index), so that in the case new directory entries are added to a directory after an opendir(3) call we don't end up in an infinite loop (see commit 9b378f6ad48c ("btrfs: fix infinite directory reads")) when calling readdir(3). However once rewinddir(3) is called, POSIX states [1] that any new directory entries added after the previous opendir(3) call, must be returned by subsequent calls to readdir(3): "The rewinddir() function shall reset the position of the directory stream to which dirp refers to the beginning of the directory. It shall also cause the directory stream to refer to the current state of the corresponding directory, as a call to opendir() would have done." We currently don't refresh the last_index field of the struct btrfs_file_private associated to the directory, so after a rewinddir(3) we are not returning any new entries added after the opendir(3) call. Fix this by finding the current last index of the directory when llseek is called against the directory. This can be reproduced by the following C program provided by Ian Johnson: #include <dirent.h> #include <stdio.h> int main(void) { DIR *dir = opendir("test"); FILE *file; file = fopen("test/1", "w"); fwrite("1", 1, 1, file); fclose(file); file = fopen("test/2", "w"); fwrite("2", 1, 1, file); fclose(file); rewinddir(dir); struct dirent *entry; while ((entry = readdir(dir))) { printf("%s\n", entry->d_name); } closedir(dir); return 0; } Reported-by: Ian Johnson <ian@ianjohnson.dev> Link: https://lore.kernel.org/linux-btrfs/YR1P0S.NGASEG570GJ8@ianjohnson.dev/ Fixes: 9b378f6ad48c ("btrfs: fix infinite directory reads") CC: stable@vger.kernel.org # 6.5+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
357950361c |
btrfs: set last dir index to the current last index when opening dir
When opening a directory for reading it, we set the last index where we stop iteration to the value in struct btrfs_inode::index_cnt. That value does not match the index of the most recently added directory entry but it's instead the index number that will be assigned the next directory entry. This means that if after the call to opendir(3) new directory entries are added, a readdir(3) call will return the first new directory entry. This is fine because POSIX says the following [1]: "If a file is removed from or added to the directory after the most recent call to opendir() or rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified." For example for the test script from commit 9b378f6ad48c ("btrfs: fix infinite directory reads"), where we have 2000 files in a directory, ext4 doesn't return any new directory entry after opendir(3), while xfs returns the first 13 new directory entries added after the opendir(3) call. If we move to a shorter example with an empty directory when opendir(3) is called, and 2 files added to the directory after the opendir(3) call, then readdir(3) on btrfs will return the first file, ext4 and xfs return the 2 files (but in a different order). A test program for this, reported by Ian Johnson, is the following: #include <dirent.h> #include <stdio.h> int main(void) { DIR *dir = opendir("test"); FILE *file; file = fopen("test/1", "w"); fwrite("1", 1, 1, file); fclose(file); file = fopen("test/2", "w"); fwrite("2", 1, 1, file); fclose(file); struct dirent *entry; while ((entry = readdir(dir))) { printf("%s\n", entry->d_name); } closedir(dir); return 0; } To make this less odd, change the behaviour to never return new entries that were added after the opendir(3) call. This is done by setting the last_index field of the struct btrfs_file_private attached to the directory's file handle with a value matching btrfs_inode::index_cnt minus 1, since that value always matches the index of the next new directory entry and not the index of the most recently added entry. [1] https://pubs.opengroup.org/onlinepubs/007904875/functions/readdir_r.html Link: https://lore.kernel.org/linux-btrfs/YR1P0S.NGASEG570GJ8@ianjohnson.dev/ CC: stable@vger.kernel.org # 6.5+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
b595d25996 |
btrfs: don't clear uptodate on write errors
We have been consistently seeing hangs with generic/648 in our subpage GitHub CI setup. This is a classic deadlock, we are calling btrfs_read_folio() on a folio, which requires holding the folio lock on the folio, and then finding a ordered extent that overlaps that range and calling btrfs_start_ordered_extent(), which then tries to write out the dirty page, which requires taking the folio lock and then we deadlock. The hang happens because we're writing to range [1271750656, 1271767040), page index [77621, 77622], and page 77621 is !Uptodate. It is also Dirty, so we call btrfs_read_folio() for 77621 and which does btrfs_lock_and_flush_ordered_range() for that range, and we find an ordered extent which is [1271644160, 1271746560), page index [77615, 77621]. The page indexes overlap, but the actual bytes don't overlap. We're holding the page lock for 77621, then call btrfs_lock_and_flush_ordered_range() which tries to flush the dirty page, and tries to lock 77621 again and then we deadlock. The byte ranges do not overlap, but with subpage support if we clear uptodate on any portion of the page we mark the entire thing as not uptodate. We have been clearing page uptodate on write errors, but no other file system does this, and is in fact incorrect. This doesn't hurt us in the !subpage case because we can't end up with overlapped ranges that don't also overlap on the page. Fix this by not clearing uptodate when we have a write error. The only thing we should be doing in this case is setting the mapping error and carrying on. This makes it so we would no longer call btrfs_read_folio() on the page as it's uptodate and eliminates the deadlock. With this patch we're now able to make it through a full fstests run on our subpage blocksize VMs. Note for stable backports: this probably goes beyond 6.1 but the code has been cleaned up and clearing the uptodate bit must be verified on each version independently. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Bernd Schubert
