IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Impact: avoid losing some traces when a task is freed
do_exit() is not the last function called when a task finishes.
There are still some functions which are to be called such as
ree_task(). So we delay the freeing of the return stack to the
last moment.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use deeper function tracing depth safely
Some tests showed that function return tracing needed a more deeper depth
of function calls. But it could be unsafe to store these return addresses
to the stack.
So these arrays will now be allocated dynamically into task_struct of current
only when the tracer is activated.
Typical scheme when tracer is activated:
- allocate a return stack for each task in global list.
- fork: allocate the return stack for the newly created task
- exit: free return stack of current
- idle init: same as fork
I chose a default depth of 50. I don't have overruns anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: API *CHANGE*. Must update all tracepoint users.
Add DEFINE_TRACE() to tracepoints to let them declare the tracepoint
structure in a single spot for all the kernel. It helps reducing memory
consumption, especially when declaring a lot of tracepoints, e.g. for
kmalloc tracing.
*API CHANGE WARNING*: now, DECLARE_TRACE() must be used in headers for
tracepoint declarations rather than DEFINE_TRACE(). This is the sane way
to do it. The name previously used was misleading.
Updates scheduler instrumentation to follow this API change.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We don't want to get rid of the futexes just at exit() time, we want to
drop them when doing an execve() too, since that gets rid of the
previous VM image too.
Doing it at mm_release() time means that we automatically always do it
when we disassociate a VM map from the task.
Reported-by: pageexec@freemail.hu
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Alex Efros <powerman@powerman.name>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.
task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.
task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running. These are not visible
to the other tasks in the system.
__task_cred(task) then refers to the objective/real credentials of the task in
question.
current_cred() refers to the effective subjective credentials of the current
task.
prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).
override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds. These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.
In SELinux, current_has_perm() is provided as an alternative to
task_has_perm(). This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Instrument the scheduler activity (sched_switch, migration, wakeups,
wait for a task, signal delivery) and process/thread
creation/destruction (fork, exit, kthread stop). Actually, kthread
creation is not instrumented in this patch because it is architecture
dependent. It allows to connect tracers such as ftrace which detects
scheduling latencies, good/bad scheduler decisions. Tools like LTTng can
export this scheduler information along with instrumentation of the rest
of the kernel activity to perform post-mortem analysis on the scheduler
activity.
About the performance impact of tracepoints (which is comparable to
markers), even without immediate values optimizations, tests done by
Hideo Aoki on ia64 show no regression. His test case was using hackbench
on a kernel where scheduler instrumentation (about 5 events in code
scheduler code) was added. See the "Tracepoints" patch header for
performance result detail.
Changelog :
- Change instrumentation location and parameter to match ftrace
instrumentation, previously done with kernel markers.
[ mingo@elte.hu: conflict resolutions ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: 'Peter Zijlstra' <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a kref to the tty structure and use it to protect the tty->signal
tty references. For now we don't introduce it for anything else.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the second resubmission of the posix timer rework patch, posted
a few days ago.
This includes the changes from the previous resubmittion, which addressed
Oleg Nesterov's comments, removing the RCU stuff from the patch and
un-inlining the thread_group_cputime() function for SMP.
In addition, per Ingo Molnar it simplifies the UP code, consolidating much
of it with the SMP version and depending on lower-level SMP/UP handling to
take care of the differences.
It also cleans up some UP compile errors, moves the scheduler stats-related
macros into kernel/sched_stats.h, cleans up a merge error in
kernel/fork.c and has a few other minor fixes and cleanups as suggested
by Oleg and Ingo. Thanks for the review, guys.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/fork.c:843: error: ‘struct signal_struct’ has no member named ‘sum_sched_runtime’
kernel/irq/handle.c:117: warning: ‘sparse_irq_lock’ defined but not used
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Overview
This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together
with the help of Roland McGrath, the owner and original writer of this code.
The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads. It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.
This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."
Code Changes
This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine. (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.) To do this, at each tick we now update fields in
signal_struct as well as task_struct. The run_posix_cpu_timers() function
uses those fields to make its decisions.
We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:
struct task_cputime {
cputime_t utime;
cputime_t stime;
unsigned long long sum_exec_runtime;
};
This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:
struct thread_group_cputime {
struct task_cputime totals;
};
struct thread_group_cputime {
struct task_cputime *totals;
};
We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers). The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends. In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention). For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu(). The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().
We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel. The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields. The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures. The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated. The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU. Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.
Non-SMP operation is trivial and will not be mentioned further.
The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().
All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.
Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away. All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline. When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.