|
9af86694fd |
btrfs: file_remove_privs needs an exclusive lock in direct io write
This was noticed by Miklos that file_remove_privs might call into notify_change(), which requires to hold an exclusive lock. The problem exists in FUSE and btrfs. We can fix it without any additional helpers from VFS, in case the privileges would need to be dropped, change the lock type to be exclusive and redo the loop. Fixes: e9adabb9712e ("btrfs: use shared lock for direct writes within EOF") CC: Miklos Szeredi <miklos@szeredi.hu> CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Bernd Schubert <bschubert@ddn.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Matthew Wilcox (Oracle)
|
06ed09351b |
btrfs: convert btrfs_read_merkle_tree_page() to use a folio
Remove a number of hidden calls to compound_head() by using a folio throughout. Also follow core kernel coding style by adding the folio to the page cache immediately after allocation instead of doing the read first, then adding it to the page cache. This ordering makes subsequent readers block waiting for the first reader instead of duplicating the work only to throw it away when they find out they lost the race. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
3669558bdf |
for-6.6-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmT/hwAACgkQxWXV+ddt WDsn7hAAngwEMKEAH9Jvu/BtHgRYcAdsGh5Mxw34aQf1+DAaH03GGsZjN6hfHYo4 FMsnnvoZD5VPfuaFaQVd+mS9mRzikm503W7KfZFAPAQTOjz50RZbohLnZWa3eFbI 46OcpoHusxwoYosEmIAt+dcw/gDlT9fpj+W11dKYtwOEjCqGA/OeKoVenfk38hVJ r+XhLwZFf4dPIqE3Ht26UtJk87Xs2X0/LQxOX3vM1MZ+l38N4dyo7TQnwfTHlQNw AK9sK6vp3rpRR96rvTV1dWr9lnmE7wky+Vh36DN/jxpzbW7Wx8IVoobBpcsO4Tyk Vw/rdjB7g7LfBmjLFhWvvQ73jv0WjIUUzXH17RuxOeyAQJ9tXFztVMh+QoVVC/Ka NxwA5uqyJKR7DIA+kLL06abUnASUVgP6Krdv9Fk7rYCKWluWk1k9ls9XaFFhytvg eeno/UB0px1rwps5P5zfaSXLIXEl53Luy5rFhTMCCNQfXyo+Qe6PJyTafR3E0uP8 aXJV1lPG+o7qi9Vwg+20yy//1sE5gR0dLrcTaup3/20RK6eljZ/bNSkl3GJR9mlS YF+J/Ccia06y8Qo0xaeCofxkoI3J/PK6KPOTt8yZDgYoetYgHhrfBRO0I7ZU4Edq 10512hAeskzPt6+5348+/jOEENASffXKP3FJSdDEzWd33vtlaHE= =mHTa -----END PGP SIGNATURE----- Merge tag 'for-6.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - several fixes for handling directory item (inserting, removing, iteration, error handling) - fix transaction commit stalls when auto relocation is running and blocks other tasks that want to commit - fix a build error when DEBUG is enabled - fix lockdep warning in inode number lookup ioctl - fix race when finishing block group creation - remove link to obsolete wiki in several files * tag 'for-6.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: MAINTAINERS: remove links to obsolete btrfs.wiki.kernel.org btrfs: assert delayed node locked when removing delayed item btrfs: remove BUG() after failure to insert delayed dir index item btrfs: improve error message after failure to add delayed dir index item btrfs: fix a compilation error if DEBUG is defined in btree_dirty_folio btrfs: check for BTRFS_FS_ERROR in pending ordered assert btrfs: fix lockdep splat and potential deadlock after failure running delayed items btrfs: do not block starts waiting on previous transaction commit btrfs: release path before inode lookup during the ino lookup ioctl btrfs: fix race between finishing block group creation and its item update |
||
Bhaskar Chowdhury
|
5facccc940 |
MAINTAINERS: remove links to obsolete btrfs.wiki.kernel.org
The wiki has been archived and is not updated anymore. Remove or replace the links in files that contain it (MAINTAINERS, Kconfig, docs). Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
a57c2d4e46 |
btrfs: assert delayed node locked when removing delayed item
When removing a delayed item, or releasing which will remove it as well, we will modify one of the delayed node's rbtrees and item counter if the delayed item is in one of the rbtrees. This require having the delayed node's mutex locked, otherwise we will race with other tasks modifying the rbtrees and the counter. This is motivated by a previous version of another patch actually calling btrfs_release_delayed_item() after unlocking the delayed node's mutex and against a delayed item that is in a rbtree. So assert at __btrfs_remove_delayed_item() that the delayed node's mutex is locked. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
2c58c3931e |
btrfs: remove BUG() after failure to insert delayed dir index item
Instead of calling BUG() when we fail to insert a delayed dir index item into the delayed node's tree, we can just release all the resources we have allocated/acquired before and return the error to the caller. This is fine because all existing call chains undo anything they have done before calling btrfs_insert_delayed_dir_index() or BUG_ON (when creating pending snapshots in the transaction commit path). So remove the BUG() call and do proper error handling. This relates to a syzbot report linked below, but does not fix it because it only prevents hitting a BUG(), it does not fix the issue where somehow we attempt to use twice the same index number for different index items. Link: https://lore.kernel.org/linux-btrfs/00000000000036e1290603e097e0@google.com/ CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
91bfe3104b |
btrfs: improve error message after failure to add delayed dir index item
If we fail to add a delayed dir index item because there's already another item with the same index number, we print an error message (and then BUG). However that message isn't very helpful to debug anything because we don't know what's the index number and what are the values of index counters in the inode and its delayed inode (index_cnt fields of struct btrfs_inode and struct btrfs_delayed_node). So update the error message to include the index number and counters. We actually had a recent case where this issue was hit by a syzbot report (see the link below). Link: https://lore.kernel.org/linux-btrfs/00000000000036e1290603e097e0@google.com/ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
5e0e879926 |
btrfs: fix a compilation error if DEBUG is defined in btree_dirty_folio
[BUG] After commit 72a69cd03082 ("btrfs: subpage: pack all subpage bitmaps into a larger bitmap"), the DEBUG section of btree_dirty_folio() would no longer compile. [CAUSE] If DEBUG is defined, we would do extra checks for btree_dirty_folio(), mostly to make sure the range we marked dirty has an extent buffer and that extent buffer is dirty. For subpage, we need to iterate through all the extent buffers covered by that page range, and make sure they all matches the criteria. However commit 72a69cd03082 ("btrfs: subpage: pack all subpage bitmaps into a larger bitmap") changes how we store the bitmap, we pack all the 16 bits bitmaps into a larger bitmap, which would save some space. This means we no longer have btrfs_subpage::dirty_bitmap, instead the dirty bitmap is starting at btrfs_subpage_info::dirty_offset, and has a length of btrfs_subpage_info::bitmap_nr_bits. [FIX] Although I'm not sure if it still makes sense to maintain such code, at least let it compile. This patch would let us test the bits one by one through the bitmaps. CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
4ca8e03cf2 |
btrfs: check for BTRFS_FS_ERROR in pending ordered assert
If we do fast tree logging we increment a counter on the current transaction for every ordered extent we need to wait for. This means we expect the transaction to still be there when we clear pending on the ordered extent. However if we happen to abort the transaction and clean it up, there could be no running transaction, and thus we'll trip the "ASSERT(trans)" check. This is obviously incorrect, and the code properly deals with the case that the transaction doesn't exist. Fix this ASSERT() to only fire if there's no trans and we don't have BTRFS_FS_ERROR() set on the file system. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
e110f8911d |
btrfs: fix lockdep splat and potential deadlock after failure running delayed items
When running delayed items we are holding a delayed node's mutex and then we will attempt to modify a subvolume btree to insert/update/delete the delayed items. However if have an error during the insertions for example, btrfs_insert_delayed_items() may return with a path that has locked extent buffers (a leaf at the very least), and then we attempt to release the delayed node at __btrfs_run_delayed_items(), which requires taking the delayed node's mutex, causing an ABBA type of deadlock. This was reported by syzbot and the lockdep splat is the following: WARNING: possible circular locking dependency detected 6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0 Not tainted ------------------------------------------------------ syz-executor.2/13257 is trying to acquire lock: ffff88801835c0c0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256 but task is already holding lock: ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-tree-00){++++}-{3:3}: __lock_release kernel/locking/lockdep.c:5475 [inline] lock_release+0x36f/0x9d0 kernel/locking/lockdep.c:5781 up_write+0x79/0x580 kernel/locking/rwsem.c:1625 btrfs_tree_unlock_rw fs/btrfs/locking.h:189 [inline] btrfs_unlock_up_safe+0x179/0x3b0 fs/btrfs/locking.c:239 search_leaf fs/btrfs/ctree.c:1986 [inline] btrfs_search_slot+0x2511/0x2f80 fs/btrfs/ctree.c:2230 btrfs_insert_empty_items+0x9c/0x180 fs/btrfs/ctree.c:4376 btrfs_insert_delayed_item fs/btrfs/delayed-inode.c:746 [inline] btrfs_insert_delayed_items fs/btrfs/delayed-inode.c:824 [inline] __btrfs_commit_inode_delayed_items+0xd24/0x2410 fs/btrfs/delayed-inode.c:1111 __btrfs_run_delayed_items+0x1db/0x430 fs/btrfs/delayed-inode.c:1153 flush_space+0x269/0xe70 fs/btrfs/space-info.c:723 btrfs_async_reclaim_metadata_space+0x106/0x350 fs/btrfs/space-info.c:1078 process_one_work+0x92c/0x12c0 kernel/workqueue.c:2600 worker_thread+0xa63/0x1210 kernel/workqueue.c:2751 kthread+0x2b8/0x350 kernel/kthread.c:389 ret_from_fork+0x2e/0x60 arch/x86/kernel/process.c:145 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: check_prev_add kernel/locking/lockdep.c:3142 [inline] check_prevs_add kernel/locking/lockdep.c:3261 [inline] validate_chain kernel/locking/lockdep.c:3876 [inline] __lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144 lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761 __mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603 __mutex_lock kernel/locking/mutex.c:747 [inline] mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799 __btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256 btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline] __btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156 btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276 btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988 vfs_fsync_range fs/sync.c:188 [inline] vfs_fsync fs/sync.c:202 [inline] do_fsync fs/sync.c:212 [inline] __do_sys_fsync fs/sync.c:220 [inline] __se_sys_fsync fs/sync.c:218 [inline] __x64_sys_fsync+0x196/0x1e0 fs/sync.c:218 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(&delayed_node->mutex); lock(btrfs-tree-00); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by syz-executor.2/13257: #0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: spin_unlock include/linux/spinlock.h:391 [inline] #0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0xb87/0xe00 fs/btrfs/transaction.c:287 #1: ffff88802c1ee398 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0xbb2/0xe00 fs/btrfs/transaction.c:288 #2: ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198 