Performance
The fix appears not to add significant overhead to existing operations. It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below). Overall it's a wash except in those
two cases.
I've since done somewhat more involved testing on a dual-core Opteron system.
Case 1: With no itimer running, for a test with 100,000 threads, the fixed
kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
all of which was spent in the system. There were twice as many
voluntary context switches with the fix as without it.
Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
an unmodified kernel can handle), the fixed kernel ran the test in
eight percent of the time (5.8 seconds as opposed to 70 seconds) and
had better tick accuracy (.012 seconds per tick as opposed to .023
seconds per tick).
Case 3: A 4000-thread test with an initial timer tick of .01 second and an
interval of 10,000 seconds (i.e. a timer that ticks only once) had
very nearly the same performance in both cases: 6.3 seconds elapsed
for the fixed kernel versus 5.5 seconds for the unfixed kernel.
With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.
Since the fix affected the rlimit code, I also tested soft and hard CPU limits.
Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
running), the modified kernel was very slightly favored in that while
it killed the process in 19.997 seconds of CPU time (5.002 seconds of
wall time), only .003 seconds of that was system time, the rest was
user time. The unmodified kernel killed the process in 20.001 seconds
of CPU (5.014 seconds of wall time) of which .016 seconds was system
time. Really, though, the results were too close to call. The results
were essentially the same with no itimer running.
Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
(where the hard limit would never be reached) and an itimer running,
the modified kernel exhibited worse tick accuracy than the unmodified
kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise,
performance was almost indistinguishable. With no itimer running this
test exhibited virtually identical behavior and times in both cases.
In times past I did some limited performance testing. those results are below.
On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds. Performance with eight, four and one
thread were comparable. Interestingly, the timer ticks with the fix seemed
more accurate: The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick. Both cases were configured for an interval of
0.01 seconds. Again, the other tests were comparable. Each thread in this
test computed the primes up to 25,000,000.
I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix. In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable). System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite
accurate. There is obviously no comparable test without the fix.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We want to be able to control the default "rounding" that is used by
select() and poll() and friends. This is a per process property
(so that we can have a "nice" like program to start certain programs with
a looser or stricter rounding) that can be set/get via a prctl().
For this purpose, a field called "timer_slack_ns" is added to the task
struct. In addition, a field called "default_timer_slack"ns" is added
so that tasks easily can temporarily to a more/less accurate slack and then
back to the default.
The default value of the slack is set to 50 usec; this is significantly less
than 2.6.27's average select() and poll() timing error but still allows
the kernel to group timers somewhat to preserve power behavior. Applications
and admins can override this via the prctl()
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Put all i/o statistics in struct proc_io_accounting and use inline functions to
initialize and increment statistics, removing a lot of single variable
assignments.
This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and
CONFIG_TASK_IO_ACCOUNTING=y).
text data bss dec hex filename
11651 0 0 11651 2d83 kernel/exit.o.before
11619 0 0 11619 2d63 kernel/exit.o.after
10886 132 136 11154 2b92 kernel/fork.o.before
10758 132 136 11026 2b12 kernel/fork.o.after
3082029 807968 4818600 8708597 84e1f5 vmlinux.o.before
3081869 807968 4818600 8708437 84e155 vmlinux.o.after
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the PTRACE_EVENT_VFORK_DONE tracing into a tracehook.h inline,
tracehook_report_vfork_done(). The change has no effect, just clean-up.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves all the ptrace initialization and tracing logic for task
creation into tracehook.h and ptrace.h inlines. It reorganizes the code
slightly, but should not change any behavior.
There are four tracehook entry points, at each important stage of task
creation. This keeps the interface from the core fork.c code fairly
clean, while supporting the complex setup required for ptrace or something
like it.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Report per-thread I/O statistics in /proc/pid/task/tid/io and aggregate
parent I/O statistics in /proc/pid/io. This approach follows the same
model used to account per-process and per-thread CPU times.
As a practial application, this allows for example to quickly find the top
I/O consumer when a process spawns many child threads that perform the
actual I/O work, because the aggregated I/O statistics can always be found
in /proc/pid/io.
[ Oleg Nesterov points out that we should check that the task is still
alive before we iterate over the threads, but also says that we can do
that fixup on top of this later. - Linus ]
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: Matt Heaton <matt@hostmonster.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Acked-by-with-comments: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move mm->core_waiters into "struct core_state" allocated on stack. This
shrinks mm_struct a little bit and allows further changes.
This patch mostly does s/core_waiters/core_state. The only essential
change is that coredump_wait() must clear mm->core_state before return.