stack backtrace: CPU: 0 PID: 13257 Comm: syz-executor.2 Not tainted 6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 check_noncircular+0x375/0x4a0 kernel/locking/lockdep.c:2195 check_prev_add kernel/locking/lockdep.c:3142 [inline] check_prevs_add kernel/locking/lockdep.c:3261 [inline] validate_chain kernel/locking/lockdep.c:3876 [inline] __lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144 lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761 __mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603 __mutex_lock kernel/locking/mutex.c:747 [inline] mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799 __btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256 btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline] __btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156 btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276 btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988 vfs_fsync_range fs/sync.c:188 [inline] vfs_fsync fs/sync.c:202 [inline] do_fsync fs/sync.c:212 [inline] __do_sys_fsync fs/sync.c:220 [inline] __se_sys_fsync fs/sync.c:218 [inline] __x64_sys_fsync+0x196/0x1e0 fs/sync.c:218 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f3ad047cae9 Code: 28 00 00 00 75 (...) RSP: 002b:00007f3ad12510c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 00007f3ad059bf80 RCX: 00007f3ad047cae9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000005 RBP: 00007f3ad04c847a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007f3ad059bf80 R15: 00007ffe56af92f8 </TASK> ------------[ cut here ]------------ Fix this by releasing the path before releasing the delayed node in the error path at __btrfs_run_delayed_items(). Reported-by: syzbot+a379155f07c134ea9879@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000abba27060403b5bd@google.com/ CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
77d20c685b |
btrfs: do not block starts waiting on previous transaction commit
Internally I got a report of very long stalls on normal operations like creating a new file when auto relocation was running. The reporter used the 'bpf offcputime' tracer to show that we would get stuck in start_transaction for 5 to 30 seconds, and were always being woken up by the transaction commit. Using my timing-everything script, which times how long a function takes and what percentage of that total time is taken up by its children, I saw several traces like this 1083 took 32812902424 ns 29929002926 ns 91.2110% wait_for_commit_duration 25568 ns 7.7920e-05% commit_fs_roots_duration 1007751 ns 0.00307% commit_cowonly_roots_duration 446855602 ns 1.36182% btrfs_run_delayed_refs_duration 271980 ns 0.00082% btrfs_run_delayed_items_duration 2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration 9656 ns 2.9427e-05% switch_commit_roots_duration 1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration 4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration Here I was only tracing functions that happen where we are between START_COMMIT and UNBLOCKED in order to see what would be keeping us blocked for so long. The wait_for_commit() we do is where we wait for a previous transaction that hasn't completed it's commit. This can include all of the unpin work and other cleanups, which tends to be the longest part of our transaction commit. There is no reason we should be blocking new things from entering the transaction at this point, it just adds to random latency spikes for no reason. Fix this by adding a PREP stage. This allows us to properly deal with multiple committers coming in at the same time, we retain the behavior that the winner waits on the previous transaction and the losers all wait for this transaction commit to occur. Nothing else is blocked during the PREP stage, and then once the wait is complete we switch to COMMIT_START and all of the same behavior as before is maintained. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
ee34a82e89 |
btrfs: release path before inode lookup during the ino lookup ioctl
During the ino lookup ioctl we can end up calling btrfs_iget() to get an inode reference while we are holding on a root's btree. If btrfs_iget() needs to lookup the inode from the root's btree, because it's not currently loaded in memory, then it will need to lock another or the same path in the same root btree. This may result in a deadlock and trigger the following lockdep splat: WARNING: possible circular locking dependency detected 6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Not tainted ------------------------------------------------------ syz-executor277/5012 is trying to acquire lock: ffff88802df41710 (btrfs-tree-01){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 but task is already holding lock: ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-tree-00){++++}-{3:3}: down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645 __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 btrfs_search_slot+0x13a4/0x2f80 fs/btrfs/ctree.c:2302 btrfs_init_root_free_objectid+0x148/0x320 fs/btrfs/disk-io.c:4955 btrfs_init_fs_root fs/btrfs/disk-io.c:1128 [inline] btrfs_get_root_ref+0x5ae/0xae0 fs/btrfs/disk-io.c:1338 btrfs_get_fs_root fs/btrfs/disk-io.c:1390 [inline] open_ctree+0x29c8/0x3030 fs/btrfs/disk-io.c:3494 btrfs_fill_super+0x1c7/0x2f0 fs/btrfs/super.c:1154 btrfs_mount_root+0x7e0/0x910 fs/btrfs/super.c:1519 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 fc_mount fs/namespace.c:1112 [inline] vfs_kern_mount+0xbc/0x150 fs/namespace.c:1142 btrfs_mount+0x39f/0xb50 fs/btrfs/super.c:1579 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 do_new_mount+0x28f/0xae0 fs/namespace.c:3335 do_mount fs/namespace.c:3675 [inline] __do_sys_mount fs/namespace.c:3884 [inline] __se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (btrfs-tree-01){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3142 [inline] check_prevs_add kernel/locking/lockdep.c:3261 [inline] validate_chain kernel/locking/lockdep.c:3876 [inline] __lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144 lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761 down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645 __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline] btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281 btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline] btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154 btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412 btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline] btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716 btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline] btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105 btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(btrfs-tree-00); lock(btrfs-tree-01); lock(btrfs-tree-00); rlock(btrfs-tree-01); *** DEADLOCK *** 1 lock held by syz-executor277/5012: #0: ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 stack backtrace: CPU: 1 PID: 5012 Comm: syz-executor277 Not tainted 6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 check_noncircular+0x375/0x4a0 kernel/locking/lockdep.c:2195 check_prev_add kernel/locking/lockdep.c:3142 [inline] check_prevs_add kernel/locking/lockdep.c:3261 [inline] validate_chain kernel/locking/lockdep.c:3876 [inline] __lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144 lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761 down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645 __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline] btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281 btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline] btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154 btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412 btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline] btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716 btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline] btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105 btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f0bec94ea39 Fix this simply by releasing the path before calling btrfs_iget() as at point we don't need the path anymore. Reported-by: syzbot+bf66ad948981797d2f1d@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000045fa140603c4a969@google.com/ Fixes: 23d0b79dfaed ("btrfs: Add unprivileged version of ino_lookup ioctl") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
2d6cd791e6 |
btrfs: fix race between finishing block group creation and its item update
Commit 675dfe1223a6 ("btrfs: fix block group item corruption after inserting new block group") fixed one race that resulted in not persisting a block group's item when its "used" bytes field decreases to zero. However there's another race that can happen in a much shorter time window that results in the same problem. The following sequence of steps explains how it can happen: 1) Task A creates a metadata block group X, its "used" and "commit_used" fields are initialized to 0; 2) Two extents are allocated from block group X, so its "used" field is updated to 32K, and its "commit_used" field remains as 0; 3) Transaction commit starts, by some task B, and it enters btrfs_start_dirty_block_groups(). There it tries to update the block group item for block group X, which currently has its "used" field with a value of 32K and its "commit_used" field with a value of 0. However that fails since the block group item was not yet inserted, so at update_block_group_item(), the btrfs_search_slot() call returns 1, and then we set 'ret' to -ENOENT. Before jumping to the label 'fail'... 4) The block group item is inserted by task A, when for example btrfs_create_pending_block_groups() is called when releasing its transaction handle. This results in insert_block_group_item() inserting the block group item in the extent tree (or block group tree), with a "used" field having a value of 32K and setting "commit_used", in struct btrfs_block_group, to the same value (32K); 5) Task B jumps to the 'fail' label and then resets the "commit_used" field to 0. At btrfs_start_dirty_block_groups(), because -ENOENT was returned from update_block_group_item(), we add the block group again to the list of dirty block groups, so that we will try again in the critical section of the transaction commit when calling btrfs_write_dirty_block_groups(); 6) Later the two extents from block group X are freed, so its "used" field becomes 0; 7) If no more extents are allocated from block group X before we get into btrfs_write_dirty_block_groups(), then when we call update_block_group_item() again for block group X, we will not update the block group item to reflect that it has 0 bytes used, because the "used" and "commit_used" fields in struct btrfs_block_group have the same value, a value of 0. As a result after committing the transaction we have an empty block group with its block group item having a 32K value for its "used" field. This will trigger errors from fsck ("btrfs check" command) and after mounting again the fs, the cleaner kthread will not automatically delete the empty block group, since its "used" field is not 0. Possibly there are other issues due to this inconsistency. When this issue happens, the error reported by fsck is like this: [1/7] checking root items [2/7] checking extents block group [1104150528 1073741824] used 39796736 but extent items used 0 ERROR: errors found in extent allocation tree or chunk allocation (...) So fix this by not resetting the "commit_used" field of a block group when we don't find the block group item at update_block_group_item(). Fixes: 7248e0cebbef ("btrfs: skip update of block group item if used bytes are the same") CC: stable@vger.kernel.org # 6.2+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