The coredump_wait()'s path is uglified and .text grows by 30 bytes, this
is fixed by the next patch.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kill PF_BORROWED_MM. Change use_mm/unuse_mm to not play with ->flags, and
do s/PF_BORROWED_MM/PF_KTHREAD/ for a couple of other users.
No functional changes yet. But this allows us to do further
fixes/cleanups.
oom_kill/ptrace/etc often check "p->mm != NULL" to filter out the
kthreads, this is wrong because of use_mm(). The problem with
PF_BORROWED_MM is that we need task_lock() to avoid races. With this
patch we can check PF_KTHREAD directly, or use a simple lockless helper:
/* The result must not be dereferenced !!! */
struct mm_struct *__get_task_mm(struct task_struct *tsk)
{
if (tsk->flags & PF_KTHREAD)
return NULL;
return tsk->mm;
}
Note also ecard_task(). It runs with ->mm != NULL, but it's the kernel
thread without PF_BORROWED_MM.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_clone creates a new cgroup with the pid of the task. This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid is
created. As a result, the new cgroup was created with current's pid.
This patch:
1. Moves the call inside copy_process to after the new pid
is created
2. Passes the struct pid into ns_cgroup_clone (as it is not
yet attached to the task)
3. Passes a name from ns_cgroup_clone() into cgroup_clone()
so as to keep cgroup_clone() itself simpler
4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. I think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWPID) to get
t2, which does clone(CLONE_NEWPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.
(Thanks to Dan Smith for finding the main bug)
Changelog:
June 11: Incorporate Paul Menage's feedback: don't pass
NULL to ns_cgroup_clone from unshare, and reduce
patch size by using 'nodename' in cgroup_clone.
June 10: Original version
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge Hallyn <serge@us.ibm.com>
Acked-by: Paul Menage <menage@google.com>
Tested-by: Dan Smith <danms@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We duplicate alloc/free_thread_info defines on many platforms (the
majority uses __get_free_pages/free_pages). This patch defines common
defines and removes these duplicated defines.
__HAVE_ARCH_THREAD_INFO_ALLOCATOR is introduced for platforms that do
something different.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in
a similar manner to the reservations taken for MAP_SHARED mappings. The
reserve count is accounted both globally and on a per-VMA basis for
private mappings. This guarantees that a process that successfully calls
mmap() will successfully fault all pages in the future unless fork() is
called.
The characteristics of private mappings of hugetlbfs files behaviour after
this patch are;
1. The process calling mmap() is guaranteed to succeed all future faults until
it forks().
2. On fork(), the parent may die due to SIGKILL on writes to the private
mapping if enough pages are not available for the COW. For reasonably
reliable behaviour in the face of a small huge page pool, children of
hugepage-aware processes should not reference the mappings; such as
might occur when fork()ing to exec().
3. On fork(), the child VMAs inherit no reserves. Reads on pages already
faulted by the parent will succeed. Successful writes will depend on enough
huge pages being free in the pool.
4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper
and at fault time otherwise.
Before this patch, all reads or writes in the child potentially needs page
allocations that can later lead to the death of the parent. This applies
to reads and writes of uninstantiated pages as well as COW. After the
patch it is only a write to an instantiated page that causes problems.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone. Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.
There should be no user-visible difference that matters. The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees. Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.
Signed-off-by: Roland McGrath <roland@redhat.com>
* 'core/locking' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
lockdep: fix kernel/fork.c warning
lockdep: fix ftrace irq tracing false positive
lockdep: remove duplicate definition of STATIC_LOCKDEP_MAP_INIT
lockdep: add lock_class information to lock_chain and output it
lockdep: add lock_class information to lock_chain and output it
lockdep: output lock_class key instead of address for forward dependency output
__mutex_lock_common: use signal_pending_state()
mutex-debug: check mutex magic before owner
Fixed up conflict in kernel/fork.c manually
* 'tracing/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (228 commits)
ftrace: build fix for ftraced_suspend
ftrace: separate out the function enabled variable
ftrace: add ftrace_kill_atomic
ftrace: use current CPU for function startup
ftrace: start wakeup tracing after setting function tracer
ftrace: check proper config for preempt type
ftrace: trace schedule
ftrace: define function trace nop
ftrace: move sched_switch enable after markers
ftrace: prevent ftrace modifications while being kprobe'd, v2
fix "ftrace: store mcount address in rec->ip"
mmiotrace broken in linux-next (8-bit writes only)
ftrace: avoid modifying kprobe'd records
ftrace: freeze kprobe'd records
kprobes: enable clean usage of get_kprobe
ftrace: store mcount address in rec->ip
ftrace: build fix with gcc 4.3
namespacecheck: fixes
ftrace: fix "notrace" filtering priority
ftrace: fix printout
...