b96a3e9142 |
- Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6 Nfio7afS1ncD+hPYT8947UnLxTgn+ww= =Afws -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list") - Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). * tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits) maple_tree: shrink struct maple_tree maple_tree: clean up mas_wr_append() secretmem: convert page_is_secretmem() to folio_is_secretmem() nios2: fix flush_dcache_page() for usage from irq context hugetlb: add documentation for vma_kernel_pagesize() mm: add orphaned kernel-doc to the rst files. mm: fix clean_record_shared_mapping_range kernel-doc mm: fix get_mctgt_type() kernel-doc mm: fix kernel-doc warning from tlb_flush_rmaps() mm: remove enum page_entry_size mm: allow ->huge_fault() to be called without the mmap_lock held mm: move PMD_ORDER to pgtable.h mm: remove checks for pte_index memcg: remove duplication detection for mem_cgroup_uncharge_swap mm/huge_memory: work on folio->swap instead of page->private when splitting folio mm/swap: inline folio_set_swap_entry() and folio_swap_entry() mm/swap: use dedicated entry for swap in folio mm/swap: stop using page->private on tail pages for THP_SWAP selftests/mm: fix WARNING comparing pointer to 0 selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check ... |
||
Linus Torvalds
|
547635c6ac |
for-6.6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmTskOwACgkQxWXV+ddt WDsNJw/8CCi41Z7e3LdJsQd2iy3/+oJZUvIGuT5YvshYxTLCbV7AL+diBPnSQs4Q /KFMGL7RZBgJzwVoSQtXnESXXgX8VOVfN1zY//k5g6z7BscCEQd73H/M0B8ciZy/ aBygm9tJ7EtWbGZWNR8yad8YtOgl6xoClrPnJK/DCLwMGPy2o+fnKP3Y9FOKY5KM 1Sl0Y4FlJ9dTJpxIwYbx4xmuyHrh2OivjU/KnS9SzQlHu0nl6zsIAE45eKem2/EG 1figY5aFBYPpPYfopbLDalEBR3bQGiViZVJuNEop3AimdcMOXw9jBF3EZYUb5Tgn MleMDgmmjLGOE/txGhvTxKj9kci2aGX+fJn3jXbcIMksAA0OQFLPqzGvEQcrs6Ok HA0RsmAkS5fWNDCuuo4ZPXEyUPvluTQizkwyoulOfnK+UPJCWaRqbEBMTsvm6M6X wFT2czwLpaEU/W6loIZkISUhfbRqVoA3DfHy398QXNzRhSrg8fQJjma1f7mrHvTi CzU+OD5YSC2nXktVOnklyTr0XT+7HF69cumlDbr8TS8u1qu8n1keU/7M3MBB4xZk BZFJDz8pnsAqpwVA4T434E/w45MDnYlwBw5r+U8Xjyso8xlau+sYXKcim85vT2Q0 yx/L91P6tdekR1y97p4aDdxw/PgTzdkNGMnsTBMVzgtCj+5pMmE= =N7Yn -----END PGP SIGNATURE----- Merge tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "No new features, the bulk of the changes are fixes, refactoring and cleanups. The notable fix is the scrub performance restoration after rewrite in 6.4, though still only partial. Fixes: - scrub performance drop due to rewrite in 6.4 partially restored: - do IO grouping by blg_plug/blk_unplug again - avoid unnecessary tree searches when processing stripes, in extent and checksum trees - the drop is noticeable on fast PCIe devices, -66% and restored to -33% of the original - backports to 6.4 planned - handle more corner cases of transaction commit during orphan cleanup or delayed ref processing - use correct fsid/metadata_uuid when validating super block - copy directory permissions and time when creating a stub subvolume Core: - debugging feature integrity checker deprecated, to be removed in 6.7 - in zoned mode, zones are activated just before the write, making error handling easier, now the overcommit mechanism can be enabled again which improves performance by avoiding more frequent flushing - v0 extent handling completely removed, deprecated long time ago - error handling improvements - tests: - extent buffer bitmap tests - pinned extent splitting tests - cleanups and refactoring: - compression writeback - extent buffer bitmap - space flushing, ENOSPC handling" * tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (110 commits) btrfs: zoned: skip splitting and logical rewriting on pre-alloc write btrfs: tests: test invalid splitting when skipping pinned drop extent_map btrfs: tests: add a test for btrfs_add_extent_mapping btrfs: tests: add extent_map tests for dropping with odd layouts btrfs: scrub: move write back of repaired sectors to scrub_stripe_read_repair_worker() btrfs: scrub: don't go ordered workqueue for dev-replace btrfs: scrub: fix grouping of read IO btrfs: scrub: avoid unnecessary csum tree search preparing stripes btrfs: scrub: avoid unnecessary extent tree search preparing stripes btrfs: copy dir permission and time when creating a stub subvolume btrfs: remove pointless empty list check when reading delayed dir indexes btrfs: drop redundant check to use fs_devices::metadata_uuid btrfs: compare the correct fsid/metadata_uuid in btrfs_validate_super btrfs: use the correct superblock to compare fsid in btrfs_validate_super btrfs: simplify memcpy either of metadata_uuid or fsid btrfs: add a helper to read the superblock metadata_uuid btrfs: remove v0 extent handling btrfs: output extra debug info if we failed to find an inline backref btrfs: move the !zoned assert into run_delalloc_cow btrfs: consolidate the error handling in run_delalloc_nocow ... |
||
Linus Torvalds
|
6016fc9162 |
New code for 6.6:
* Make large writes to the page cache fill sparse parts of the cache with large folios, then use large memcpy calls for the large folio. * Track the per-block dirty state of each large folio so that a buffered write to a single byte on a large folio does not result in a (potentially) multi-megabyte writeback IO. * Allow some directio completions to be performed in the initiating task's context instead of punting through a workqueue. This will reduce latency for some io_uring requests. Signed-off-by: Darrick J. Wong <djwong@kernel.org> -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZM0Z1AAKCRBKO3ySh0YR pp7BAQCzkKejCM0185tNIH/faHjzidSisNQkJ5HoB4Opq9U66AEA6IPuAdlPlM/J FPW1oPq33Yn7AV4wXjUNFfDLzVb/Fgg= =dFBU -----END PGP SIGNATURE----- Merge tag 'iomap-6.6-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull iomap updates from Darrick Wong: "We've got some big changes for this release -- I'm very happy to be landing willy's work to enable large folios for the page cache for general read and write IOs when the fs can make contiguous space allocations, and Ritesh's work to track sub-folio dirty state to eliminate the write amplification problems inherent in using large folios. As a bonus, io_uring can now process write completions in the caller's context instead of bouncing through a workqueue, which should reduce io latency dramatically. IOWs, XFS should see a nice performance bump for both IO paths. Summary: - Make large writes to the page cache fill sparse parts of the cache with large folios, then use large memcpy calls for the large folio. - Track the per-block dirty state of each large folio so that a buffered write to a single byte on a large folio does not result in a (potentially) multi-megabyte writeback IO. - Allow some directio completions to be performed in the initiating task's context instead of punting through a workqueue. This will reduce latency for some io_uring requests" * tag 'iomap-6.6-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (26 commits) iomap: support IOCB_DIO_CALLER_COMP io_uring/rw: add write support for IOCB_DIO_CALLER_COMP fs: add IOCB flags related to passing back dio completions iomap: add IOMAP_DIO_INLINE_COMP iomap: only set iocb->private for polled bio iomap: treat a write through cache the same as FUA iomap: use an unsigned type for IOMAP_DIO_* defines iomap: cleanup up iomap_dio_bio_end_io() iomap: Add per-block dirty state tracking to improve performance iomap: Allocate ifs in ->write_begin() early iomap: Refactor iomap_write_delalloc_punch() function out iomap: Use iomap_punch_t typedef iomap: Fix possible overflow condition in iomap_write_delalloc_scan iomap: Add some uptodate state handling helpers for ifs state bitmap iomap: Drop ifs argument from iomap_set_range_uptodate() iomap: Rename iomap_page to iomap_folio_state and others iomap: Copy larger chunks from userspace iomap: Create large folios in the buffered write path filemap: Allow __filemap_get_folio to allocate large folios filemap: Add fgf_t typedef ... |
||
Linus Torvalds
|
615e95831e |
v6.6-vfs.ctime
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTKAAKCRCRxhvAZXjc oifJAQCzi/p+AdQu8LA/0XvR7fTwaq64ZDCibU4BISuLGT2kEgEAuGbuoFZa0rs2 XYD/s4+gi64p9Z01MmXm2XO1pu3GPg0= =eJz5 -----END PGP SIGNATURE----- Merge tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull vfs timestamp updates from Christian Brauner: "This adds VFS support for multi-grain timestamps and converts tmpfs, xfs, ext4, and btrfs to use them. This carries acks from all relevant filesystems. The VFS always uses coarse-grained timestamps when updating the ctime and mtime after a change. This has the benefit of allowing filesystems to optimize away a lot of metadata updates, down to around 1 per jiffy, even when a file is under heavy writes. Unfortunately, this has always been an issue when we're exporting via NFSv3, which relies on timestamps to validate caches. A lot of changes can happen in a jiffy, so timestamps aren't sufficient to help the client decide to invalidate the cache. Even with NFSv4, a lot of exported filesystems don't properly support a change attribute and are subject to the same problems with timestamp granularity. Other applications have similar issues with timestamps (e.g., backup applications). If we were to always use fine-grained timestamps, that would improve the situation, but that becomes rather expensive, as the underlying filesystem would have to log a lot more metadata updates. This introduces fine-grained timestamps that are used when they are actively queried. This uses the 31st bit of the ctime tv_nsec field to indicate that something has queried the inode for the mtime or ctime. When this flag is set, on the next mtime or ctime update, the kernel will fetch a fine-grained timestamp instead of the usual coarse-grained one. As POSIX generally mandates that when the mtime changes, the ctime must also change the kernel always stores normalized ctime values, so only the first 30 bits of the tv_nsec field are ever used. Filesytems can opt into this behavior by setting the FS_MGTIME flag in the fstype. Filesystems that don't set this flag will continue to use coarse-grained timestamps. Various preparatory changes, fixes and cleanups are included: - Fixup all relevant places where POSIX requires updating ctime together with mtime. This is a wide-range of places and all maintainers provided necessary Acks. - Add new accessors for inode->i_ctime directly and change all callers to rely on them. Plain accesses to inode->i_ctime are now gone and it is accordingly rename to inode->__i_ctime and commented as requiring accessors. - Extend generic_fillattr() to pass in a request mask mirroring in a sense the statx() uapi. This allows callers to pass in a request mask to only get a subset of attributes filled in. - Rework timestamp updates so it's possible to drop the @now parameter the update_time() inode operation and associated helpers. - Add inode_update_timestamps() and convert all filesystems to it removing a bunch of open-coding" * tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (107 commits) btrfs: convert to multigrain timestamps ext4: switch to multigrain timestamps xfs: switch to multigrain timestamps tmpfs: add support for multigrain timestamps fs: add infrastructure for multigrain timestamps fs: drop the timespec64 argument from update_time xfs: have xfs_vn_update_time gets its own timestamp fat: make fat_update_time get its own timestamp fat: remove i_version handling from fat_update_time ubifs: have ubifs_update_time use inode_update_timestamps btrfs: have it use inode_update_timestamps fs: drop the timespec64 arg from generic_update_time fs: pass the request_mask to generic_fillattr fs: remove silly warning from current_time gfs2: fix timestamp handling on quota inodes fs: rename i_ctime field to __i_ctime selinux: convert to ctime accessor functions security: convert to ctime accessor functions apparmor: convert to ctime accessor functions sunrpc: convert to ctime accessor functions ... |