(Updated with a common max-stack-used checker that knows about
the canary, as suggested by Joe Perches)
Use a canary at the end of the stack to clearly indicate
at oops time whether the stack has ever overflowed.
This is a very simple implementation with a couple of
drawbacks:
1) a thread may legitimately use exactly up to the last
word on the stack
-- but the chances of doing this and then oopsing later seem slim
2) it's possible that the stack usage isn't dense enough
that the canary location could get skipped over
-- but the worst that happens is that we don't flag the overrun
-- though this happens fairly often in my testing :(
With the code in place, an intentionally-bloated stack oops might
do:
BUG: unable to handle kernel paging request at ffff8103f84cc680
IP: [<ffffffff810253df>] update_curr+0x9a/0xa8
PGD 8063 PUD 0
Thread overran stack or stack corrupted
Oops: 0000 [1] SMP
CPU 0
...
... unless the stack overrun is so bad that it corrupts some other
thread.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Suggested by Roland McGrath.
Initialize signal->curr_target in copy_signal(). This way ->curr_target is
never == NULL, we can kill the check in __group_complete_signal's hot path.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel implements readlink of /proc/pid/exe by getting the file from
the first executable VMA. Then the path to the file is reconstructed and
reported as the result.
Because of the VMA walk the code is slightly different on nommu systems.
This patch avoids separate /proc/pid/exe code on nommu systems. Instead of
walking the VMAs to find the first executable file-backed VMA we store a
reference to the exec'd file in the mm_struct.
That reference would prevent the filesystem holding the executable file
from being unmounted even after unmapping the VMAs. So we track the number
of VM_EXECUTABLE VMAs and drop the new reference when the last one is
unmapped. This avoids pinning the mounted filesystem.
[akpm@linux-foundation.org: improve comments]
[yamamoto@valinux.co.jp: fix dup_mmap]
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Howells <dhowells@redhat.com>
Cc:"Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption. CLONE_NEWIPC must detach from the existing
undo lists.
Fix, part 2: perform an implicit CLONE_SYSVSEM in CLONE_NEWIPC. CLONE_NEWIPC
creates a new IPC namespace, the task cannot access the existing semaphore
arrays after the unshare syscall. Thus the task can/must detach from the
existing undo list entries, too.
This fixes the kernel corruption, because it makes it impossible that
undo records from two different namespaces are in sysvsem.undo_list.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption. CLONE_NEWIPC must detach from the existing
undo lists.
Fix, part 1: add support for sys_unshare(CLONE_SYSVSEM)
The original reason to not support it was the potential (inevitable?)
confusion due to the fact that sys_unshare(CLONE_SYSVSEM) has the
inverse meaning of clone(CLONE_SYSVSEM).
Our two most reasonable options then appear to be (1) fully support
CLONE_SYSVSEM, or (2) continue to refuse explicit CLONE_SYSVSEM,
but always do it anyway on unshare(CLONE_SYSVSEM). This patch does
(1).
Changelog:
Apr 16: SEH: switch to Manfred's alternative patch which
removes the unshare_semundo() function which
always refused CLONE_SYSVSEM.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the mem_cgroup member from mm_struct and instead adds an owner.
This approach was suggested by Paul Menage. The advantage of this approach
is that, once the mm->owner is known, using the subsystem id, the cgroup
can be determined. It also allows several control groups that are
virtually grouped by mm_struct, to exist independent of the memory
controller i.e., without adding mem_cgroup's for each controller, to
mm_struct.
A new config option CONFIG_MM_OWNER is added and the memory resource
controller selects this config option.
This patch also adds cgroup callbacks to notify subsystems when mm->owner
changes. The mm_cgroup_changed callback is called with the task_lock() of
the new task held and is called just prior to changing the mm->owner.
I am indebted to Paul Menage for the several reviews of this patchset and
helping me make it lighter and simpler.
This patch was tested on a powerpc box, it was compiled with both the
MM_OWNER config turned on and off.
After the thread group leader exits, it's moved to init_css_state by
cgroup_exit(), thus all future charges from runnings threads would be
redirected to the init_css_set's subsystem.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>,
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch renames mpol_copy() to mpol_dup() because, well, that's what it
does. Like, e.g., strdup() for strings, mpol_dup() takes a pointer to an
existing mempolicy, allocates a new one and copies the contents.
In a later patch, I want to use the name mpol_copy() to copy the contents from
one mempolicy to another like, e.g., strcpy() does for strings.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>