||
Matthew Wilcox (Oracle)
|
f9bff0e318 |
minmax: add in_range() macro
Patch series "New page table range API", v6. This patchset changes the API used by the MM to set up page table entries. The four APIs are: set_ptes(mm, addr, ptep, pte, nr) update_mmu_cache_range(vma, addr, ptep, nr) flush_dcache_folio(folio) flush_icache_pages(vma, page, nr) flush_dcache_folio() isn't technically new, but no architecture implemented it, so I've done that for them. The old APIs remain around but are mostly implemented by calling the new interfaces. The new APIs are based around setting up N page table entries at once. The N entries belong to the same PMD, the same folio and the same VMA, so ptep++ is a legitimate operation, and locking is taken care of for you. Some architectures can do a better job of it than just a loop, but I have hesitated to make too deep a change to architectures I don't understand well. One thing I have changed in every architecture is that PG_arch_1 is now a per-folio bit instead of a per-page bit when used for dcache clean/dirty tracking. This was something that would have to happen eventually, and it makes sense to do it now rather than iterate over every page involved in a cache flush and figure out if it needs to happen. The point of all this is better performance, and Fengwei Yin has measured improvement on x86. I suspect you'll see improvement on your architecture too. Try the new will-it-scale test mentioned here: https://lore.kernel.org/linux-mm/20230206140639.538867-5-fengwei.yin@intel.com/ You'll need to run it on an XFS filesystem and have CONFIG_TRANSPARENT_HUGEPAGE set. This patchset is the basis for much of the anonymous large folio work being done by Ryan, so it's received quite a lot of testing over the last few months. This patch (of 38): Determine if a value lies within a range more efficiently (subtraction + comparison vs two comparisons and an AND). It also has useful (under some circumstances) behaviour if the range exceeds the maximum value of the type. Convert all the conflicting definitions of in_range() within the kernel; some can use the generic definition while others need their own definition. Link: https://lkml.kernel.org/r/20230802151406.3735276-1-willy@infradead.org Link: https://lkml.kernel.org/r/20230802151406.3735276-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Naohiro Aota
|
c02d35d89b |
btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
When doing a relocation, there is a chance that at the time of btrfs_reloc_clone_csums(), there is no checksum for the corresponding region. In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item and so ordered_extent's logical is set to some invalid value. Then, btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a block group and will hit an assert or a null pointer dereference as following. This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16 times) with a null_blk setup. The device's zone size and capacity is set to 32 MB and the storage size is set to 5 GB on my setup. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1 Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00 > 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00 RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088 RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827 R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000 R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0 Call Trace: <TASK> ? die_addr+0x3c/0xa0 ? exc_general_protection+0x148/0x220 ? asm_exc_general_protection+0x22/0x30 ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] ? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs] btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs] ? rcu_is_watching+0x11/0xb0 ? lock_release+0x47a/0x620 ? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs] ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs] ? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs] ? __smp_call_single_queue+0x124/0x350 ? rcu_is_watching+0x11/0xb0 btrfs_work_helper+0x19f/0xc60 [btrfs] ? __pfx_try_to_wake_up+0x10/0x10 ? _raw_spin_unlock_irq+0x24/0x50 ? rcu_is_watching+0x11/0xb0 process_one_work+0x8c1/0x1430 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? _raw_spin_lock_irq+0x52/0x60 worker_thread+0x100/0x12c0 ? __kthread_parkme+0xc1/0x1f0 ? __pfx_worker_thread+0x10/0x10 kthread+0x2ea/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> On the zoned mode, writing to pre-allocated region means data relocation write. Such write always uses WRITE command so there is no need of splitting and rewriting logical address. Thus, we can just skip the function for the case. Fixes: cbfce4c7fbde ("btrfs: optimize the logical to physical mapping for zoned writes") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
92e1229b20 |
btrfs: tests: test invalid splitting when skipping pinned drop extent_map
This reproduces the bug fixed by "btrfs: fix incorrect splitting in btrfs_drop_extent_map_range", we were improperly calculating the range for the split extent. Add a test that exercises this scenario and validates that we get the correct resulting extent_maps in our tree. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
f345dbdf2c |
btrfs: tests: add a test for btrfs_add_extent_mapping
This helper is different from the normal add_extent_mapping in that it will stuff an em into a gap that exists between overlapping em's in the tree. It appeared there was a bug so I wrote a self test to validate it did the correct thing when it worked with two side by side ems. Thankfully it is correct, but more testing is better. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |